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Abstract We study the dispersion relation for sound in rarefied polyatomic gases basing on
the recently developed theory of extended thermodynamics (ET) for both dense and rarefied
polyatomic gases. For hydrogen and deuterium gases in a wide temperature range where
the rotational and vibrational modes in a molecule play a role, we compare the dispersion
relations with those obtained in experiments and by the classical Navier–Stokes Fourier
theory. From the comparison with experiments, we estimate the bulk viscosity and evaluate
its temperature dependence. We study the characteristics of attenuation in a gas which has a
larger relaxation time related to the dynamic pressure than the other relaxation times related
to the shear stress and the heat flux by adopting the ET theory with 6 fields.
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1 Introduction

Extended thermodynamics (ET) for both dense and rarefied polyatomic gases has been es-
tablished [1–3] based on the general methods in the ET theory [4], recently. This is the
theory of 14 fields (ET14) of the mass density, velocity, temperature, shear stress, dynamic
pressure, and heat flux with two parallel hierarchical series of field equations of balance
type. The constitutive equations are determined explicitly by the thermal and caloric equa-
tions of state. Also, as a simplified theory of ET14, the ET theory with 6 fields of the mass
density, velocity, temperature and dynamic pressure has been proposed (ET6) [5, 6].

After the establishment of the newly developed ET theory, it has been applied to rarefied
polyatomic gases. The sound wave [7], light scattering [8], shock wave [9–11] and heat con-
duction [12, 13] have been studied, and the features of the characteristic velocities have been
discussed [14]. From the kinetic theory, it was proved that ET14 is perfectly consistent with
molecular extended thermodynamics (MET) basing on the maximum entropy principle [15].
Recently, MET with many fields has been developed, and the complete equivalence between
ET and MET was proved [14] as is the case in rarefied monatomic gases [16].

In the previous study of sound waves [7], the dispersion relations described by the ET14
theory were compared with experimental data for hydrogen, deuterium and hydrogen deu-
teride gases in a temperature range where the only translational and rotational modes are
excited, and the validity of the ET theory was demonstrated. Moreover, it is clarified that
hydrogen and deuterium gases have large bulk viscosity.

This paper presents the new results on the study of sound waves. Based on the same
procedure in [7], the dispersion relation is studied and the following points are reported:
(i) the comparison of the phase velocities and attenuations, in hydrogen and deuterium gases
in a wide temperature range where the rotational and vibrational modes in a molecule play
a role, with those obtained in experiments and by the classical Navier–Stokes Fourier (NSF)
theory based on the local equilibrium assumption [17, 18], (ii) the temperature dependence
of the bulk viscosity in hydrogen and deuterium gases, and (iii) the effect of the large bulk
viscosity on the waves.

The paper is organized as follows. In Sect. 2, we summarize the basic equations necessary
for the present analysis and the dispersion relation. In Sect. 3, the dispersion relations in
hydrogen and deuterium gases are compared with both experimental data and those derived
from the NSF theory. We also evaluate the relaxation times and the bulk viscosity. In Sect. 4,
we study the characteristics of the attenuation by using ET6. The last section is devoted to
the summary and concluding remarks.

2 Basic Equations and Dispersion Relation

In this section, we summarize the basic equations for the present analysis and deduce the
dispersion relation.

2.1 Linearized Field Equations of the ET Theory

In the present study, the independent variables are the mass density ρ, velocity vi , tem-
perature T , shear stress S〈ij 〉 (symmetric traceless part of the viscous stress Sij ), dynamic
pressure Π(= −Sii/3) and heat flux qi , where i, j = 1,2,3. The stress is expressed by
tij = −pδij + Sij with p being the pressure. The basic equations in the present study are the
linearized field equations of ET14 [1] around an equilibrium state. We adopt the equations
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of state for a classical (i.e., non-degenerate) ideal gas, when the temperature is not extremely
low, expressed by

p = kB

m
ρT , ε = 3

2

kB

m
T + εint(T ), (1)

where ε, εint, kB and m are, respectively, the specific internal energy, specific internal energy
due to the internal modes of a molecular such as rotational and vibrational modes, Boltz-
mann constant and mass of a molecule. Note that gases are, in general, non-polytropic, that
is, the specific heat at constant volume cv(= dε/dT ) is, in general, not constant but depends
on the temperature. Then, the basic equations are given by [7]
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(2)

where c∗
v is the dimensionless specific heat at the reference equilibrium state:

c∗
v = cv(T0)

kB/m
. (3)

