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Abstract We derive a quantum-corrected hydrodynamic and drift-diffusion model for the
out-of-equilibrium particle dynamics in the presence of particle collisions, modeled by a
BGK collision term. The quantum mechanical corrections are obtained within the Liouville
formalism and are expressed by an effective nonlinear force. The Boltzmann and Fermi-
Dirac statistics are included.

Keywords Hydrodynamical models · Quantum-corrected Liouville model

1 Introduction

By the technological progress made in the last decade on the fabrication of microelectronics
devices, the active regions of integrated transistors is nowadays downscaled to the submi-
crometer dimensions. This opens new possibilities for designing components for high fre-
quency and optoelectronic devices. As an example, devices based on the quantum tunneling
process like the resonant tunneling diodes are currently applied in high frequency integrated
oscillators. They are obtained by growing, via molecular-beam epitaxy, a succession of lay-
ers of different materials connected by abrupt junctions. As a result, the particles inside such
an heterostructure material experience strong fields and discontinuous electric potentials.

Under such extremal conditions, mathematical models for particle transport in semicon-
ductor devices cannot discard quantum effects. Various formalisms have been developed in
order to describe the particle motion in a full-quantum framework. In particular, the quantum
phase-space approach is a well established method for the study of the quantum evolution
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of interacting particles in a media [11, 15]. In this formalism, the Louville distribution func-
tion, that describes the motion of classical particles, is generalized to a non-positive definite
distribution denoted as Wigner quasi-distribution function. The Wigner quasi-distribution
shares strong similarities with the classical Liouville distribution [7, 9, 12]. In particular,
the moments (weighted integrals with respect to the momentum) of the Wigner function,
provide the macroscopic quantities (like particle density, current and energy), in same way
of the classical formalism. Such a quasi-classical description provides some advantages in
terms of simplicity in the physical interpretation and the availability of feasible method for
the inclusion of irreversible processes like thermalization or phase breaking mechanisms.

However, the direct numerical discretization of the Wigner equation of motion is ex-
tremely challenging [13, 15]. The Wigner evolution equation is given in terms of some
nonlocal-in-space pseudo-differential operators. Furthermore, in the same way as the classi-
cal phase-space description of the dynamics, the quantum formalism use the position and the
momentum of the particles as kinetic variables. Compared with the Schrödinger approach,
this choice doubles the dimension of the physical space and becomes extremely demanding
from the computational and the cpu-memory point of view.

The typical strategy to reduce the complexity of such quantum-kinetic models is to de-
rive so called quantum-fluid models which, analogously to classical fluid models, are for-
mulated in terms of a finite number of macroscopic moments of the Wigner function (see
i.e. Refs. [1, 2, 8] for the application of the method of moment to the classical systems).
The equations of a quantum fluid, therefore, can be deduced from the underlying phase-
space description [5, 16]. These models have been applied to different context. As an ex-
ample, quantum-hydrodynamic models have been used to the reproduce the particle motion
in semiconductors and some new functional materials like the graphene [4, 17]. Hydrody-
namics approaches are able to capture some interesting quantum phenomena like the band
transition in multiband systems [10] and the resonant tunneling in heterostructures [6].

However, the description of the full quantum dynamics at the hydrodynamical level is
extremely challenging and in many cases infeasible. A common practice is to exploit the
analogy between the Wigner formalism and the classical Liouville dynamics, and derive
quantum corrected models that extend the validity of the conventional drift diffusion or
hydrodynamic models.

The most popular approach concerns the so-called �-expansion [5]. It is based on the
observation that in the quantum phase space framework, the hamiltonian of the system is
represented by a pseudo-differential operator that admits a formal h-expansion where the
leading term is the usual classical hamiltonian. Although this approach appears to be the
most natural way to proceed, the use of quantum corrected models based on the �-expansion
encounters many difficulties. In fact, this procedure generates a quite large number of cor-
rective terms, and it is usually very difficult (sometime impossible) to ascribe to them a clear
physical meaning.

