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Abstract We consider the non-reactive elastic Boltzmann equation for multicomponent
gaseous mixtures. We deduce, under the standard diffusive scaling, that well prepared ini-
tial conditions lead to solutions satisfying the Maxwell-Stefan diffusion equations in the
vanishing Mach and Knudsen numbers limit.

Keywords Diffusion limit · Maxwell-Stefan equations · Boltzmann equations · Gaseous
mixture

1 Introduction

The derivation of macroscopic equations starting from kinetic theory is a very active research
field. The interest on such a question has a long history, being even pointed out by Hilbert in
his famous lecture [18] delivered at the International Congress of Mathematicians, in Paris
in 1900. The problem, known as Hilbert’s sixth problem, has been translated in a rigorous
mathematical language in a series of pioneering papers [2–4]. That led to significant articles,
such as [16, 17], where the authors established a Navier-Stokes limit for the Boltzmann
equation considered over R3.
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All the aforementioned papers deal with a mono-species, monatomic and ideal gas. How-
ever, many common physical situations are more intricate: multi-species mixtures, poly-
atomic gas, chemical reactions, etc. In this work, we focus on a multi-species mixture of
monatomic ideal gases with no chemical reactions.

The mathematical study of Boltzmann-like equations describing such a mixture is far
more complex, mainly because of the presence of multi-species kernels, with cross interac-
tions between the different densities describing each component of the mixture. The readers
can refer, for example, to [22, 24] as founding works on kinetic models for mixtures, to
[1, 10, 14] with a focus on BGK models, to [12] for Boltzmann equations with chemical
reactions, and to [8] for a Boltzmann model very similar to the one studied here.

However, the relationship (even at a formal level) between the kinetic level and the
macroscopic description is crucial and specifies the range of validity of the target equations.

On the macroscopic point of view, the time evolution of diffusive phenomena for mix-
tures is well described by the Maxwell-Stefan equations [21, 25] (see [20] for a fairly com-
plete review on the main aspects of multicomponent diffusive phenomena). However, its
mathematical study is very recent and solid results on the subject only appeared in the last
few years [6, 9, 15, 19]. Let us emphasize that this problem has not a mere academical in-
terest, since it has applications to the respiration mechanism [7, 11, 26], in particular when
dealing with a Helium/Oxygen/Carbon dioxide mixture in the lung. Note that the Maxwell-
Stefan equations lie in the class of cross diffusion models, which are commonly introduced
in population dynamics, see [23] for instance.

The relationship between the kinetic description of a phenomena and its macroscopic
picture governed by the Maxwell-Stefan equations is still an open question. In this article,
we shall show that well prepared initial conditions formally generate, in the classical dif-
fusive scaling, solutions of the Boltzmann equation for monatomic gas mixtures satisfying
the Maxwell-Stefan equations in the asymptotic regime, see [5] for other results in the same
scaling. Note that the relationship between those equations and some kinetic equations for
mixtures were already investigated, in a more general setting, in [27]. Our work is in fact,
up to our knowledge, the first attempt to recover the Maxwell-Stefan equations as a hydro-
dynamic limit of a kinetic system. The rigorous proof of this limit remains an open problem,
as well as extensions to polyatomic gas mixtures.

The article is organized as follows. First, we briefly recall the Maxwell-Stefan model.
Then we propose a Boltzmann-type model of multi-species mixtures and detail the mono and
bi-species collision kernels involved in the kinetic equations. Finally, we formally discuss
the diffusive asymptotics of our kinetic model towards the Maxwell-Stefan equations.

2 The Maxwell-Stefan Model

Consider a bounded domain Ω ⊂ R
3, with a smooth boundary. We deal with an ideal gas

mixture constituted with I ≥ 2 species with molecular masses mi , in a purely diffusive
setting (i.e. without any convective effect).

For each species of the mixture Ai , 1 ≤ i ≤ I , we define its concentration ci , only de-
pending on the macroscopic variables of time t ∈ R

+ and position x ∈ Ω . We can also
define the (diffusive) concentration flux Fi of species Ai . Both quantities are involved in the
continuity equation, holding for any i,

∂tci + ∇x · Fi = 0 on R
∗
+ × Ω. (1)
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Let c = ∑
ci be the total concentration of the mixture and set ni = ci/c the mole fraction

of species Ai . The Maxwell-Stefan equations give relationships between the fluxes and the
concentrations. They can be written, for any i, as

−c∇xni = 1

c

∑

j �=i

cjFi − ciFj

Dij

on R
∗
+ × Ω, (2)

where Dij are the so-called effective diffusion coefficients between the species Ai and Aj .
For obvious physical reasons, the diffusion coefficients are symmetric with respect to the
particles exchange, i.e. Dij = Dji .

