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Abstract This paper is devoted to the classification of analytic integrable cases of two fam-
ilies of degenerate planar vector fields with a monodromic singular point at the origin. This
study falls in the still open degenerate center problem. This classification can be done us-
ing the formal normal form theory and knowing a suitable normal form of any differential
systems associated to each family.

Keywords Nonlinear differential systems · Integrability problem · Degenerate center
problem

1 Introduction

One of the most important problems in the study of a planar differential system

ẋ = P (x, y), ẏ = Q(x,y), (1.1)

where P and Q are analytic in a neighborhood at the origin and coprimes, is to determine
when it has a local analytic first integral defined in a neighborhood of a singular point.
Other open problem is to characterize when a monodromic singular point is a center. Of
course, when the linear part is of center type, i.e., with imaginary eigenvalues and when
the linear part is degenerate but not identically zero the characterization is well-known,
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[8, 18, 19, 21]. However, when the linear part is identically zero, i.e. for a degenerate center
the characterization is not known and only some generic cases are solved, see for instance
[2, 4–7, 13, 15, 17] and references therein.

One form to characterize the center problem for a nondegenerate singular point is through
the existence of an analytic first integral in a neighborhood of the origin, see [9, 16, 18, 21].
However, the existence of this analytic first integral is only a sufficient condition to have
a center for a nilpotent or a degenerate singular point, see [10–12]. Therefore there are
nilpotent and degenerate centers not characterized by the existence of a local analytic first
integral, see for instance [13, 15, 17, 20, 22, 24] and references therein.

For nilpotent singular points, the orbital normal form of the centers with analytic first
integral was obtained in [23]. The result is the following:

Theorem 1.1 Any nilpotent center has a local analytic first integral if, and only if, it is
analytically orbital equivalent to the Hamiltonian system

ẋ = y, ẏ = −x2k−1. (1.2)

with k > 1.

Nowadays the integrability problem for non-monodromic nilpotent systems is not solved.
The problem of recognizing what degenerate singular points have an analytic first integral is
still open, although some partial result have been achieved recently. In [6] the analytic inte-
grability problem for a large family of degenerate planar system was studied. More specifi-
cally it was studied the degenerate systems of the form

ẋ = y3 + 3μx2y + o
(|x, y|3), ẏ = −x3 − 3μxy2 + o

(|x, y|3), μ ∈R, (1.3)

and the following result was established:

Theorem 1.2 System (1.3) is analytically integrable if, and only if, it is formally equivalent
to ẋ = y3 + 3μx2y, ẏ = −x3 − 3μxy2.

This result is equivalent to Theorem 1.1 but for degenerate systems of the form (1.3). The
result was obtained by means of the normal form theory.

In [7] it is investigated if similar results for the family of degenerate systems of the form

ẋ = y3 + 2ax3y + · · · , ẏ = −x5 − 3ax2y2 + · · · , (1.4)

can be obtained where the dots means terms of higher order than the first component in the
quasi-homogeneous order (see definition below). However the results for systems (1.4) are
different to the ones obtained for family (1.3). In fact systems (1.4) with an analytic first
integral are not formally equivalent to their Hamiltonian leading part as the following result
shows and this is the first family in which this phenomenon is observed.

Theorem 1.3 System (1.4) is analytically integrable if, and only if, it is formally equivalent
to ẋ = y3 + 2ax3y − 2β9x

4y, ẏ = −x5 − 3ax2y2 + 4β9x
3y2, where β9 depends on the

parameters of the first three quasi-homogeneous components.

This result shows that the analytic integrability problem is a difficult problem and re-
quires further studies to find the complete solution for any degenerate differential system.
In [14] such type of degenerate systems were called generalized nilpotent systems.
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In this work and by means of the normal form theory we obtain necessary and sufficient
conditions for the analytic integrability of some families of degenerate planar vector fields.
More specifically for the family (3.3) and the family (4.3) (see these families along the
work). These families are considered because are the easiest cases of monodromic families
where we can apply the formal normal form and as a test bed for future studies in the ana-
lytic integrability problem for degenerate singular points. The paper is organized as follows:
in Sect. 2 we give some preliminary definitions and results, in Sects. 3 and 4 using the for-
mal normal forms theory, we compute the analytic integrability cases for these polynomial
families of the type (1.3) and (1.4), respectively.

In our analysis, we use some definitions and terminology, related to the quasi-
homogeneous expansions of planar vector fields. In the next section we summarize these
results.

2 Preliminary Definitions and Results

A scalar function f is quasi-homogeneous of type t = (t1, t2) ∈N
2 and degree k if

f
(
εt1x, εt2y

) = εkf (x, y).

The vector space of quasi-homogeneous scalar function of type t and degree k is denoted
by Pt

k . A vector field F = (P,Q)T is quasi-homogeneous of type t and degree k if P ∈ Pt
k+t1

and Q ∈ Pt
k+t2

. The vector space of quasi-homogeneous vector field of type t and degree k

is denoted by Qt
k .