Here, we use a different approach which is based on the quantum-corrected Liouville
(QL) model described in Ref. [14]. In this context, the quantum motion is described in term
of particles traveling along trajectories in the presence of an effective quantum mechanical
potential. In particular, the description of the quantum motion is maintained as close as pos-
sible to the classical counterpart. The corrections to the classical trajectories are expressed
by an effective nonlinear force. This effective force describes the non-local character of the
quantum particles. This approach offers the considerable advantage that some quantum cor-
rections can be easily integrated, for example, in a classical code. In Ref. [14] the particle
motion was described at the kinetic level and the well posedeness of the quantum-corrected
Liouville problem was investigated.
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In the present contribution, the QL model is used in order to derive an hydrodynamic
system that contains some quantum corrections and that can be applied to the study of the
particle motion in nanometric structures.

2 Quantum Corrected Kinetic Model

We consider a spinless particle of mass m and charge q , represented by the wavefunction
|ψ〉 in the presence of an electric potential V . The Wigner function f W related to the state
|ψ〉 is defined by:

f W(x,p) = W
[|ψ〉〈ψ |],

where the Wigner operator W is

W
[|ψ〉〈φ|] = 1

(2π)3

∫ 〈
x + �

2
η|ψ〉〈φ|x − �

2
η

〉
eip·η dη.

The evolution equation for the Wigner distribution is obtained from the Schrödinger equa-
tion

∂f W

∂t
+ p

m
· ∇xf

W − qθ [V ]f W = 0, (1)

where the pseudo-differential operator θ [V ] is defined by

θ [V ]f = 1

(2π)3

∫

R3

∫

R3
δV (x,η)ei(p−p̄)·ηf (x, p̄)dη dp̄,

with

δV (x,η) = i

�

[
V

(
x + �

2
η

)
− V

(
x − �

2
η

)]
.

According to Ref. [14], our model of the particle motion has the structure of a classical
Liouville equation with some quantum corrections. They are obtained by requiring that the
solutions of the quantum-corrected model are the best approximation (in terms of the L2

norm) of the solutions of the Wigner equation. We consider a model of the form:

∂f

∂t
+ vQC · ∇xf + qEQC · ∇pf = 0, (2)

and choose vQC[f ], EQC[V,f ] in order to minimize the L2-norm of the difference of the
classical-like solution and the Wigner function,

∥∥f − f W
∥∥

L2
x,p

.

We obtain that the velocity field coincides with the classical term vQC = p
m

and that the
quantum-corrected electric field depends nonlinearly from the solution of Eq. (2) as follows

EQC
j [V,f ] =

∫
R3 iηj δV (x,η)|f̃ (x,η)|2 dη

∫
R3 η2

j |f̃ (x,η)|2 dη
, (3)
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where the tilde denotes Fourier transform with respect to p,

f̃ (x,η) =
∫

R3
f (x,p)e−ip·η dp.

The hydrodynamic equations are obtained from the following quantum-corrected kinetic
model

∂f

∂t
+ p

m
· ∇xf + qEQC[V,f ] · ∇pf = Q(f ), (4)

where we have included a collision operator Q(f ). The operator Q(f ) takes into account
all the dissipative processes that affect the evolution of the particles in a media. Various
scattering collision terms have been proposed. They can model particle-particle scattering
and interaction of the particles with a background medium. e.g. electrons with phonons in
a semiconductor lattice [3]. However, similarly to what happens in the classical case, in
order to derive a fluid model it is not necessary to know all the details of collisions but only
fairly general features, like for example, the conservation properties. Then, a reasonable and
effective choice for the collisional term is the BGK operator

Q(f ) = − 1

τ

(
f − 〈f 〉

〈feq〉feq

)
,

where 〈·〉 denotes integral with respect to p, 〈f 〉 = 2
(2π)3

∫
R3 f dp, and feq is the equilibrium

distribution function. We derive the equilibrium distribution function using the Maxwell and
the Fermi-Dirac statistics. We introduce the function

