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Abstract Two new three-step classes of optimal iterative methods to approximate simple
roots of nonlinear equations, satisfying the Kung-Traub’s conjecture, are designed. The de-
velopment of the methods and their convergence analysis are provided joint with a gener-
alization of both processes. In order to check the goodness of the theoretical results, some
concrete methods are extracted and numerical and dynamically compared with some known
methods.
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1 Introduction

Finding the simple roots of a given scalar nonlinear equation f (x) = 0 is a significant prob-
lem in Numerical Analysis with interesting applications in science and engineering. For
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example, the application of iterative schemes for solving nonlinear equations for finding the
matrix sign function discussed in [1]. In the last decade, many modified iterative methods
have been developed to improve the local order of convergence of some classical methods
such as Newton or Ostrowski’s schemes. In this sense, many iterative procedures have been
designed of which we cite among others [2–6] and the references therein.

Nevertheless, as the order of an iterative method increases, so does the number of func-
tional evaluations per step. The efficiency index (see [7]) provides a measure of the balance
between those quantities, according to the formula p1/n, where p is the order of conver-
gence of the method and n the number of functional evaluations per step. Kung and Traub
conjectured in [8] that a multipoint iterative scheme without memory, requiring n functional
evaluations per iteration, has order of convergence at most 2n−1. Multipoint schemes which
achieve this bound are called optimal methods. Due to this fact, the development of optimal
methods without memory is still an active area and has been attracted much attention of
many researchers recently (see [9]).

In this work, we construct two new iterative three-point classes, with optimal eighth-
order convergence, for finding a simple root r of the nonlinear equation f (x) = 0, where
f : D ⊂ R → R is a scalar function on an open interval D. In fact, based on the first two
steps of Kung-Traub’s method [8], we develops these classes of eighth-order methods, free
from second derivative, with efficiency index 81/4 = 1.682.

The rest of this paper is organized as follows: the design and convergence analysis of
the proposed classes are described in Sect. 2. A generalization of the procedure is made
in Sect. 3, showing the conditions on an arbitrary fourth-order method and on the weight
functions that assure the eighth-order convergence by applying the same technique that in
the previous section. Computational aspects and comparisons with other known eighth-order
methods are illustrated in Sect. 4. Finally, in Sect. 5, some dynamical aspects of the different
methods used in this study are analyzed.

2 The Development of the Methods and Their Convergence

This section deals with constructing two new multipoint classes of optimal iterative methods
for solving nonlinear equations, including the Kung-Traub’s method as the first two steps
and suitably choosing two weight functions depending on one and two variables, respec-
tively, in its third step. The order of convergence of the iterative schemes of these classes
is eight, requiring four functional evaluations per step. So, these methods are optimal in the
sense of Kung-Traub’s conjecture.

To this end, we start with a three-step scheme (omitting iteration index for simplicity)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y = x − f (x)

f ′(x)
,

z = y − f (x)2

(f (x)−f (y))2
f (y)

f ′(x)
,

x̂ = z − f (z)

f ′(z) ,

(2.1)

where x is a current approximation and x̂ is a new approximation to a simple real zero
r of f . Note that the first two steps form the Kung-Traub’s method of order four. This
method is an special case of the two-point proposed in [10] and it has been also extended in
[11].
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The iterative method (2.1) has order eight but it requires five functional evaluations,
which is too expensive in terms of computational effort. To decrease this cost of functional
evaluations from 5 to 4, we try to approximate f ′(z) in the third step of (2.1) using available
data f (x), f ′(x), f (y) and f (z). We are seeking this approximation in the form

f ′(z) ≈
f ′(x)

H(t, s) + G(v)
, (2.2)

where t = f (y)

f (x)
, s = f (z)

f (y)
and v = f (z)

f (x)
.

Therefore, we start from the scheme (2.1), the approximations (2.2) and state the follow-
ing three-point method

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y = x − f (x)

f ′(x)
,

z = y − f (x)2

(f (x)−f (y))2
f (y)

f ′(x)
,

x̂ = z − (H(t, s) + G(v))
f (z)

f ′(x)
.

