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Abstract This paper is devoted to the study of a heat transfer problem in a van der Waals
gas. We found that the extended thermodynamics theory for such a fluid predicts the non-
vanishing dynamic pressure and the shear stress tensor, even in the simplest stationary planar
case. However, the order of magnitude of the non-equilibrium variables is very small and,
consequently, their experimental observation seems to be quite difficult.

A comparison between the results derived from the classical Navier–Stokes Fourier the-
ory and those from extended thermodynamics is also presented.

Keywords Heat transfer · Van der Waals gas · Extended thermodynamics

In classical thermodynamics, the mathematical description of a gas is based on the conserva-
tion laws of mass, momentum and energy [1, 2]. The closure of such equations is performed
through the well-known Navier–Stokes and Fourier laws, which impose that the viscous
stress tensor and the heat flux are proportional to the gradients of the velocity and of the
temperature, respectively.

Following the extended thermodynamics [3] assumptions, the viscous stress tensor, the
heat flux and, if necessary, other non-equilibrium quantities are considered as independent
field variables. And appropriate balance laws for such quantities are taken into the theory.
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Classical and extended thermodynamics models differ from each other not only in the
physical approach, but also in the mathematical structure of the basic equations. In fact, the
classical PDE system is of parabolic type, while the extended thermodynamics one is of
hyperbolic type.

In the last twenty years the two theories have been mutually compared and tested in many
different physical situations in order to understand their validity limits and their differences.
Starting about ten years ago, several studies of the heat transfer problem were made to
check if the substantial differences of their predictions can be detected in this simple non-
equilibrium problem. The pioneering work on this subject [4] shows that, in a monatomic
gas composed of single constituent at rest confined between two coaxial cylinders or two
concentric spheres, some shear stress tensor components do not vanish, in contrast with pre-
dictions by the classical thermodynamics theory. Moreover, it was shown that this effect can
affect also the temperature profile inside the bounded domain. Afterwards, similar results
were observed for single monoatomic gases enclosed in non-planar bounded domain [5–7]
and also for gas mixtures both in planar [8–10] and non-planar geometries [11]. At least for
mixtures between two parallel plates, the results were also successfully compared with the
Monte Carlo predictions [8].

Up to now, several authors worked on extended thermodynamics theories for polyatomic
and/or dense gases [12–17]. However, these theories have some inherent difficulties. Re-
cently a new theory gives rise to a promising model [18, 19], which was also derived for
rarefied polyatomic gases through the kinetic moment equations with the maximum entropy
principle [20]. In this paper, we will adopt the system of field equations proposed in [18].
The usefulness of the new theory was confirmed by the fact that the dispersion relation for
ultrasonic sound in rarefied diatomic gases agrees well with the experimental data even in
the high frequency range where the classical theory is no more valid [21]. Moreover, the
shock wave structure in a polyatomic gas observed by experiments can be well explained by
the theory [22, 23]. It is also proved [24, 25] that the theory can be regarded as a generaliza-
tion of the Meixner theory of relaxation processes [26, 27].

In the case of a rarefied polyatomic gas confined between two parallel plates [28], it was
found that relevant differences between classical and extended models are predicted if the
specific heat at constant volume cV of the gas is not constant with respect to the temperature.
In fact, for the first time, it was predicted non-vanishing non-equilibrium pressure (dynamic
pressure) and non-vanishing viscous stress tensor components in a single gas at rest between
two parallel plates. While, in the case of polyatomic gases with constant specific heat, differ-
ences between the two theories are observable only in the radial geometry and are restricted
to the viscous stress tensor components.

In the present paper we will focus our attention on the stationary heat transfer problem
in a van der Waals gas in the case of a constant specific heat cV , which is a typical model of
realistic gases characterized by the following caloric and thermal equations of state:

p = k

m

Tρ

1 − bρ
− aρ2, ε = D

2

k

m
T − aρ, (1)

where p is the pressure, k the Boltzmann constant, m the mass of a molecule, T the absolute
temperature, and ρ the mass density. The material-dependent constants a and b represent,
respectively, a measure of the attraction between the constituent molecules and the effec-
tive volume (or exclusion volume) of a molecule [2]. Finally, D represents the degrees of
freedom of a molecule.

If we assume that the gas is at rest in the gap between two plane parallel plates, we will
find out a surprising result. In fact, although we take into account a temperature range for
which the specific heat cV is constant, the non-equilibrium pressure and the viscous stress
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tensor cannot vanish. To our knowledge this is the first case in which such a phenomenon is
described and, under the previous assumptions, differences between classical and extended
thermodynamics are predicted. Unfortunately, the effect is very small, at least at a low or
room temperature. Due to this fact, the experimental detection of the differences may be
quite difficult.