By summing (2) over all 1 ≤ i ≤ I , we observe that the Maxwell-Stefan laws are linearly
dependent. More precisely, there are exactly (I − 1) independent equalities of type (2).

Hence, we need one closure (vectorial) relationship. If one works in a closed system with
global constant and uniform temperature and pressure, as in Duncan and Toor’s experiment
[13], it is natural to assume that there is a transient equimolar diffusion in the mixture before
reaching the stationary state. That means that the total diffusive flux satisfies

I∑

i=1

Fi = 0 on R
∗
+ × Ω. (3)

In the whole paper, we focus on an equimolar diffusion process in a closed system and study
Eqs. (1)–(3). Of course, in some other realistic situations, the systems may be not closed, so
that the equimolar diffusion assumption does not hold any more (see for instance [11]).

Summing (1) over i, one can observe that c does not depend on t , and equals its initial
value. It is then clear that, if we assume that the molecules of the mixture are initially uni-
formly distributed, the quantity c does not depend on x either. Note that this assumption
prevents vacuum in the mixture.

We still need a set of boundary conditions to ensure that the system is closed, that is for
any i,

ν · Fi = 0 on R+ × ∂Ω, (4)

where ν(x) is the outward normal vector at x ∈ ∂Ω .

3 A Kinetic Model for Gaseous Mixtures

From now on, we consider a mixture of monatomic ideal gases.

3.1 Framework

For each species of the mixture Ai , we introduce the corresponding distribution function fi ,
which depends on time t ∈ R

+, space position x ∈ Ω and velocity v ∈ R
3. For any i,

fi(t, x, v)dx dv denotes the quantity of matter, expressed in moles, of species Ai in the
mixture, at time t in an elementary volume of the space phase of size dx dv centred at
(x, v). The distribution function is then related to ci thanks to

ci(t, x) =
∫

R3
fi(t, x, v)dv, t ≥ 0, x ∈ Ω. (5)
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Since the mixture is non reactive, only mechanical collisions between molecules are al-
lowed. More precisely, let us consider two molecules of species Ai and Aj , 1 ≤ i, j ≤ I ,
with respective masses mi , mj , and respective pre-collisional velocities v′, v′∗. After a col-
lision, the particles belong to the same species, so they still have the same masses, but their
velocities have changed and are now denoted by v and v∗. The collisions are supposed to be
elastic. Therefore, both momentum and kinetic energy are conserved:

miv
′ + mjv

′
∗ = miv + mjv∗,

1

2
mi |v′|2 + 1

2
mj |v′

∗|2 = 1

2
mi |v|2 + 1

2
mj |v∗|2. (6)

From (6), it is possible to write v′ and v′∗ with respect to v and v∗:

v′ = 1

mi + mj

(
miv+mjv∗+mj |v−v∗|σ

)
, v′

∗ = 1

mi + mj

(
miv+mjv∗−mi |v−v∗|σ

)
,

(7)
where σ is an arbitrary element of S2, which takes into account that (6) allows two degrees
of freedom. Note that, if mi = mj , we recover the standard collision rules in the Boltzmann
equation.

Let us now introduce the collision operators.

3.2 Mono-species Collision Operators

They are the standard Boltzmann collision operators. Let 1 ≤ i ≤ I . If f := f (v) is a non-
negative function, the collision operator describing the interactions between molecules of
species Ai is defined by

Qm
i (f, f )(v) =

∫

R3

∫

S2
Bi(v, v∗, σ )

[
f

(
v′)f

(
v′

∗
) − f (v)f (v∗)

]
dσ dv∗, (8)

where v′, v′∗ are defined by (7) with mi = mj , and the cross section Bi satisfies the microre-
versibility assumptions: Bi(v, v∗, σ ) = Bi(v∗, v, σ ) and Bi(v, v∗, σ ) = Bi(v

′, v′∗, σ ). It can
also be written in weak form, for instance,

∫

R3
Qm

i (f, f )(v)ψ(v)dv = −1

4

∫∫

R3×R3

∫

S2
Bi(v, v∗, σ )

[
f

(
v′)f

(
v′

∗
) − f (v)f (v∗)

]

× [
ψ

(
v′) + ψ

(
v′

∗
) − ψ(v) − ψ(v∗)

]
dσ dv∗ dv, (9)

for any ψ :R3 →R such that the first integral in (9) is well defined. Equation (9) is obtained
from (8) by using the changes of variables (v, v∗) �→ (v∗, v) and (v, v∗) �→ (v′, v′∗), σ ∈ S

2

remaining fixed.
These weak forms classically allow to get the conservation, for each species Ai , of the to-

tal number of molecules, the total momentum and the kinetic energy by successively choos-
ing ψ(v) = 1, v and |v|2/2.