(2.3)

Similar ideas, by using weight-functions, can be found in [12, 13].
To find the suitable weight functions H and G in (2.3), providing order eight, we will

use the method of undetermined coefficients and Taylor’s series about zero, since t , s and
v tend to zero when x tends to r . The technique of undetermined coefficients was studied,
perhaps for the first time, in [14]. We have

H(t, s) = H(0,0) + Ht(0,0)t + Hs(0,0)s

+ 1

2

[
Htt (0,0)t2 + 2Hts(0,0)st + Hss(0,0)s2

]

+ 1

6

[
Httt (0,0)t3 + 3Htts(0,0)t2s + 3Htss(0,0)ts2 + Hsss(0,0)s3

] + · · · ,

and

G(v) = G(0) + G′(0)v + 1

2
G′′(0)v2 + 1

6
G′′′(0)v3 + · · · .

By using Taylor’s expansion of f (x) about r and taking into account that f (r) = 0, we
obtain

f (x) = f ′(r)
[
e + c2e

2 + c3e
3 + c4e

4 + c5e
5 + c6e

6 + c7e
7 + c8e

8 + O
(
e9

)]
(2.4)

and

f ′(x) = f ′(r)
[
1 + 2c2e + 3c3e

2 + 4c4e
3 + 5c5e

4 + 6c6e
5 + 7c7e

6 + 8c8e
7 +O

(
e8

)]
, (2.5)

where cj = f (j)(r)

j !f ′(r) , for j = 2,3, . . . and e = x − r .
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Now, we are going to give the Mathematica code to provide some suitable conditions
in such a way that the proposed method gets optimal eighth-order.

f[e_] = f1a ∗ (e+ ∑8
i=2 ci ∗ ei);

ey= e− Series[f[e]/f′[e], {e,0,8}]; (∗First step∗)

t= f[ey]/f[e];
ez= ey− 1/(1− t)2 ∗ f[ey]/f′[e]; (∗Second step∗)

s= f[ez]/f[e];
v= f[ez]/f[ey];
H[t−,s−] = H(0,0) + Ht(0,0)t+ Hs(0,0)s

+ 1
2 (Htt(0,0)t2 + 2Hts(0,0)st+ Hss(0,0)s2)

+ 1
6 (Httt(0,0)t3 + 3Htts(0,0)t2s+ 3Htss(0,0)ts2 + Hsss(0,0)s3);

G[v−] = G(0) + G1(0)v+ 1
2G2(0)v2 + 1

6G3(0)v3 + 1
24G4(0)v4;

ê= ez− (H[t,s] + G[v]). f[ez]
f′[e] ; (∗Third step∗)

So, the expression of the asymptotic error of ê= x̂− r is

ê = a4e
4 + a5e

5 + a6e
6 + a7e

7 + a8e
8 + O

(
e9

)
. (2.6)

The iterative three-point method (2.3) will have the order of convergence equal to eight if
a4, a5, a6 and a7 in (2.6) all vanish. First, for a4 we have

a4 = Coefficient[ê,e4]//Simplify
Out[a4] = −c2(2c22 − c3)(−1+ G(0) + H(0,0))

H(0,0) = 1− G(0) Comment: This condition vanishes the coefficient of e4,

a5 = Coefficient[ê,e5]//Simplify
Out[a5] = −c22(2c22 − c3)(−2+ Ht(0,0))

Ht(0,0) = 2, Comment: This condition vanishes the coefficient of e5,

a6 = Coefficient[ê,e6]//Simplify
Out[a6] = −1

2 c2(2c
2
2 − c3)((−12+ 4Hs(0,0) + Htt(0,0))c22 − 2(−1+ Hs(0,0))c3)

Hs(0,0) = 1, Htt(0,0) = 8, Comment: These conditions vanish the coefficient of e6,

a7 = Coefficient[ê,e7]//Simplify
Out[a7] = −1

6 c
2
2(2c

2
2 − c3)((−84+ 12G′(0) + 12Hts(0,0) + Httt(0,0))c22

−6(−4+ G′(0) + Hts(0,0))c3)

Hts(0,0) = 4− G′(0), Httt(0,0) = 36.

Comment: These conditions vanish the coefficient of e7.