1 Field Equations

In what follows we will adopt the system of field equations for a van der Waals gas pre-
scribed in [18] appropriate to a planar one-dimensional problem. We assume that all field
variables depend only on spatial coordinate x (orthogonal to the two plates) and, further-
more, that the gas velocity v vanishes, we obtain the following system of six field equations,
where the quadratic terms in the non-equilibrium variables are neglected:1

d

dx
[p + Π − S〈11〉] = 0,

dq

dx
= 0, ⇒ q = Q0,
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]
(Π − S〈11〉) = − q

τq

. (3)

The six variables are the temperature T , the mass density ρ, the dynamic pressure Π , the
two traceless parts of the viscous stress tensor S〈11〉 and S〈22〉, and the x-component of the
heat flux q .

The other functions in (2) and (3) are L = 5K/6 and

K = 4
k
m
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b2ρ
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− Daρ2

)
,

(4)

1The model that we consider here and in particular the production terms were obtained for solution not so far
from equilibrium. For this reason all the quadratic terms in the non-equilibrium variables can be neglected.
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while, the relaxation times are defined as

τS = −2h3

σ
, τΠ = −2h2

ς
, τq = −2h4

τ
, (5)

with σ , ς and τ constants that depend on the material.
It is easy to see that (2)1,2 represent respectively the conservation laws of momentum and

energy, while the other equations are the balance laws for the two components of the viscous
stress and the heat flux. The conservation law of mass is identically satisfied and therefore it
is omitted.

One can deduce from (2)3–5 that, even in the planar case and for v = 0, the viscous stress
is not zero if a van der Waals gas is considered. Moreover, there exists a non-vanishing
dynamic pressure Π . Clearly, it is interesting to determine its form and its order of magni-
tude. For this reason, in the next section we will integrate numerically the field equations (2)
and (3).

In order to make our study concise, we introduce the following dimensionless quantities:

x̂ = x

d
, T̂ = T

TC
, Π̂ = Π

PC
,

Ŝ〈ij 〉 = S〈ij 〉
PC

, q̂ = q

PC

√
k
m
TC

, ρ̂ = ρ

ρC
,

(6)

where d is the distance between the two plates, and

ρC = 1

3b
, PC = a

27b2
, TC = 8a

27 k
m
b
, (7)

are the critical values of the density, pressure and temperature, respectively.
According to the van der Waals model, the critical temperature TC is the value of the

temperature above which no phase transition is allowed; the critical pressure is the pressure
below which metastable and coexistence states are allowed, and the critical density is the
density of the state characterized by the critical temperature and pressure following the
thermal equation of state (1)1. Usually, the field variables are reduced in this dimensionless
form [2], so that the equations of state can be rewritten in a form independent of the material
constants a and b.

Referring to these new variables, the field equations read

d
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⇒ Ŝ〈22〉 = −2Ŝ〈11〉,
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(8)
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and
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KŜ〈11〉
]

+
[
− T̂

ρ̂(1 − b̂ρ̂)

dρ̂

dx̂
+ D

2

dT̂

dx̂

]
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where Q̂0 denotes a constant dimensionless heat flux, and we have
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ĥ4 = h4

PC
k
m
T 2

C

= −8

3
T̂ 2

(
(D + 2)ρ̂T̂

1 − b̂ρ̂
− 8

3
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(10)
It is clearly verified that the (8) and (9) constitute a non-linear ordinary differential sys-

tem of the fourth order in the four independent field variables T̂ , ρ̂, Π̂ and q̂ . The remaining
quantities Ŝ〈11〉 and Ŝ〈22〉 can be algebraically determined in terms of the others. Unfortu-
nately, the system cannot be easily rewritten in the normal form and so we will integrate
it through an implicit method. In [18] it is recalled that the non-stationary extended ther-
modynamics system for a van der Waals gas is symmetric hyperbolic in the neighborhood
of equilibrium, if the concavity of the entropy density holds. The concavity condition is
expressed through the following four inequalities:

8T̂ ρ̂

3 − ρ̂
− 3ρ̂2 > 0,

8T̂

(3 − ρ̂)2
− 2ρ̂ > 0,

18 + D(5ρ̂ − 6)

D(ρ̂ − 3)2
T̂ 2ρ̂ − 3

8
T̂ ρ̂2 < 0,

8(D + 2)T̂ + 3D(ρ̂ − 3)ρ

ρ − 3
T̂ 2ρ̂ < 0.

(11)

Then, although we will focus our attention on the stationary case, which is described by
an ODE system, in what follows we will consider only solutions that satisfy the concavity
condition (11).
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What about the corresponding classical thermodynamics equations? As said before, the
classical theory assumes that the non-equilibrium pressure and the viscous stress are pro-
portional to the velocity gradient, which for a gas at rest obviously vanish. Therefore, in
classical approximations, the system of (8) and (9) reduces to the following third order sys-
tem of equations:

dp̂

dx̂
= 0,

dq̂

dx̂
= 0 ⇒ q̂ = Q̂0,

Ŝ〈11〉 = 0,

Ŝ〈22〉 = 0,

Π̂ = 0,

− ĥ4

2T̂ 2

dT̂

dx
= − q̂

τ̂q

.