Given a vector field F, we can formally write it as a quasi-homogeneous expansion cor-
responding to a fixed type t:

F(x) = Fr (x) + Fr+1(x) + · · · ,
where each term Fk is a quasi-homogeneous vector field of type t and degree k.

Given a scalar function μ, to obtain its quasi-homogeneous expansion μ = ∑
k μk , with

μk ∈ Pt
k , it is enough to collect the terms of its Taylor expansion whose exponents lie in

the straightline t1x + t2y = k, for each k. The expansion in quasi-homogeneous terms of a
vector field F = (P,Q)T is obtained easily from the ones of the components P , Q. If we
select the type t = (1,1), we are using in fact the Taylor expansion, but in general, each term
in the above expansion involves monomials with different degrees. We give some definitions
and properties, see for instance [1, 2].

• We denote by Xh the Hamiltonian vector field associated to Hamiltonian h, that is, Xh =
(− ∂h

∂y
, ∂h

∂x
)T . It is easy to check that Xh ∈ Qt

k if, and only if, h ∈ Pt
k+|t|, (here |t| := t1 + t2

denotes the modulus of t).
• The divergence of a vector field F = (P,Q)T is div(F) = ∂P

∂x
+ ∂Q

∂y
. For all F ∈ Qt

k , we

have div(F) ∈ Pt
k .

• The wedge product of two vector fields F = (P,Q)T and G = (R,S)T is the scalar func-
tion F ∧ G = PS − QR. If we take F ∈ Qt

k and G ∈ Qt
l then F ∧ G ∈ Pt

k+l+|t|.
• The Lie bracket of two vector fields F and G is [F,G] = DFG − DGF. If F ∈ Qt

k and
G ∈ Qt

l then [F,G] ∈ Qt
k+l .

• We denote D0 = (t1x, t2y)T ∈ Qt
0. Observe that it is a radial vector field. For any p ∈ Pt

k

we have ∇p · D0 = kp (Euler’s Theorem for quasi-homogeneous vector fields).
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A key fact, which can be found in [2, 3], is the following. Any planar quasi-homogeneous
vector field can be decomposed uniquely as the sum of two quasi-homogeneous vector fields,
one of them having zero divergence (conservative part) and the other one with divergence
equal to the original vector field (dissipative part).

Lemma 2.1 Let us consider a quasi-homogeneous planar vector field Fk ∈ Qt
k . Then, there

exists a unique couple of quasi-homogeneous polynomials: h ∈ Pt
k+|t|, μ ∈ Pt

k , such that

Fk = Xh + μD0, with h = 1

k + |t|D0 ∧ Fk, μ = 1

k + |t| div(Fk).

3 The Integrability of a Family of Systems (1.3)

In this section we consider system (1.3) which we write of the form

(
ẋ

ẏ

)
= F2 +

∞∑

k=3

(∑
i+j=k+1 aij x

iyj

∑
i+j=k+1 bij x

iyj

)
, where F2 =

(
y3 + 3μx2y

−x3 − 3μxy2

)
∈ Q(1,1)

2 .

(3.1)

In this case the homogeneous principal part is of degree 2 respect to type t = (1,1) given
by F2 = Xh, where h = − 1

4 D0 ∧ F2 = − 1
4 [x4 + y4 + 6μx2y2] = − 1

4 [(y2 + 3μx2)2 +
(1 − 9μ2)x4] ∈ Pt

4 and D0 = (x, y)T .
In [6] the following results are established.

Lemma 3.1 The origin of system (3.1) with μ �= − 1
3 is monodromic if, and only if, − 1

3 < μ.

Theorem 3.2 System (3.1) with μ �= ± 1
3 is formally equivalent to:

(
ẋ

ẏ

)
=

(
y3 + 3μx2y

−x3 − 3μxy2

)
+

∞∑

l=0

[(
α

(1)

4l+3x
2yhl + α

(2)

4l+3xy2hl
)
D0

+ (
α

(1)

4l+4h
l+1 + α

(2)

4l+4x
2y2hl

)
D0 + (

α
(1)

4l+5xhl+1 + α
(2)

4l+5yhl+1
)
D0

+ (
α

(1)

4l+6x
2hl+1 + α

(2)

4l+6xyhl+1 + α
(3)

4l+6y
2hl+1

)
D0

]
, (3.2)

where α
(i)

4l+j are the invariant values of the normal form which are polynomials on the pa-
rameters aij and bij and the first invariant values are

α
(1)

3 = d21 − 3μd03, α
(2)

3 = d12 − 3μd30,

α
(1)

4 = (3(c05 + 5c41)μ − 5c23)α
(1)

3 + (3(c50 + 5c14)μ − 5c32)α
(2)

3

3(3μ − 1)(3μ + 1)

+ 5(c50 + c14)d30 + 5(c41 + c05)d03

3
+ 2(d40 + d04),

α
(2)