According to the above analysis, the error equation is

ê = −c2(2c2
2 − c3)

2

(−2c2c4 − c2
2c3

(
Htts(0,0) + 4

(
Hss(0,0) − 8

))

+ 2c4
2

(
2Hss(0,0) + Htts(0,0) − 31

))
e8 + O

(
e9

)
. (2.7)

Based on the previous description, Theorem 2.1 establishes the eighth-order convergence
of iterative scheme (2.3). Although the result is restricting to real domain, a complex version
of it is possible.

Theorem 2.1 Let us suppose that f : D ⊂ R → R is a sufficiently differentiable real func-
tion, with a simple root r in an open set D, and x0 is an initial guess close to r . Then,
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the iterative scheme (2.3) has optimal eighth-order convergence if sufficiently differentiable
functions H(t, s) and G(v) are chosen such that

H(0,0) = 1 − G(0), Ht (0,0) = 2, Hs(0,0) = 1,

Htt (0,0) = 8, Httt (0,0) = 36, Hts(0,0) = 4 − G′(0),
(2.8)

where indices in H denote the partial derivative with respect to the given ones, e.g.,
Ht(t, s) = ∂H(t,s)

∂t
and expression (2.7) describes the error equation of this family.

Some simple weight functions satisfying conditions (2.8) are

H1(t, s) = −2t3 + 1

1 − s + 2st − 2t
, G1(v) = 2v,

H2(t, s) = 1 + 2t + 4t2 + 6t3 + s + 4ts, G2(v) = 0.

We will denote by M1 and M2 the iterative schemes defined by (2.3) by using H1(t, s) +
G1(v) and H2(t, s) + G2(v), respectively.

Similarly, we have

Theorem 2.2 let us suppose that f : D ⊂ R → R is a sufficiently differentiable real func-
tion, with a simple root r in an open set D, and x0 is an initial guess close to r . Then, the
iterative scheme (2.1) with alternative estimation of f ′(z)

f ′(z) ≈
f ′(x)

H(t, s)G(v)
, (2.9)

has optimal eighth-order convergence if sufficiently differentiable functions H(t, s) and
G(v) are chosen such that

H(0,0) = 1/G(0), Ht (0,0) = 2/G(0), Hs(0,0) = 1/G(0),

Hts(0,0) = 4G(0)−G′(0)

G(0)2 , Htt (0,0) = 8/G(0), Httt (0,0) = 36/G(0),
(2.10)

and the error equation is

ê = −c2(2c2
2 − c3)

2

(−2c2c4 − c2
2c3

(
Htts(0,0) + 4Hss(0,0) + 4G′(0) − 32

)

+ c2
3

(
Hss(0,0) − 2

) + 2c4
2

(
Htts(0,0) + 2Hss(0,0) + 4G′(0) − 31

))
e8

+ O
(
e9

)
. (2.11)

Some simple weight functions satisfying conditions (2.10) are

H3(t, s) = 1 + 2t + 4t2 + 6t3 + s + 2ts, G3(v) = 1 + 2v,

H4(t, s) = −2t3 + 1

1 − s + 2st − 2t
, G4(v) = 1 + 2v.

The resulting methods using H3(t, s)G3(v) and H4(t, s)G4(v) in (2.9) will be denoted in
the following by M3 and M4, respectively.
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3 A General Procedure for Designing Eighth-Order Methods

In the previous section, we have designed two optimal eighth-order classes of iterative
schemes from the Kung-Traub’s optimal fourth-order method. However, it can be proved
that the same procedure from any other optimal fourth-order does not support order eight.
Then, we wonder which are the necessary conditions to be achieved by an optimal fourth-
order method to ensure the order of convergence eight by the same procedures used in The-
orems 2.1 and 2.2?

In order to get this aim, let us consider an iterative multipoint method z = φ(x, y), whose
first step is Newton’s one, y. Its error equation will be

z − r = p4e
4 + p5e

5 + p6e
6 + p7e

7 + O
(
e7

)
.