(12)

The classical and extended thermodynamics systems contain material parameters that are
σ̂ , ς̂ and τ̂ . These parameters should be determined through experimental data before the
integration of the two systems. This will be the subject of the next section.

2 Estimation of the Parameters

In the reference [18], it was shown that the three relaxation times are related to the shear
viscosity μ, bulk viscosity ν and heat conductivity κ by

μ = pτS, ν = −2h2

T
τΠ, κ = − h4

2T 2
τq . (13)

These relations together with the relations (5) can be used to evaluate the three material
constants σ , ς and τ , when the shear viscosity, the bulk viscosity and the heat conductivity
are known at least for particular choices of the physical parameters. Unfortunately, there
are very few experimental results about the bulk viscosity, so very few materials and very
few temperature ranges can be completely investigated. For this reason we will assume,
for simplicity of the present analysis, that σ , ς and τ remain constant within the range of
temperature values of the heat transfer problem. Of course, this is a rough approximation,
but at the moment this is the simplest approach in order to evaluate the role of Π and S〈ii〉.

As an example, we consider the case of a diatomic gas: Nitrogen (N2), so that D = 5,
m = 28 (atomic mass unit), TC = 126.19 K, pC = 33.96 bar and ρC = 313.3 Kg/m3. To
evaluate σ̂ , ς̂ and τ̂ , we refer to the values for the viscosities and the heat conductivity of [29]
(Table 1 second line T = 180 K for which it seems that p = 1 bar). Then, for a very small
distance between the two plates of the order of 10−3 m, it follows that σ̂ � 2839, ς̂ � 173
and τ̂ � 21116. These are the coefficients that we will use for the numerical integrations of
the two systems (8) and (9), and (12).

3 Boundary Values

We already said that the system of (8) and (9) can be reduced through algebraic relations
to an ordinary differential system of the fourth order. Which boundary conditions can be
physically assigned?
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We will consider the gas confined between a permeable plate and an impermeable one.
For the sake of simplicity, we assume that the permeable wall is the one at x̂ = 0 and it is
also kept at a fixed temperature. In this way, at x̂ = 0 we can prescribe both the density ρ0

and the temperature T0 of the gas. At the impermeable wall (at x̂ = 1), a fixed heat flux Q0

is applied, so that the gas is at rest and we know the value of the constant heat flux.
These data are sufficient to determine completely the solution of the classical system

(12), but one more condition is required for the integration of the extended thermodynamics
system of (8) and (9). Unfortunately, no other data can be assigned referring to the physics of
the problem: once more we are dealing with non-controllable boundary data! This problem
is well-known in the literature and in the last years several approaches were introduced to
overcome it.

In the present case, we have started assigning different values of the non-equilibrium
pressure at one boundary and we found that the corresponding solutions, after a very steep
boundary layer (very close to a vertical line), will sweep into the same single function.
Although there is no proof of that, it seems that the “correct” boundary value is the one for
which no boundary layers are observed. A similar phenomenon was already observed in a
different context [30].

Of course, the same considerations are valid also for S〈11〉, since it is related to Π by an
algebraic relation. On the contrary, not relevant differences can be observed for the temper-
ature and the mass density when the boundary values for Π are varied within the range of
validity of the entropy concavity.

4 Numerical Examples

In this section, we present the results obtained by the numerical integration of the field equa-
tions for nitrogen with the values of the parameters and the boundary conditions previously
introduced.

In particular, we are interested in the profiles of the non-equilibrium variables S〈11〉
and Π , and their order of magnitude. Comparison between classical and extended ther-
modynamics predictions will also be made.

For N2 enclosed between two parallel plates we consider the case in which T̂0 = 1.008,
ρ̂0 = 0.5, Q̂0 = −0.005. The results are illustrated in Fig. 1, where the classical solution
is drawn in dashed lines, while the solid lines correspond to the extended thermodynamic
fields. The variables ρ̂ and T̂ obtained from the classical and extended theories coincide
with each other at least at the plot precision. For that reason we present also the plot of the
differences between extended and classical thermodynamics predictions. On the contrary,
the non-equilibrium variables Π̂ , Ŝ〈11〉 and Ŝ〈22〉 = −2Ŝ〈11〉 differ from the corresponding
vanishing ones, predicted by the classical approximations. The order of magnitude of Π̂

and Ŝ〈ii〉 is very small in both cases. In Fig. 1, the non equilibrium variables Π̂ and Ŝ〈ii〉
seem to be zero at the right boundary. This is due only to the small plot precision. In fact,
an accurate analysis of the field variables and a comparison with the numerical integration
precision show that the dynamic pressure and the stress tensor do not vanish at x̂ = 1. These
considerations about non-equilibrium variables are also valid in Fig. 2.