F(t) =
{

exp(−t) (Maxwell)
1

exp(t)+1 (Fermi-Dirac)
(5)

The equilibrium distribution function is given by

feq(x,p) = F

(
λ∗

0 + 1

2
λ∗

2p2

)
, (6)

where λ∗
0 is a function of x and of the external potential V , λ∗

2 = 1
mkBT ∗ depends on the

constant equilibrium temperature T ∗, with electron mass m and Boltzmann constant kB .
The function λ∗

0 should be chosen to satisfy the equilibrium condition:

p
m

· ∇xfeq + qEQC[V,feq] · ∇pfeq = 0. (7)

Thus, we find

kBT ∗

q
∇xλ

∗
0 + EQC[V,feq] = 0. (8)

We will comment later on the quantum-corrected electric field EQC[V,feq].
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3 Hydrodynamic Limit

In this section, we derive the hydrodynamic limit of the previous equations. We make the
following ansatz:

f (x,p, t) = F

(
λ0 + λ1 · p + 1

2
λ2p2

)
, (9)

with λ0, λ1, λ2 functions of x, t , and F defined in (5). Equations for the λ’s can be recov-
ered by inserting the ansatz (9) in (4) and taking the moments with respect to the weights
(1,p/m,p2/2m2). We introduce the product 〈f,g〉 = 2

(2π)3

∫
R3 fg dp. Using the identities:

〈∇pf,1〉 = 0,

〈
∇pf,

p
m

〉
= − 1

m
〈f,1〉I,

〈
∇pf,

p2

2m2

〉
= − 1

m

〈
f,

p
m

〉
,

and noticing that EQC = EQC[V,f ] does not depend on p, we find
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
〈f,1〉 + ∇x ·

〈
f,

p
m

〉
= 〈

Q(f ),1
〉
,

∂

∂t

〈
f,

p
m

〉
+ ∇x ·

〈
f,

p
m

⊗ p
m

〉
− q

m
〈f,1〉EQC =

〈
Q(f ),

p
m

〉
,

∂

∂t

〈
f,

p2

2m2

〉
+ ∇x ·

〈
f,

p2p
2m3

〉
− q

m

〈
f,

p
m

〉
· EQC =

〈
Q(f ),

p2

2m2

〉
.

(10)

This is a system for the unknowns λ0, λ1, λ2. It is more convenient to write the evolution
equations in terms of variables with a direct physical meaning. In analogy with the gas
dynamics, we define

λ = 1

kBT mλ2

(
λ2

1

2λ2
− λ0

)
, v = − λ1

mλ2
, T = 1

mkBλ2
, (11)

which can be interpreted as the chemical potential divided by kBT , the mean velocity and
the temperature. The distribution function, both for Maxwell and Fermi-Dirac statistic, takes
the form

f (x,p, t) = F

(
(p − mv(x, t))2

2mkBT (x, t)
− λ(x, t)

)
.

We introduce the function

◦
Fα (s) = 1

Γ (α + 1)

∫ ∞

0
F(t − s)tα dt, α ∈R, (12)

which reduces to exp(s), for any α, for the Maxwell distribution, and to the complete Fermi-
Dirac integral Fα(s), for the Fermi-Dirac distribution. It is possible to prove that

◦
F

′
α(s) = ◦

Fα−1 (s).