We will analyze in the following which are the conditions that pi , i = 4,5,6,7 must verify
to get eighth-order of convergence with a third step including a sum or product of weight
functions. Then, the Taylor expansion around r of the auxiliary variables t , s and v is made
an also we expand the weight functions H and G around zero. For the sake of simplicity, let
us assume that our combined weight function is G(t, s) + H(v) (all the calculations can be
re-arranged with G(t, s)H(v)). Then, the error equation at the third step is

ê = −(−1 + G(0) + H(0,0)
)
p4e

4 + ((
2G(0) + 2H(0,0) − Ht(0,0)

)
c2p4

− (−1 + G(0) + H(0,0)
)
p5

)
e5 + O

(
e6

)
.

It is clear that, in order to achieve order six, it is necessary that G(0) = 1 − H(0,0) and
Ht(0,0) = 2. Then,

ê = − p4

2c2

((−12 + Htt (0,0)
)
c3

2 + 2c2c3 + 2Hs(0,0)p4

)
e6 + O

(
e7

)
.

Then, to achieve order seven, it is necessary that p4 = ac2c3 + bc3
2 with convenient real

values of parameters a and b, a �= 0. By using this expression of p4,

ê =
(

−1

2
c2

(
bc2

2 + ac3
)((−12 + Htt (0,0) + 2bHs(0,0)

)
c2

2 + 2
(
1 + aHs(0,0)

)
c3

)
)

e6

+ O
(
e7

)

and, solving the linear system {−12 + Htt (0,0) + 2bHs(0,0) = 0, 1 + aHs(0,0) = 0}, we
obtain an only solution for p4 �= 0, that is

Hs(0,0) = − 1

a
(3.1)

and

Htt (0,0) = 2(6a + b)

a
. (3.2)

The resulting error equation is

ê = − 1

6a

(
bc2

2 + ac3
)((−48b + a

(−120 + Httt (0,0) + 6b
(
G′(0) + Hts(0,0)

)))
c4

2

+ 6
(
2a + 6b + a2

(
G′(0) + Hts(0,0)

))
c2

2c3 + 12ac2
3 + 12ac2c4 − 6p5

)
e7 + O

(
e8

)
.
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According to the coefficients appearing in this error equation, it is necessary that p5 = cc4
2 +

dc2
2c3 +hc2

3 +gc2c4, with appropriated real parameters c, d,h, g, in order to get eighth-order
of convergence. Then, a linear system is solved, obtaining a unique solution:

Hts(0,0) = −2a + 6b − d

a2
− G′(0),

Httt (0,0) = 6(20a2 + 10ab + 6b2 + ac − bd)

a2
, (3.3)

h = g = 2a.

Finally, the error equation of the resulting scheme is

ê = − 1

2a2

(
bc2

2 + ac3
)((−2a(62b + 13c) − 2(8b + c)(6b − d)

+ a2
(−140 + b

(
2 + Htts(0,0)

) + b2Hss(0,0)
))

c5
2

+ (
10a2 + 2a(35b + 8c − 5d) + 2(−6b + d)2 +a3

(
2 + Htts(0,0) + 2bHss(0,0)

))
c3

2c3

+ 2a(−3b + 2d)c2
2c4 + ac2

((
2a − 24b + 8d + a3Hss(0,0)

)
c2

3 + 6ac5

)

+ 2a(7ac3c4 − p6)
)
e8 + O

(
e9

)
,

and the following result can be established.

Theorem 3.1 Let us consider the iterative scheme

y = x − f (x)

f ′(x)
,

z = φ(x, y), (3.4)

x̂ = z − (
H(t, s) + G(v)

) f (z)

f ′(x)
.

To achieve order of convergence eight by using the sum of weight functions H and G, it must
be verified that the Taylor expansion of the iteration function of fourth-order of convergence
around the solution r is

z − r = (
ac2c3 + bc3

2

)
e4 + (

cc4
2 + dc2

2c3 + 2ac2
3 + 2ac2c4

)
e5
k + p6e

6 + O
(
e7

)
.

Moreover, it is necessary to choose properly weight functions H and G such that the expres-
sions G(0) = 1 − H(0,0), Ht(0,0) = 2, Hs(0,0) = − 1

a
, Htt (0,0) = 2(6a+b)

a
, Hts(0,0) =

− 2a+6b−d

a2 − G′(0) and Httt (0,0) = 6(20a2+10ab+6b2+ac−bd)

a2 are satisfied.