3.3 Bi-species Collision Operators

Let i, j such that 1 ≤ i, j ≤ I and i �= j . If f := f (v) and g := g(v∗) are nonnegative
functions, let us define the operator describing the collisions of molecules of species Ai

with molecules of species Aj by

Qb
ij (f, g)(v) =

∫

R3

∫

S2
Bij (v, v∗, σ )

[
f

(
v′)g

(
v′

∗
) − f (v)g(v∗)

]
dσ dv∗, (10)
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where v′ and v′∗, are defined thanks to (7), and the cross section Bij satisfies the microre-
versibility assumptions Bij (v, v∗, σ ) = Bji(v∗, v, σ ) and Bij (v, v∗, σ ) = Bij (v

′, v′∗, σ ). We
also need the operator describing the collisions of molecules of species Aj with molecules
of species Ai . It is given by

Qb
j i(g, f )(v) =

∫

R3

∫

S2
Bji(v, v∗, σ )

[
g
(
w′)f

(
w′

∗
) − g(v)f (v∗)

]
dσ dv∗,

where w′ and w′∗ are defined similarly to (7), that is

w′ = 1

mi + mj

(
mjv + miv∗ + mi |v − v∗|σ

)
,

w′
∗ = 1

mi + mj

(
mjv + miv∗ − mj |v − v∗|σ

)
.

In the same way as in the mono-species case, there are several weak formulations involv-
ing Qb

ij , for instance,

∫

R3
Qb

ij (f, g)(v)ψ(v)dv

= −1

2

∫∫

R3×R3

∫

S2
Bij (v, v∗, σ )

[
f

(
v′)g

(
v′

∗
) − f (v)g(v∗)

][
ψ

(
v′) − ψ(v)

]
dσ dv dv∗

=
∫∫

R3×R3

∫

S2
Bij (v, v∗, σ )f (v)g(v∗)

[
ψ

(
v′) − ψ(v)

]
dσ dv dv∗, (11)

or

∫

R3
Qb

ij (f, g)(v)ψ(v)dv +
∫

R3
Qb

j i(g, f )(v)φ(v)dv

= −1

2

∫∫

R3×R3

∫

S2
Bij (v, v∗, σ )

[
f

(
v′)g

(
v′

∗
) − f (v)g(v∗)

]

× [
ψ

(
v′) + φ

(
v′

∗
) − ψ(v) − φ(v∗)

]
dσ dv dv∗, (12)

for any ψ , φ : R3 → R such that the first integrals in (11)–(12) are well defined. Let us
emphasize that (v, v′) and (v∗, v′∗) are respectively associated to species Ai and Aj . Equa-
tions (11)–(12) are obtained from (10) by using the same changes of variables (v, v∗) �→
(v∗, v) and (v, v∗) �→ (v′, v′∗), as in the mono-species case.

The choice ψ(v) = 1 in (11) allows to recover the conservation of the total number of
molecules of species Ai . Moreover, if we set ψ(v) = miv and φ(v∗) = mjv∗, and then
ψ(v) = mi |v|2/2 and φ(v) = mj |v∗|2/2, and plug those values in (12), we recover the con-
servation of the momentum and kinetic energy when species Ai and Aj are simultaneously
considered, i.e.

∫

R3
Qb

ij (f, g)(v)

(
miv

mi |v|2/2

)

dv +
∫

R3
Qb

j i(g, f )(v)

(
mjv

mj |v|2/2

)

dv = 0. (13)
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3.4 Boltzmann’s Equations

The system of coupled equations satisfied by the set of unknowns (fi)1≤i≤I is hence

∂tfi + v · ∇xfi = Qm
i (fi, fi) +

∑

j �=i

Qb
ij (fi, fj ) on R

∗
+ × Ω ×R

3. (14)

The conservation laws of mass, momentum and kinetic energy are guaranteed by the weak
forms (9) and (12). The boundary conditions are not detailed here but they are chosen as
specular reflections on ∂Ω to fit the macroscopic boundary conditions (4).