In Fig. 2, we assign the same values of the temperature and of the mass density at x̂ = 0
as in Fig. 1 and vary the heat flux value (Q̂0 = −0.002,−0.005,−0.01). The higher is the
value of Q̂0, the higher is also the magnitude order of Ŝ〈11〉 and Π̂ . This result is in agreement
with the idea that the role of dynamic pressure and stress tensor becomes more relevant as
the solution is further from equilibrium.
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Fig. 1 The solutions of the heat transfer problem in N2, as predicted by the extended (solid lines) and clas-
sical (dashed lines) theory. For mass density and temperature the differences between classical and extended
thermodynamics are also presented in solid line

Fig. 2 The solutions of the heat transfer problem in N2, as predicted by extended thermodynamics, for
different values of the assigned heat flux
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5 Conclusions and Final Remarks

We have shown that the extended thermodynamics model for van der Waals gases, that is,
typical real gases, describes the presence of the non-vanishing dynamic pressure and the
viscous stress tensor, even in the simplest case of heat transfer in a gas at rest confined
between two parallel plates. To our knowledge, such an effect is predicted here for the first
time in the literature. In the last section, we have also verified that for gases at or below the
room temperature this effect is very small and does not affect significantly the behaviors of
the temperature and of the mass density. Consequently, the difference between classical and
extended thermodynamics cannot be easily detected in experiments.

We did not consider solutions very far from equilibrium or at very high temperature,
since in those cases no experimental datum was available for the parameter determination.
Moreover, we have assumed the constant coefficients as a rough approximation. With a more
accurate description or for a solution further from equilibrium, is it possible to observe more
evident differences in the temperature and density fields? The question about the possible
detection of the effect through experiments remains still open, and suggests, once more, the
necessity of detailed experimental investigations of the heat transfer problem in gases.

The last point worthy of remark is the following. In the present paper, we have analyzed
the case of dense gases with the constant specific heat cV as a first step of our study. However,
in the case of dense gases with non-constant specific heat cV , we can expect much larger
effects of the non-equilibrium quantities on the temperature and density profiles in a heat
transfer problem. Indeed such effects have recently been found out in rarefied polyatomic
gases [28] as remarked in the introduction. This is the next subject we are now planning to
study.
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20. Pavić, M., Ruggeri, T., Simić, S.: Maximum entropy principle for rarefied polyatomic gases. Physica A

392(6), 1302–1317 (2013)
21. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Dispersion relation for sound in rarefied polyatomic

gases based on extended thermodynamics. Contin. Mech. Thermodyn. 25(6), 727–737 (2013)
22. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Thermodynamic theory of the shock wave structure

in a rarefied polyatomic gas: beyond the Bethe–Teller theory. Phys. Rev. E 89, 013025 (2014)
23. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Effect of dynamic pressure on the shock wave

structure in a rarefied polyatomic gas. Phys. Fluids 26, 016103 (2014)
24. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of real gases with dy-

namic pressure: an extension of Meixner’s theory. Phys. Lett. A 376, 2799–2803 (2012)
25. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: On the six-field model of fluidsbased on extended

thermodynamics. Meccanica (2014). doi:10.1007/s11012-014-9886-0
26. Meixner, J.: Absorption und dispersion des schalles in gasen mit chemisch reagierenden und anregbaren

komponenten. I. Ann. Phys. 43, 470–487 (1943)
27. Meixner, J.: Allgemeine theorie der schallabsorption in gasen und flussigkeiten unter berucksichtigung

der transporterscheinungen. Acustica 2, 101–109 (1952)
28. Arima, T., Barbera, E., Brini, F., Sugiyama, M.: The role of the dynamic pressure in stationary heat

conduction of a rarefied polyatomic gas. Phys. Lett. A, submitted
29. Prangsma, G.J., Alberga, A.H., Beenakker, J.J.M.: Ultrasonic determination of the volume viscosity of

N2, CO, CH4 and CD4 between 77 and 300 K. Physica 64, 278–288 (1973)
30. Barbera, E., Müller, I.: Heat conduction in a non-inertial frame. In: Podio-Guidugli, B. (ed.) Rational

Continua, Classical and New, pp. 1–10. Springer, Milano (2002)

http://dx.doi.org/10.1007/s11012-014-9886-0

	Heat Transfer Problem in a Van Der Waals Gas
	Abstract
	Field Equations
	Estimation of the Parameters
	Boundary Values
	Numerical Examples
	Conclusions and Final Remarks
	Acknowledgements
	References