We use
◦
Fα to get explicit relations for the number density n, the flux density j and the

specific energy density e in terms of the variables λ, v, T :

n = 〈f,1〉 = n(λ,T ), (13)
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j =
〈
f,

p
m

〉
= n(λ,T )v, (14)

e =
〈
f,

p2

2m2

〉
= n(λ,T )

(
u(λ,T ) + 1

2
v2

)
, (15)

with

n(λ,T ) = n0(T )
◦
F 1/2 (λ), n0(T ) = 2(mkBT )3/2

(2π)3/2
, (16)

u(λ,T ) = 3kBT

2m
γ1(λ), γ1(λ) =

◦
F 3/2 (λ)
◦
F 1/2 (λ)

. (17)

By substituting in (10) the following expressions

〈
f,

p
m

⊗ p
m

〉
= n(λ,T )

(
2

3
u(λ,T )I + v ⊗ v

)
,

〈
f,

p2

2m2

p
m

〉
= n(λ,T )

(
5

3
u(λ,T ) + 1

2
v2

)
v,

〈
Q(f ),1

〉 = 0,

〈
Q(f ),

p
m

〉
= − 1

τ
j,

〈
Q(f ),

p2

2m2

〉
= − 1

τ
n(λ,T )

(
u(λ,T ) + 1

2
v2 − u

(
λ∗, T ∗)

)
,

with

λ∗ = −λ∗
0, T ∗ = 1

mkBλ∗
2

, (18)

we obtain the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂n

∂t
+ ∇ · j = 0,

∂j
∂t

+ ∇ ·
((

2

3
e − j2

3n

)
I + 1

n
j ⊗ j

)
− q

m
nEQC = − 1

τ
j,

∂e

∂t
+ ∇ ·

((
5

3
e − j2

3n

)
j
n

)
− qj · EQC = − 1

τ

(
e − nu∗).

(19)

The function u∗ = u(−λ∗
0, T

∗) is obtained by solving the equilibrium Eq. (8) for a given
external potential V , and by using Eq. (17). In particular, our model can be applied to sys-
tems for which the equilibrium temperature T ∗ is known from some physically based con-
siderations. As an example, in the presence of the phonon thermal bath, the equilibrium
temperature T ∗ equals the lattice temperature.

It is remarkable that the differential structure of this system is independent of the function
F which we use to obtain the hydrodynamic limit. However, by means of (16), the specific
choice of F does affect the reconstruction of the temperature and the chemical potential. In
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fact, once we know n, j and e, we can find u = e
n

− j2

2n2 , and thus solve (16), (17) for λ, T .
More into details

Boltzmann statistic F(t) = exp(−t).

We have
◦
Fα (λ) = exp(λ) for any α, so we find γ1(λ) = 1, and

λ = log

(
n

n0(T )

)
, T = 2mu

3kB

. (20)

The temperature is proportional to the specific energy density.

Fermi-Dirac statistic F(t) = (exp(t) + 1)−1.

In this case
◦
Fα is the complete Fermi integral Fα , and we find

λ = F−1
1/2

(
n

n0(T )

)
= F−1

3/2

(
n

n0(T )

2mu

3kBT

)
, (21)

where the first equality gives λ and the second equality gives an equation which must be
solved for T .

4 The Quantum-Corrected Electric Field

In this section, we analyze the behavior of the quantum corrected force EQC used in the fluid
model. In particular, we show that the particle statistic distribution F plays the role of the
smoothing function of the electric field.

The Fourier transform of the distribution function is given by

f̃ (x,η) = e−imv·η
∫

R3
F

(
p2

2mkBT
− λ

)
e−ip·η dp = e−imv·ηf̃0(x,η),

with

f0(x,p) = F

(
p2

2mkBT (x)
− λ(x)

)
.

The function f0 depends only by T and λ. We can make this dependence explicit by com-
puting

f̃0 =
∫

R3
F

(
p2

2mkBT
− λ

)
e−ip·η dp = 2π

η

∫ ∞

0
F

(
p2

2mkBT
− λ

)
sin(pη)2p dp,

with p = |p|, η = |η|. Expanding sin(pη) in power series of pη, and integrating by series,
after some algebra we find

f̃0 = (2πmkBT )3/2
∞∑

k=0

(−1)k

k!
(

mkBT η2

2

)k ◦
Fk+1/2 (λ). (22)

We can write this function in a more expressive way:

f̃0 = 4π3n(λ,T )κ(η,λ,T ), (23)
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with