The quantities with and without the suffix 0 are, respectively, the quantities at the equi-
librium state and the deviations from the equilibrium state. By the Maxwellian iteration
[1, 4, 19], the relaxation times τS , τΠ and τq evaluated at the reference equilibrium state are,
respectively, related to the shear viscosity μ, bulk viscosity ν and heat conductivity κ :

μ = kB

m
ρ0T0τS, ν =

(
2

3
− 1

c∗
v

)
kB

m
ρ0T0τΠ, κ = (

1 + c∗
v

)(kB

m

)2

ρ0T0τq.

2.2 Dispersion Relation, Phase Velocity and Attenuation Factor

We study the one-dimensional problem and consider a plane harmonic wave propagating in
the positive x1-direction with the frequency ω and the complex wave number k such that

u = wei(ωt−kx1),
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where u ≡ (ρ, vi, T , S〈ij 〉,Π,qi) and w is a constant amplitude vector. We assume a longi-
tudinal wave:

vi ≡
⎛
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0
0
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⎝S 0 0

0 − 1
2 S 0
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Then, by introducing z = k/ω, the dispersion relation is expressed as follows [7, 20]:
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where the following dimensionless values are introduced

Ω = τSω, τqs = τq
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with the sound velocity in equilibrium defined by c0 =
√

kB

m
T0(1 + 1

c∗
v
).

From the dispersion relation, the phase velocity vph and the attenuation factor α are
calculated as the functions of the frequency ω:

vph(ω) = ω

�(k)
= 1

�(z)
, α(ω) = −�(k) = −ω�(z).

In addition, it is useful to introduce the attenuation per wavelength:

αλ(ω) = αλ = 2πvphα

ω
= −2π

�(z)

�(z)
,

where λ is the wavelength. Therefore, for given c∗
v , τqs and τps , the quantity z is calculated

from Eq. (4) as the function of Ω . The behavior of the phase velocity and the attenuation
factor in high frequency limit has been studied in [7].

Hereafter in the present paper, we will confine our study within the fastest sound wave
because the experiments discussed in Sect. 3 give us the data on this wave.

3 Comparison with Experimental Data

We compare the dispersion relation obtained above, in particular, the phase velocity vph and
the attenuation per wavelength αλ as the functions of the frequency ω with the experimental
data on normal hydrogen (n-H2) and normal deuterium (n-D2) gases at several temperatures
listed in Table 1. The comparison is also made with the predictions by the classical NSF
theory.
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Table 1 Values of the temperature T0, dimensionless specific heat c∗
v , sound speed in equilibrium c0, shear

viscosity μ [24–26], heat conductivity κ [24–26] and the ratio of the relaxation times of the heat flux and the
shear stress τqs . The values of the parameter ϕ, bulk viscosity ν, and the ratio of the relaxation times of the
bulk viscosity and the shear viscous stress τps evaluated in the reference equilibrium state

Gas T0 [K] c∗
v c0 [ m

s ] μ [μPa s] κ [ mW
m K ] τqs ϕ ν [μPa s] τps

n-H2 273.15 2.42 1260 8.33 173 1.47 41.2 343 162

295.15 2.45 1310 8.95 187 1.47 32.5 291 126

873.15 2.54 2240 18.6 403 1.48 38.3 713 141

1073.15 2.60 2480 21.0 462 1.49 41.4 869 147

n-D2 273.15 2.50 888 11.8 136 1.60 26.0 306 97.4

295.15 2.50 923 12.6 141 1.55 23.4 296 87.7

773.15 2.60 1490 24.2 260 1.48 32.0 773 113

1073.15 2.78 1740 30.4 337 1.42 34.8 1060 114

Fig. 1 Dependence of the
dimensionless specific heat c∗

v
for n-H2 and n-D2 gases on the
temperature T . The circles and
triangles are, respectively,
adopted values in the present
study and the previous study [7]

Before discussing the subject, we need to make preliminary calculations for determining
the values of c∗

v , τqs and τps defined in (3) and (5).