4 The Maxwell-Stefan Diffusion Limit

The Maxwell-Stefan equations describe a purely diffusive behaviour. Therefore, we cannot
hope to deduce them only by scaling a kinetic model that, in principle, can describe also
convection phenomena, without making any additional assumptions on the time evolution
of the system and on the initial conditions.

In order to study the relationships between the kinetic system and the Maxwell-Stefan
equations, we need to clearly identify the physical situation that leads to the Maxwell-Stefan
cross diffusion phenomenon and impose to the kinetic system the same physical properties.
We hence assume that the scaling on the kinetic equation allows the description of diffusion
phenomena, i.e. we suppose that the Knudsen and the Mach numbers are of the same order
of magnitude and that they can be considered very small. Moreover, we assume that

• there exists a uniform (in space) and constant (in time) temperature T > 0;
• for any time, the bulk velocity of the mixture is small and goes to zero in the vanishing

Knudsen and Mach numbers limit.

4.1 Scaled Equation

From now on, let us focus on the Maxwell molecules case. It means that each cross section
Bij depends on v, v∗ and σ only through the deviation angle θ ∈ [0,π] between v − v∗
and σ , and more precisely through its cosine. For each (i, j) with i �= j , there exists a
function bij : [−1,1] →R+ such that

Bij (v, v∗, σ ) = bij

(
v − v∗
|v − v∗| · σ

)

= bij (cos θ).

We moreover assume that bij is even and that bij ∈ L1(−1,1), following Grad’s angular
cutoff assumption. Thanks to the microreversibility assumption and because of the parity
of bji , we note that

bij (cos θ) = bij

(
v − v∗
|v − v∗| · σ

)

= Bij (v, v∗, σ ) = Bji(v∗, v, σ )

= bji

(
v∗ − v

|v − v∗| · σ
)

= bji

(
v − v∗
|v − v∗| · σ

)

= bji(cos θ),

which ensures bij = bji .
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Fig. 1 Angular variables to describe σ ∈ S
2

We here make no formal assumption about the mono-species cross section Bi , but it
seems logical that each Bi satisfies the same properties as the bi-species cross sections.

For the readers’ sake, let us introduce in Fig. 1 the other angular variable ϕ ∈ [0,2π], so
that we can write the Euclidean coordinates of σ with respect to θ and ϕ, i.e.

σ(1) = sin θ cosϕ, σ(2) = sin θ sinϕ, σ(3) = cos θ.

In the classical diffusive limit, the scaling is held by the mean free path ε > 0 and the
corresponding unknowns in this regime are denoted (f ε

i )1≤i≤I . Each distribution function
f ε

i hence solves the scaled version of (14), that is

ε∂tf
ε
i + v · ∇xf

ε
i = 1

ε
Qm

i

(
f ε

i , f ε
i

) + 1

ε

∑

j �=i

Qb
ij

(
f ε

i , f ε
j

)
, on R

∗
+ × Ω ×R

3. (15)

Finally, we define (cε
i )1≤i≤I through (5), for each distribution function f ε

i :

cε
i (t, x) =

∫

R3
f ε

i (t, x, v)dv, t ≥ 0, x ∈ Ω.

4.2 Ansatz

We assume that the initial conditions of the system of Boltzmann equations (15) are local
Maxwellian functions, with small macroscopic velocity (since we are interested in a purely
diffusive setting), i.e. the initial conditions have the form

(
f in

i

)ε
(x, v) = cin

i (x)

(
mi

2πkT

)3/2

e−mi |v−εuin
i

(x)|2/2kT , x ∈ Ω, v ∈R
3, (16)

where T > 0 is a fixed constant, and

cin
i : Ω →R+, uin

i : Ω → R
3, 1 ≤ i ≤ I,

do not depend on ε. We moreover suppose that

I∑

i=1

cin
i = 1 on Ω,
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which of course implies that each cin
i lies in [0,1]. Since each (f in

i )ε has the form (16), we
immediately have, for any i,

1

ε

∫

R3
v
(
f in

i

)ε
(x, v)dv = cin

i (x)uin
i (x), x ∈ Ω.