κ(η,λ,T ) =
∞∑

k=0

(−1)k

k!
(

mkBT η2

2

)k

γk(λ), γk(λ) =
◦
Fk+1/2 (λ)

◦
F 1/2 (λ)

. (24)

Then, Eq. (3) gives

EQC
j [V,f ] = EQC

j [V,λ,T ] =
∫
R3 iηj δV (x,η)|κ(η,λ,T )|2 dη

∫
R3 η2

j |κ(η,λ,T )|2 dη
. (25)

For the Maxwell statistic, we have γk = 1 for all k, and the function κ reduces to

κ(η,λ,T ) = κ(η,T ) =
∞∑

k=0

(−1)k

k!
(

mkBT η2

2

)k

= exp

(
−mkBT η2

2

)
.

Then, we compute
∫

R3
η2

j

∣
∣κ(η,T )

∣
∣2

dη = π3/2

2(mkBT )5/2
,

and we find the expression

EQC
j [V,T ] = 2(mkBT )5/2

π3/2

∫

R3
iηj δV (x,η)e−mkBT η2

dη, (26)

which is independent of λ.
To understand the behavior of the electric field, we consider a one-dimensional system.

The one-dimensional expression for the electric field can be obtained by assuming V (x) =
V (x), with x = (x, y, z), which leads to δV (x,η) = δV (x, η), with η = (η, ξ, ζ ). Then,

EQC

1 [V,T ] = 2(mkBT )5/2

π3/2

∫

R3
iηδV (x, η)e−mkBT (η2+ξ2+ζ 2) dη dξ dζ

= −2(mkBT )3/2

�π1/2

∫

R

η

[
V

(
x + �

2
η

)
− V

(
x − �

2
η

)]
e−mkBT η2

dη,

EQC

2 [V,T ] = EQC

3 [V,T ] = 0.

In scaled variables, with

V0 = mx2
0

t2
0

, T0 = mx2
0

kBt2
0

,

we find

EQC = −2Γ 3/2

π1/2
T 3/2

∫

R

[
V

(
x + 1

2
η

)
− V

(
x − 1

2
η

)]
ηe−Γ T η2

dη, (27)

where we have introduced the dimensionless parameter

Γ =
(

mx2
0

�t0

)2

.
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Fig. 1 Integrated quantum-corrected electric field (continuous line) and original electric potential (dashed
line), for a thin (left) and a thick (right) potential barrier, with Γ = 100

In Fig. 1, we plot (in the equilibrium case) the integrated quantum-corrected electric field,
which can be seen as a quantum-corrected electric potential, and compare it with the original
potential V . One of the main characteristic of the quantum corrected potential is that it is
typically smoother than the original bare potential. This has the considerable advantage
to simplify the numerical treatment of the system avoiding the shocks experienced by the
particles at the interface of the potential discontinuities. This behavior reflects the nonlocal
nature of the quantum particles. As displayed in Fig. 1, the support of the quantum-corrected
electric potential is larger than the support of the classical potential V . We can interpret this
property by saying that the quantum particles “see” an effective potential obtained by the
weighted average over few De Broglie wavelengths of the classical potential.

5 Extension

The approach followed in the previous sections is equivalent to solving a constrained max-
imization problem, assuming one knows the moments of the distribution function with re-
spect to the weights (1,p,p2/2), for the entropy [8]

S =
{− ∫

R3 f (logf − 1)dp (Maxwell)

− ∫
R3 [f logf + (1 − f ) log(1 − f )]dp (Fermi-Dirac)

This approach can be extended to an arbitrary number of weights and corresponding mo-
ments. The main difference from the case presented in the previous sections is that, in gen-
eral, the inversion of the constraints cannot be obtained explicitly. To show this, let us con-
sider the weights (1,p, 1

2 p2, 1
2 p2p). The closure condition for the hydrodynamic evolution

equations is obtained by imposing that the entropy S is maximized by f under the con-
straints

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈f,1〉 = n,

〈
f,

1

2
p2

〉
= m2e,

〈f,p〉 = mj,
〈
f,

1

2
p2p

〉
= m3jS.