3.1 Preliminary Calculations

We calculate the specific heat c∗
v of hydrogen and deuterium gases on the basis of statistical

mechanics [21, 22]. In the preceding paper [7], we took only the translational and rotational
modes into account. In the present paper, to study the dispersion relation at high tempera-
ture, we also take into account the vibrational mode described by the harmonic oscillator
model. We adopt the rotational constant as 12.09 × 10−22 [J] and 6.047 × 10−22 [J] and
the harmonic vibrational frequency as 6332kB/� [Hz] and 4483kB/� [Hz] with � being the
Planck constant divided by 2π , respectively, for n-H2 and n-D2 [23]. Numerically calculated
values of c∗

v are shown in Table 1 and in Fig. 1.
From (5) and with the help of the experimental data on μ, κ and ν, we can in principle,

estimate the ratios of relaxation times τqs and τps . However, at present, as we have the
suitable data only on μ and κ [24–26], we adopt

ϕ = ν

μ
,

as an adjustable parameter. We summarize the adopted values of c∗
v , c0, μ, κ , τqs and the

evaluated values of ϕ, ν and τps in Table 1, details of which will be discussed in the next
subsection.
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Fig. 2 Dependence of the dimensionless phase velocity vph/c0 and the attenuation per wavelength αλ on the
dimensionless frequency Ω for n-H2. The circles are the experimental data at T0 = 273.15 K [27], 295.15,
873.15 and 1073.15 K [28]. The solid and dashed lines are predictions by the ET and NSF theories, respec-
tively

3.2 Experimental Data and Theoretical Predictions for the Dispersion Relation

3.2.1 Hydrogen Gases

For n-H2, the theoretical predictions of the dimensionless phase velocity vph/c0 and the
attenuation per wavelength αλ as the functions of the dimensionless frequency Ω by the
ET theory are shown in Fig. 2. These are compared with the experimental data and the
predictions by the NSF theory for vph/c0 at T0 = 295.15, 873.15 and 1073.15 K [28] and
for αλ at T0 = 273.15 K [27], 295.15, 873.15 and 1073.15 K [28].

What is evident from Fig. 2 is the following three points:

(i) In the region with small Ω (under around Ω = 10−3), as is expected, the predictions
by the two theories coincide with each other. The values of the parameter ϕ are deter-
mined to be 41.2, 32.5, 38.3 and 41.4 at T0 = 273.15, 295.15, 873.15 and 1073.15 K,
respectively, as the best fit of αλ with the experimental data in this region by using the
least-square approach. These adopted values of ϕ indicate that the order of magnitude
of τps is 102 as shown in Table 1.

(ii) When we go into the ultrasonic frequency region with larger Ω , the ET theory shows its
superiority compared with the NSF theory. In particular, this is evidently seen around
Ω = ωτs = 10−2 corresponding to ωτΠ = 1.

(iii) At all temperatures, the large values of ϕ are adopted. This means that ν � μ in a wide
temperature range even if the rotational and/or vibrational modes are excited. We will
discuss the effect of large bulk viscosity on the attenuation in Sect. 4.
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Fig. 3 Dependence of the dimensionless phase velocity vph/c0 and the attenuation per wavelength αλ on the
dimensionless frequency Ω for n-D2. The circles are the experimental data at T0 = 273.15 K [27], 295.15,
873.15 and 1073.15 K [28]. The solid and dashed lines are predictions by the ET and NSF theories, respec-
tively, for each temperature

Fig. 4 The temperature
dependence of the bulk viscosity
ν for n-H2 (solid line) and n-D2
(dashed line). The circles and
squares are, respectively, the
evaluated values of ν for n-H2
and n-D2 in the Sect. 3 and in the
preceding paper [7]

3.2.2 Deuterium Gases

Comparisons are also made for n-D2 at T0 = 273.15 K [27], 295.15, 773.15 and 1073.15 K
with ϕ = 26.0, 23.4, 32.0 and 34.8, and shown, respectively, in Fig. 3. From these figures,
we have qualitatively the same observations as those in the case of hydrogen gases.