We assume that the system evolution leaves the distribution functions in the local
Maxwellian state, with the same constant and homogeneous temperature T . We hence sup-
pose that there exist

cε
i : R+ × Ω →R+, uε

i :R+ × Ω →R
3, 1 ≤ i ≤ I,

such that

f ε
i (t, x, v) = cε

i (t, x)

(
mi

2πkT

)3/2

e−mi |v−εuε
i
(t,x)|2/2kT , t > 0, x ∈ Ω, v ∈R

3. (17)

Since T is constant, the macroscopic equations should be obtained only through the con-
servation laws of mass and momentum. The moments of order 0 and 1 of each distribution
function can be computed thanks to Ansatz (17):

∫

R3
f ε

i (t, x, v)

(
1
v

)

dv =
(

cε
i (t, x)

εcε
i (t, x)uε

i (t, x)

)

, t > 0, x ∈ Ω. (18)

Note that the first moment of f ε
i is of order 1 in ε since we focus on the diffusive asymp-

totics.

4.2.1 Matter Conservation

We first consider the moment of order 0 of the distribution functions. More precisely, for
any i, we integrate (15) with respect to v in R

3, and obtain, thanks to the conservation
properties of the collisional operators,

ε∂t

(∫

R3
f ε

i (t, x, v)dv

)

+ ∇x ·
(∫

R3
f ε

i (t, x, v)v dv

)

= 0.

Using (18), we get, for all 1 ≤ i ≤ I ,

∂tc
ε
i + ∇x · (cε

i u
ε
i

) = 0. (19)

4.2.2 Balance of Momentum

For � ∈ {1,2,3}, denote w(�) the �-th component of any vector w ∈ R
3. The balance law of

momentum for a given species Ai is obtained by multiplying (15) by v(�) and integrating
with respect to v in R

3. We obtain, for any i and �,

ε∂t

(∫

R3
v(�)f

ε
i (v)dv

)

+ ∇x ·
(∫

R3
v(�)f

ε
i (v)v dv

)

= 1

ε

∑

j �=i

∫

R3
v(�)Q

b
ij

(
f ε

i , f ε
j

)
(v)dv

:= Θε
(�), (20)
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because the term involving Qm
i vanishes. Let us first focus on Θε

(�), which depends on the
set of independent variables (t, x). Thanks to (7) and (11) with ψ(v) = v, we can write

Θε
(�) = 1

ε

∑

j �=i

∫∫

R6

∫

S2
bij

(
v − v∗
|v − v∗| · σ

)

f ε
i (v)f ε

j (v∗)
(
v′

(�) − v(�)

)
dσ dv∗ dv

= 1

ε

∑

j �=i

mj

mi + mj

∫∫

R6

∫

S2
bij

(
v − v∗
|v − v∗| · σ

)

f ε
i (v)

× f ε
j (v∗)(v∗(�) − v(�) + |v − v∗|σ(�))dσ dv∗ dv.

In the previous equality, the term containing σ(�) vanishes, because of the symmetry
properties of Bij with respect to σ . Indeed, both terms for � = 1 or 2 are zero because

∫ 2π

0
sinϕ dϕ =

∫ 2π

0
cosϕ dϕ = 0,

and the third one writes
∫

S2
bij

(
v − v∗
|v − v∗| · σ

)

σ(3) dσ = 2π

∫ π

0
sin θ cos θbij (cos θ)dθ = 2π

∫ 1

−1
ηbij (η)dη = 0,

because bij is even.
The remaining part of the expression of Θε can then be written in terms of macroscopic

quantities:

Θε = ε
∑

j �=i

2πmj‖bij‖L1

mi + mj

(
cε
i c

ε
ju

ε
j − cε

j c
ε
i u

ε
i

)
.

The time derivative in (20) can be evaluated by means of (18), so that (20) eventually be-
comes, for any � ∈ {1,2,3} and any i,

ε2∂t

(
cε
i

(
uε

i

)
(�)

) + ∇x ·
(∫

R3
v(�)f

ε
i (v)v dv

)

=
∑

j �=i

2πmj‖bij‖L1

mi + mj

(
cε
i c

ε
j

(
uε

j

)
(�)

− cε
j c

ε
i

(
uε

i

)
(�)

)
.