Theorem 3.2 Let us consider the iterative scheme

y = x − f (x)

f ′(x)
,

z = φ(x, y), (3.5)

x̂ = z − (
H(t, s)G(v)

) f (z)

f ′(x)
.
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In order to gain order of convergence eight by using the product of weight functions H

and G it is necessary that the Taylor expansion of the iteration function of fourth-order of
convergence around the solution r is

z − r = (
ac2c3 + bc3

2

)
e4 + (

cc4
2 + dc2

2c3 + 2ac2
3 + 2ac2c4

)
e5
k + p6e

6 + O
(
e7

)
,

and the following conditions must be satisfied: H(0,0) = 1/G(0), Ht(0,0) = 2/G(0),
Htt (0,0) = 2(6a+b)

aG(0)
, Hs(0,0) = − 1

aG(0)
,

Hts(0,0) = (−2a − 6b + d)G(0) − a2G′(0)

a2G(0)2

and

Httt (0,0) = 6

a2G(0)
(20a2 + 10ab + 6b2 + ac − bd).

From these results, we wonder if it is possible to obtain eighth-order schemes when the
second step in (3.4) and (3.5) is Ostrowski’s method. The answer is yes. It is easy to prove
that the error equation of Ostrowski’s scheme is

z − r = (
c3

2 − c2c3

)
e4 − 2

(
2c4

2 − 4c2
2c3 + c2

3 + c2c4

)
e5 + O

(
e6

)
.

So, an accurate selection of the weight functions can be made in order to get an optimal
eight-order scheme. As a = −1, b = 1, c = −4 and d = 8, then the necessary conditions on
the weight functions H and G are given by Theorems 3.1 and 3.2. Then, the eighth-order of
convergence is guaranteed for both classes.

However, Jarratt’s procedure (see [15]) is not appropriated to get and optimal scheme of
order eight such as (3.4) and (3.5), as its error equation (as a fourth-order scheme) is

z − r =
(

c3
2 − c2c3 + c4

9

)

e4 +
(

−4c4
2 + 8c2

2c3 − 2c2
3 − 20c2c4

9
+ 8c5

27

)

e5 + O
(
e6

)
,

different from the required in Theorems 3.1 and 3.2.
Weight-function products have been recently used in [16], but without any general pro-

cess that impose conditions on the fourth-order departure method.

4 Numerical Results

We recall that methods M1 and M2 are defined by expression (2.3) by using

H1(t, s) = −2t3 + 1

1 − s + 2st − 2t
, G1(v) = 2v

and

H2(t, s) = 1 + 2t + 4t2 + 6t3 + s + 4ts, G2(v) = 0,

respectively. Analogously, methods M3 and M4 are defined by expression
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y = x − f (x)

f ′(x)
,

z = y − f (x)2

(f (x)−f (y))2
f (y)

f ′(x)
,

x̂ = z − (H(t, s)G(v))
f (z)

f ′(x)
,
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by using

H3(t, s) = 1 + 2t + 4t2 + 6t3 + s + 2ts, G3(v) = 1 + 2v

and

H4(t, s) = −2t3 + 1

1 − s + 2st − 2t
, G4(v) = 1 + 2v,

respectively. The variables t , s and v are the same used in M1 and M2.
Now, we are going to test the proposed optimal eighth-order methods, M1 to M4, for

approximating the zeros of the following functions

f1(x) = exp(x) sinx + logx4 − 3x + 1, r = 0

f2(x) = x2 − (1 − x)25, r ≈ 0.143739 . . .

f3(x) = exp
(
x3 − x

) − cos
(
x2 − 1

) + x3 + 1, r = −1

and comparing the results with the obtained by some known methods.
All the iterative schemes introduced in the following are optimal in the sense of Kung-

Traub’s conjecture and have been designed by using sum and product of weight-functions
of one variable, so they are fully comparable with the new ones designed in this paper. Let
us refer now to the procedure that Dz̆unić and Petković present in [17]: a three-step eighth-
order method, whose iterative expression is

y = x − f (x)

f ′(x)
,

z = y − f (x)

f (x) − 2f (y)

f (y)

f ′(x)
,

x̂ = z − G1(s)G2(v)G3(t)
f (z)

f ′(x)
,

where t = f (y)

f (x)
, s = f (z)

f (y)
, v = f (z)

f (x)
, G1(s) = 1 + s + 4s2, G2(v) = (1 + v)2 and G3(t) =

1
1−2t−t2−5t4 . We will denote this scheme by DP.