3.3 Temperature Dependence of Bulk Viscosity

With the evaluated values of the bulk viscosity listed in Table 1 and in the preceding pa-
per [7], we can estimate its temperature dependence. If we assume that the bulk viscosity
depends only on the temperature [29] and that it is expressed as a power law, the tempera-
ture dependence of ν for n-H2 and n-D2 in a temperature range from 77 to 1073 K may be
approximated as

νn-H2 = 6.58T 0.703 − 36,

νn-D2 = 0.113T 1.29 + 129,

where the unit is [μPa s]. In Fig. 4, these temperature dependences and estimated values are
shown.

With this temperature dependence of ν and a rich store of data on μ and κ [24–26, 30],
various non-equilibrium phenomena in rarefied polyatomic gases, e.g., shock waves and heat
conduction, can be studied.
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4 The Characteristics of the Attenuation

In order to study the effect of the large value of the relaxation time τΠ on the attenuation,
it seems to be appropriate to adopt a simpler model, that is, the ET theory with only 6
independent field variables (ρ, vi, T ,Π ) developed in [5, 6] (ET6). In the present section,
by using this theory, we study the characteristics of attenuation of the sound waves. Other
than the hydrogen and deuterium gases, it has been reported that some gases have the large
relaxation time of dynamic pressure such as the carbon dioxide gases and nitrous oxide
gases [10, 31].

The linearized basic equations of ET6 for rarefied polyatomic gases are expressed as
follows:
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The dispersion relation of this system is expressed as follows:

(c0z)
2

(
−5

3
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v
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+ i

Ω ′

)
+ 1 − i

Ω ′ = 0, (7)

where Ω ′ = τΠω is the dimensionless frequency instead of (5)1. It is proved in [5] that this
dispersion relation coincides with that of the Meixner’s theory based on the local equilibrium
assumption [17, 32, 33].

One of the characteristic values for the study of a sound wave is the ratio of the attenua-
tion per wavelength αλ and the squared phase velocity [34, 35]:

β = αλ

(vph/c0)2
= −2π

(
c0

ω

)2

�(k)�(k).

In Fig. 5, the dependences of β derived from the ET6, ET14 and NSF theories on Ω ′ for
different τps(= τΠ/τS) with fixed τqs(= τq/τS) = 1 and c∗

v = 7.5 are shown. The following
features are pointed out:

(i) We may see that, in the case of large τΠ shown in the top figure of Fig. 5, ET6 coincides
with ET14 in the region with small Ω ′. This indicates that ET6 is useful to study the
attenuation for a gas which has a large bulk viscosity.

(ii) For ET6, the explicit form of β may be easily calculated as follows:

βET6 = π
Ω ′(1 + c∗

v)(2c∗
v − 3)

25(c∗
vΩ

′)2 + 9(1 + c∗
v)

2
. (8)

This is a similar form with the well-known single relaxation theory [34, 35]. The fre-
quency dependence of βET6 shows a single-peak curve centered around Ω ′ = 1 due to
the relaxation time τΠ as we can see in Fig. 5. The expression (8) points out that the
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Fig. 5 The dependence of β on
Ω ′ for τps = 104 (top), 102

(medium) and 1 (bottom) with
τqS = 1 and c∗

v = 7.5

character of the relaxation process is determined only through the specific heat. This is
the manifestation of the fact that τΠ is in the same order of magnitude as the relaxation
time of the energy exchange between the molecular translational mode and the internal
modes as shown in [5]. In particular, the maximum of βET6 may be calculated as

βET6
max = π(2c∗

v − 3)

10c∗
v

at Ω ′
max = 3

5

(
1

c∗
v

+ 1

)
. (9)

When c∗
v increases, this value monotonically increases. It should be noted that in

the limit c∗
v → 3/2, that is, the limit from polyatomic to monatomic rarefied gases,

βET6 disappears [36]. On the other hand, in the limit c∗
v → ∞, βET6

max reaches π/5 with
Ω ′

max = 3/5. The behavior of βmax is shown in Fig. 6.
(iii) For ET14, β shows a triple-peak curve consisted of three kinds of a single-peak curve

corresponding to the effect of the relaxation by the dynamic pressure, shear stress and
heat flux, respectively. The positions of the peaks are related to the differences of the
order of magnitude of the ratio of relaxation times.