(28)
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They involve the number density n, the flux density j, the specific energy density e and the
specific energy flux density jS . This maximization problem leads to a distribution function
of the form

f (x,p, t) = F

(
λ0 + λ1 · p + 1

2
λ2p2 + 1

2
p2λ3 · p

)
, (29)

where F is defined in (5), λ0, λ1, λ2, λ3 are Lagrange multipliers associated to the constraints
(28) and are functions of x, t . We note that the distribution function in (29) is well defined
only in a bounded set of the momentum p. This is the case, for example, of the electrons
confined in a single band, where the momentum p is limited, by periodicity, to a bounded set.
However, with this definition of distribution function is not possible to invert explicitly the
constraints (28) and express the Lagrangian multipliers in terms of the basic moments. The
inversion can be achieved by some approximations. We assume that the vector Lagrangian
multipliers (with odd index) are small with respect to the isotropic multipliers (with even
index) and we replace (29) with the approximate expression f = f0 + f1, where

f0(x,p, t) = F

(
λ0 + 1

2
λ2p2

)
, (30)

f1(x,p, t) = F ′
(

λ0 + 1

2
λ2p2

)(
λ1 · p + 1

2
p2λ3 · p

)
. (31)

The equations for the multipliers are obtained by inserting the previous ansatz in (4) and
taking the moments with respect to the weights (1, p/m, p2/2m2, p2p/2m2). We get the
system (10) with one additional equation for the energy flux density:

∂

∂t

〈
f1,

p2p
2m3

〉
+ ∇x ·

〈
f0,

p2

2m2

p
m

⊗ p
m

〉

− q

m

〈
f0,

p2

2m
I + p

m
⊗ p

m

〉
· EQC =

〈
Q(f ),

p2p
2m3

〉
. (32)

We obtain

n = 〈f0,1〉 = n(λ,T ), e =
〈
f0,

p2

2m2

〉
= n(λ,T )u(λ,T ),

〈
f0,

p
m

⊗ p
m

〉
= 2

3
eI,

〈
f0,

p2

2m2

p
m

⊗ p
m

〉
= n

5(kBT )2

2m2
γ2(λ)I,

〈
Q(f ),

p2p
2m3

〉
= − 1

τ
jS,

and

j =
〈
f1,

p
m

〉
= c0mλ1 + c1m

3λ2, jS =
〈
f1,

p2p
2m3

〉
= c1mλ1 + c2m

3λ2,

with n(λ,T ), u(λ,T ) given in (16), (17), and

ci = 2

3

〈
F ′

(
λ0 + 1

2
λ2p2

)
,

(
p2

2m

)i+1〉
, i = 0,1,2. (33)
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With this, we obtain the complete system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
n + ∇x · j = 0,

∂

∂t
j + ∇x

(
2

3
e

)
− q

m
nEQC = − 1

τ
j,

∂

∂t
e + ∇x · jS − q

m
j · EQC = − 1

τ

(
e − nu

(
λ∗, T ∗)),

∂

∂t
jS + ∇x

(
n

5(kBT )2

2m2
γ2(λ)

)
− 5q

3m
eEQC = − 1

τ
jS.

(34)

6 Conclusion

The derivation of a quantum-corrected hydrodynamic model for the out-of-equilibrium par-
ticle dynamics in the presence of particle collisions is presented. Our model is characterized
by the presence of a quantum corrected electric force. This term depends nonlinearly to the
particle distribution, current and energy. The advantage of this approach is that the modifica-
tions of the classical trajectories induced by the quantum mechanical nature of the particles,
are taken into account by means of a smooth electric potential. This offers the considerable
advantage that some quantum corrections can be easily included in a classical code. The
modifications of the hydrodynamic equations for the Maxwell or the Fermi-Dirac statistic,
are also discussed.
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