Other eighth-order method was developed by Soleymani et al. in [18]. It is also based on
Ostrowski’s method (see [7]) and its iterative expression is:

y = x − f (x)

f ′(x)
,

z = y − f (x)

f (x) − 2f (y)

f (y)

f ′(x)
,

x̂ = z − (
G(s) + H(t) + Q(v)

) f (z)(2x − z − y)

2f [z, y](x − z) + (z − y)f ′(x)
,

where t = f (z)

f (x)
, s = f (z)

f (y)
, v = f (y)

f (x)
, G(s) = 1, H(t) = 3

2 t , Q(v) = − 3
2v3 and f [·, ·] denotes

the divided difference of order 1. In the following, we will denote this method by S.
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Table 1 Numerical results for f1(x) = exp(x) sinx + logx4 − 3x + 1, x0 = 0.3

Iterative method |x1 − r| |x2 − r| |x3 − r| rc

M1 0.1328 0.5423(−5) 0.1435(−39) 7.8785

M2 0.6086(−1) 0.9580(−7) 0.2535(−53) 8.0264

M3 0.5129(−1) 0.1774(−7) 0.2836(−59) 8.0167

M4 0.1994 0.3450(−4) 0.5225(−33) 7.6610

DP 0.3295 0.2339(−2) 0.1391(−18) 7.5508

S 0.3061 0.7126(−3) 0.8892(−23) 7.5595

GK1 0.1573 0.7080(−4) 0.5945(−31) 8.0903

GK2 0.1168(−1) 0.4513(−13) 0.2233(−104) 8.0000

Geum and Kim designed in [19] a uniparametric family of eighth-order methods, one of
them has the iterative expression

y = x − f (x)

f ′(x)
,

z = y − 1 + 2u

1 − 3u2

f (y)

f ′(x)
,

x̂ = z − 1

1 − 2u − q

f (z)

f ′(x)
,

where u = f (y)/f (x) and q = f (z)/f (y). We will denote this method by GK1. On the
other hand, these authors published in [20] a biparametric family of eighth-order methods,
from which we choose the following scheme:

y = x − f (x)

f ′(x)
,

z = y − 1 + 2u

1 − 3u2

f (y)

f ′(x)
,

x̂ = z −
(

1

1 − 2u
+ 1 − 4

2 + v + 4w

)
f (z)

f ′(x)
,

where u = f (y)/f (x), v = f (z)/f (y) and w = f (z)/f (x). We will denote this method by
GK2.

All the calculations have been made by using software Mathematica, in variable pre-
cision arithmetics, with 2000 digits of mantissa. The exact error |xn − r| at the first three
iterations of the described methods are given in Tables 1, 2 and 3, where A(−h) denotes
A × 10−h. These tables also include the value of the computational order of convergence rc

approximated by (see [21])

rc = log |f (xn)/f (xn−1)|
log |f (xn−1)/f (xn−2)| . (4.1)

Let us observe that the proposed methods are highly competitive, being the errors ob-
tained in the different test functions as accurate as the obtained with the known schemes,
and better than them in some cases.
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Table 2 Numerical results for f2(x) = x2 − (1 − x)25, x0 = 0.25

Iterative method |x1 − r| |x2 − r| |x3 − r| rc

M1 0.4918(−3) 0.4458(−19) 0.2036(−147) 7.9999

M2 0.2652(−3) 0.7780(−21) 0.4247(−161) 8.0001

M3 0.5933(−4) 0.3760(−26) 0.9801(−204) 8.0000

M4 0.1920(−3) 0.3736(−22) 0.7664(−172) 8.0000

DP 0.2302(−2) 0.3106(−14) 0.3756(−109) 7.9965

S 0.1115(−3) 0.9901(−25) 0.3851(−193) 7.9999

GK1 0.9558(−5) 0.6405(−33) 0.6280(−209) 6.2472

GK2 0.2574(−3) 0.2806(−21) 0.5614(−165) 8.0000

Table 3 Numerical results for f3(x) = exp (x3 − x) − cos (x2 − 1) + x3 + 1, x0 = −1.65