Further studies on this analysis will be reported elsewhere.

5 Summary and Concluding Remarks

Based on the ET theory for rarefied polyatomic gases, we have studied the dispersion rela-
tions for hydrogen and deuterium gases in a wide temperature range where the rotational and

Fig. 6 The dependence of the maximum value of βET6 and the dimensionless frequency of Ω ′
max on the

dimensionless specific heat c∗
v
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vibrational modes in a molecule play a role. We have properly taken the temperature depen-
dence of the specific heats of these gases into the dispersion relations. The comparison of
the theoretical predictions with experimental data on the phase velocity and the attenuation
per wavelength has revealed that the ET theory is valid even in the case that the vibrational
mode of a molecule is excited. We have also evaluated the temperature dependence of the
bulk viscosity and the relaxation times. We have clarified the effect of the large bulk viscos-
ity on the attenuation, and have shown the usefulness of the ET6 theory.

Finally some concluding remarks are made:

(i) The study of the sound wave has usually been done in the framework of thermodynam-
ics of irreversible processes [17, 34, 35] based on the local equilibrium assumption. In
the present paper, we have compared the ET theory with the NSF theory as a represen-
tative one, and have demonstrated the superiority of the ET theory. We have also shown
that the Meixner’s theory is included as a special case of the ET theory. These results
indicate that the ET theory is valid beyond the local equilibrium assumption.

(ii) We have analyzed the experimental data only on rarefied hydrogen and deuterium
gases. The ET theory can be applied to many other rarefied polyatomic gases. Compre-
hensive study of this must be a promising future work.

(iii) As a future study, it is interesting to study the dispersion relation for sound in dense
gases.

References

1. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of dense gases. Contin.
Mech. Thermodyn. 24, 271–292 (2011)

2. Arima, T., Sugiyama, M.: Characteristic features of extended thermodynamics of dense gases. Atti Ac-
cad. Pelorit. Pericol. 91(1), A1–A15 (2013)

3. Ruggeri, T., Sugiyama, M.: Recent developments in extended thermodynamics of dense and rarefied
polyatomic gases. Acta Appl. Math. (2014), in press

4. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn. Springer, New York (1998)
5. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of real gases with dy-

namic pressure: an extension of Meixner’s theory. Phys. Lett. A 376, 2799–2803 (2012)
6. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: On the six-field model of fluids based on extended

thermodynamics. Meccanica (2014). doi:10.1007/s11012-014-9886-0
7. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Dispersion relation for sound in rarefied polyatomic

gases based on extended thermodynamics. Contin. Mech. Thermodyn. 25, 727–737 (2013)
8. Arima, T., Taniguchi, S., Sugiyama, M.: Light scattering in rarefied polyatomic gases based on extended

thermodynamics. In: Proceedings of the 34th Symposium on Ultrasonic Electronics, pp. 15–16 (2013)
9. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Thermodynamic theory of the shock wave structure

in a rarefied polyatomic gas: beyond the Bethe–Teller theory. Phys. Rev. E 89, 013025 (2014)
10. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Effect of dynamic pressure on the shock wave

structure in a rarefied polyatomic gas. Phys. Fluids 26, 016103 (2014)
11. Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Shock wave structure in a rarefied polyatomic gas

based on extended thermodynamics. Acta Appl. Math. (2014), in press
12. Barbera, E., Brini, F., Sugiyama, M.: Heat transfer problem in a van der Waals gas. Acta Appl. Math.

(2014), in press
13. Arima, T., Barbera, E., Brini, F., Sugiyama, M.: The role of the dynamic pressure in stationary heat

conduction of a rarefied polyatomic gas. J. Phys. A. (submitted)
14. Arima, T., Mentrelli, A., Ruggeri, T.: Molecular extended thermodynamics of rarefied polyatomic gases

and wave velocities for increasing number of moments. Ann. Phys. 345, 111–140 (2014)
15. Pavić, M., Ruggeri, T., Simić, S.: Maximum entropy principle for rarefied polyatomic gases. Physica A

392, 1302–1317 (2013)
16. Boillat, G., Ruggeri, T.: Moment equations in the kinetic theory of gases and wave velocities. Contin.