(21)

Let us now focus on the divergence term in (21). We successively write

∇x ·
(∫

R3
v(�)f

ε
i (v)v dv

)

=
3∑

k=1

∂

∂x(k)

∫

R3
v(�)v(k)f

ε
i (v)dv

=
3∑

k=1

∂

∂x(k)

∫

R3
cε
i

(
v(�) + ε(ui)

ε
(�)

)(
v(k) + ε(ui)

ε
(k)

)

×
(

mi

2πkT

)3/2

e−mi |v|2/2kT dv

=
3∑

k=1

∂

∂x(k)

∫

R3
cε
i

[
ε2

(
uε

i

)
(�)

(
uε

i

)
(k)

+ v(�)
2δk�

]
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×
(

mi

2πkT

)3/2

e−mi |v|2/2kT dv

= ε2
3∑

k=1

∂

∂x(k)

[
cε
i

(
uε

i

)
(�)

(
uε

i

)
(k)

] + kT

mi

∂cε
i

∂x(�)

.

We finally obtain, from (21) and the previous equality,

ε2
[
∂t

(
cε
i u

ε
i

) + ∇x · (cε
i u

ε
i ⊗ uε

i

)] + kT

mi

∇xc
ε
i =

∑

j �=i

2πmj‖bij‖L1

mi + mj

(
cε
i c

ε
ju

ε
j − cε

j c
ε
i u

ε
i

)
. (22)

4.2.3 Macroscopic Equations and Formal Asymptotics

By putting together (19) and (22), we deduce that the Maxwellian functions (17) are solution
of the initial-boundary value problem for the system of scaled Boltzmann equations (15) if
(cε

i , u
ε
i ) solves

∂tc
ε
i + ∇x · (cε

i u
ε
i

) = 0, (23)

ε2 mi

kT

[
∂t

(
cε
i u

ε
i

) + ∇x · (cε
i u

ε
i ⊗ uε

i

)] + ∇xc
ε
i =

∑

j �=i

cε
i c

ε
ju

ε
j − cε

j c
ε
i u

ε
i

�ij

, (24)

where

�ij = (mi + mj)kT

2π mimj‖bij‖L1
.

Note that the previous coefficients are symmetric with respect to each pair of species since
bij = bji .

In the following, let us set

Fε
i (t, x) = 1

ε

∫

R3
vf ε

i (t, x, v)dv = cε
i (t, x)uε

i (t, x), t ≥ 0, x ∈ Ω,

and denote, as usual when dealing with formal diffusive limits, for any t ≥ 0 and x ∈ Ω ,

ci(t, x) = lim
ε→0+ cε

i (t, x), Fi(t, x) = lim
ε→0+ Fε

i (t, x).

Hence, in the limit, Eqs. (19)–(22) give a system of equations, which has the following form
for the density-flux set of unknown (ci,Fi):

∂tci + ∇x · Fi = 0,

−∇xci =
∑

j �=i

cjFi − ciFj

�ij

. (25)

In order to recover the Maxwell-Stefan system, we still have to prove that c is constant in
the limit.

Let us now write the kinetic energy conservation of the whole system before the asymp-
totics, at the kinetic level. We first observe that

∫

R3
|v|2f ε

i (v)dv = 3
kT

mi

cε
i + o(ε),

∫

R3
|v|2vf ε

i (v)dv = 5ε
kT

mi

cε
i u

ε
i + o(ε). (26)
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Then we multiply (15) by mi |v|2/2, integrate with respect to v ∈ R
3 and sum over i, to

obtain, thanks to (9), (13) and (26),

3∂t

(
I∑

i=1

cε
i

)

+ 5∇x ·
(

I∑

i=1

cε
i u

ε
i

)

= o(1), (27)

by keeping the lowest order term in ε. We formally perform the asymptotics ε → 0 in (27)
to simultaneously obtain, thanks to (19),

∂tc = 0 and ∇x ·
(

I∑

i=1

Fi

)

= 0.

The second equality is obviously consistent with the boundary conditions (4) and the closure
relationship (3). The first one ensures that c = ∑

cin
i = 1, which allows to recover (2) from

(25):
⎧
⎪⎨

⎪⎩

∂tci + ∇x · Fi = 0 on R
∗
+ × Ω,

−c∇xni = 1

c

∑

j �=i

cjFi − ciFj

Dij

on R
∗
+ × Ω,

where Dij = �ij/c and has the physical dimension of a drag coefficient (m2 s−1).

Remark The Euler system for mixtures (23)–(24) is composed of 4I independent scalar
equations governing 4I unknown scalar functions. The limiting procedure implies that both
first terms in (24) vanishes when ε goes to 0. That induces a singular perturbation in the
limit: the Maxwell-Stefan system consists only of (4I − 3) scalar independent equations, as
discussed in Sect. 2, and needs a closure relationship.
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