Iterative method |x1 − r| |x2 − r| |x3 − r| rc

M1 0.2821(−4) 0.2397(−36) 0.6501(−293) 8.0000

M2 0.3311(−4) 0.2877(−35) 0.9345(−284) 8.0000

M3 0.3364(−4) 0.2610(−35) 0.3424(−284) 8.0000

M4 0.2877(−4) 0.9170(−37) 0.9755(−297) 8.0000

DP 0.8307(−5) 0.3121(−40) 0.1238(−323) 8.0000

S 0.3079(−4) 0.4517(−37) 0.9700(−300) 8.0000

GK1 0.2954(−4) 0.6045(−37) 0.1860(−298) 8.0000

GK2 0.3960(−4) 0.1502(−34) 0.6433(−278) 8.0000

The described methods are optimal eighth-order schemes as well as the methods DP, S,
GK1 and GK2. So, the efficiency index of all of them is E = 81/4 ≈ 1.682.

5 Dynamical Features

From the numerical point of view, the dynamical properties of the rational function asso-
ciated with an iterative method give us important information about its stability and re-
liability. In this section, we are going to describe the dynamical planes of the iterative
methods used in the numerical section when they are applied to the complex function
p(z) = z2 − 1

2z
+ i whose roots are z1 ≈ 0.8199 − 0.4525i, z2 ≈ −0.7376 + 0.9030i and

z3 ≈ −0.0823 − 0.4505i.
In the different dynamical planes, we see the convergence basins of the roots of p(z) for

the schemes that we are using. In the representation we have used the software described
in [22]. We draw a mesh with eight hundred points per axis; each point of the mesh is a
different initial estimation which we introduce in each procedure. If the method reaches one
of the roots in less than eighty iterations, this point is drawn in the color assigned to this root
(green, orange and blue). The color will be more intense when the number of iterations is
lower. Moreover, the roots are marked in the dynamical plane by white stars. Otherwise, if
the method arrives at the maximum of iterations without converging to any root, the point
will be drawn in black. In each axis, we represent the real and imaginary part of each initial
estimation.
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Fig. 1 Dynamical planes for K-T method of order 4 and eighth-order schemes

In Fig. 1, we show the dynamical planes of the classical fourth-order method of Kung
and Traub, KT4, and some of the schemes used in the numerical section: DP, S and GK1. In
Fig. 2, we can see the dynamical planes of the proposed methods M1, M2, M3 and M4 on
the same function p(z).

As KT4 is a very stable method, we want to obtain qualitative information about the
possible lost of stability related to the improvement of the order of convergence. It can be
observed that, in general, higher order means lower stability. In fact, the Julia set associated
to KT4 and also M1, M2 and M3 is connected, meanwhile in the rest of dynamical planes
some ’islands’ appears in the Fatou set, and it shows that the Julia set is disconnected in
these cases.

6 Conclusions

The weight functions technique has been used in order to design two classes of optimal
methods. Also a generalization is made in order to find other families of the same order with
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Fig. 2 Dynamical planes for proposed eighth-order schemes

different fourth-order predictors. The proposed schemes have been showed to be competitive
in terms of computational efficiency and also in terms of the absolute error on different test
functions. In the dynamical study, it has been shown that the new methods have a similar
stability as KT4, spite of the improvement of the order of convergence.

To design new methods, variants with memory of the proposed families, could be a future
work.
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9. Petković, M.S., Neta, B., Petković, L.D., Dz̆nić, J.: Multipoint Methods for Solving Nonlinear Equations.
Elsevier, Amsterdam (2013)
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12. Džunić, J., Petković, M.S., Petković, L.D.: A family of optimal three-point methods for solving nonlinear
equations using two parametric functions. Appl. Math. Comput. 217(19), 7612–7619 (2011)
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