Mech. Thermodyn. 9, 205–212 (1997)
17. De Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. North-Holland, Amsterdam (1963)

http://dx.doi.org/10.1007/s11012-014-9886-0


A Study of Linear Waves Based on Extended Thermodynamics 25

18. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon, London (1958)
19. Ikenberry, E., Truesdell, C.: On the pressure and the flux of energy in a gas according to Maxwell’s

kinetic theory. J. Ration. Mech. Anal. 5, 1–54 (1956)
20. Muracchini, A., Ruggeri, T., Seccia, L.: Dispersion relation in the high frequency limit and non linear

wave stability for hyperbolic dissipative systems. Wave Motion 15(2), 143–158 (1992)
21. Landau, L.D., Lifshitz, E.M.: Statistical Physics. Pergamon, Oxford (1980)
22. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics, Non-relativistic Theory. Pergamon, Oxford (1977)
23. Radzig, A.A., Smirnov, B.M.: Reference Data on Atoms, Molecules, and Ions. Springer, Berlin (1985)
24. Hanley, H.J.M., McCarty, R.D., Interman, H.: The viscosity and thermal conductivity of dilute gaseous

hydrogen from 15 to 5000 K. J. Res. Natl. Bur. Stand. A, Phys. Chem. 74, 331–350 (1970)
25. Assael, M.J., Mixafendi, S., Wakeham, W.A.: The viscosity of normal deuterium in the limit of zero

density. J. Phys. Chem. Ref. Data 16, 189–192 (1987)
26. Saxena, S.C., Saxena, V.K.: Thermal conductivity data for hydrogen and deuterium in the range 100–

1100 degrees C. J. Phys. A 3, 309–320 (1970)
27. Stewart, E.S., Stewart, J.L.: Rotational dispersion in the velocity, attenuation, and reflection of ultrasonic

waves in hydrogen and deuterium. J. Acoust. Soc. Am. 24, 194–198 (1952)
28. Winter, T.G., Hill, G.L.: High-temperature ultrasonic measurements of rotational relaxation in hydrogen,

deuterium, nitrogen, and oxygen. J. Acoust. Soc. Am. 42, 848–858 (1967)
29. Cramer, M.S.: Numerical estimates for the bulk viscosity of ideal gases. Phys. Fluids 24, 066102 (2012).

23 pp.
30. Assael, M.J., Mixafendi, S., Wakeham, W.A.: The viscosity and thermal conductivity of normal hydrogen

in the limit of zero density. J. Phys. Chem. Ref. Data 15, 1315–1322 (1986)
31. Emanuel, G.: Bulk viscosity of a dilute polyatomic gas. Phys. Fluids A, Fluid Dyn. 2(12), 2252–2254

(1990)
32. Meixner, J.: Absorption und dispersion des schalles in gasen mit chemisch reagierenden und anregbaren

komponenten. I. Ann. Phys. 43, 470–487 (1943)
33. Meixner, J.: Allgemeine theorie der schallabsorption in gasen und flussigkeiten unter berucksichtigung

der transporterscheinungen. Acoustica 2, 101–109 (1952)
34. Herzfeld, K.F., Litovitz, T.A.: Absorption and Dispersion of Ultrasonic Waves. Academic Press, New

York (1959)
35. Mason, W.P. (ed.): Physical Acoustics, Principles and Methods, vol. II. Academic Press, New York,

London (1965). Part A
36. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Monatomic rarefied gas as a singular limit of

polyatomic gas in extended thermodynamics. Phys. Lett. A 377, 2136–2140 (2013)


	A Study of Linear Waves Based on Extended Thermodynamics for Rareﬁed Polyatomic Gases
	Abstract
	Introduction
	Basic Equations and Dispersion Relation
	Linearized Field Equations of the ET Theory
	Dispersion Relation, Phase Velocity and Attenuation Factor

	Comparison with Experimental Data
	Preliminary Calculations
	Experimental Data and Theoretical Predictions for the Dispersion Relation
	Hydrogen Gases
	Deuterium Gases

	Temperature Dependence of Bulk Viscosity

	The Characteristics of the Attenuation
	Summary and Concluding Remarks
	References