4 = −3

2
μα

(1)

4 + (c50 − 5c14 + 15c32μ)α
(2)

3 − (c05 + 5c41 − 15c23μ)α
(1)

3

2(3μ + 1)(3μ − 1)

+ d22 + 5

2
(c23d03 + d30c32),
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where

d30 = 4a40 + b31

5
, d21 = 3a31 + 2b22

5
, d12 = 2a22 + 3b13

5
,

d03 = a13 + 4b04

5
, d40 = 5a50 + b41

6
,

d22 = 3a32 + 3b23

6
, d04 = a14 + 5b05

6
, c50 = b40, c41 = b31 − a40

5
,

c32 = b22 − a31

5
, c23 = b13 + a22

5
, c14 = b04 − a13

5
, c05 = −a04.

Remark In the family of system (3.1) there exist centers without analytic first integral. For
instance, (ẋ, ẏ)T = (y3,−x3)T + x2yhD0, has a center at the origin because the origin is
monodromic and the vector field is reversible with respect to the involution σ2(x, y) =
(x,−y). From Theorems 3.2 and 1.2 this system has not analytic first integral.

Now we apply these previous results to a particular family of polynomial vector fields.
More specifically, we consider the system given by

(
ẋ

ẏ

)
=

(
y3

−x3

)
+

(
a4x

4 + a3x
3y + a2x

2y2 + a1xy3 + a0y
4

b4x
4 + b3x

3y + b2x
2y2 + b1xy3 + b0y

4

)
. (3.3)

System (3.3) has μ = 0 and from Lemma 3.1 we know that system (3.3) has a mon-
odromic singular point at the origin, that is, the singular point is a focus or a center. There-
fore if system (3.3) is analytically integrable then it has a center at the origin. We recall
that not all the nilpotent and degenerate centers have an analytic first integral at the ori-
gin, for instance (ẋ, ẏ)T = (y + x2,−x3)T is monodromic and invariant to the change
(x, y, t) → (−x, y,−t), therefore, it has a center at the origin but it is easy to prove that
it is not analytically integrable, see [10]. Hence, the center problem for the system (3.3) is
still open.

For simplicity we divide the study of this family into two different cases which are studied
in Theorem 3.3 and Theorem 3.5, respectively.

Theorem 3.3 System (3.3) with (a1 + 4b0)(4a4 + b3) = 0 is analytically integrable in a
neighborhood of the origin if, and only if, one of the following conditions is verified

(a) a1 + 4b0 = 2a2 + 3b1 = 3a3 + 2b2 = 4a4 + b3 = 0. (Hamiltonian case).
(b) a0 = a2 = a3 = a4 = b1 = b2 = b3 = 0 and (a1 + 4b0) �= 0. (Reversible with respect to

the involution σ2(x, y) = (x,−y).)
(c) a0 = a2 = b1 = 3a3 + 2b2 = 4a4 + b3 = a4 + b4 = 2a1 − 4b0 + 5a3 = a4(2b0 − 5a3) +

3a2
3 = 0, and (a1 + 4b0)(b2 − a3) �= 0. (Reversible with respect to the involution

σ2(x, y) = (x,−y).)
(d) a1 = a2 = a3 = b0 = b1 = b2 = b4 = 0, and 4a4 + b3 �= 0. (Reversible with respect to

the involution σ1(x, y) = (−x, y).)
(e) a3 = b2 = b4 = 2a2 + 3b1 = a1 + 4b0 = a0 + b0 = 4a4 − 2b3 − 5b1 = b0(2a4 − 5b1) +

3b2
1 = 0, and (4a4 + b3)(b1 − a2) �= 0. (Reversible with respect to the involution

σ1(x, y) = (−x, y).)
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Proof Using the conservative-dissipative decomposition, see Lemma 2.1, system (3.3) can
be written into the form

(
ẋ

ẏ

)
=

(
y3

−x3

)
+ 1

5
Xc5x5+c4x4y+c3x3y2+c2x2y3+c1xy4+c0y5

+ 1

5

(
d3x

3 + d2x
2y + d1xy2 + d0y

3
)
D0, (3.4)

with

c0 = −a0, c1 = b0 − a1, c2 = b1 − a2, c3 = b2 − a3, c4 = b3 − a4,

c5 = b4, d0 = a1 + 4b0, d1 = 2a2 + 3b1, d2 = 3a3 + 2b2, d3 = 4a4 + b3.

To achieve the integrability conditions we transform system (3.4) into its normal form (3.2)
computing its invariant values of the normal form α

(i)

4l+j . From Theorem 1.2 the vanishing

of these invariant values α
(i)

4l+j is a necessary and sufficient condition to have analytic in-
tegrability. In practice we only compute some of them in order to obtain some necessary
conditions. The sufficiency will be given by the classical alternative methods, i.e., to detect
that the system is Hamiltonian or showing that it has an inverse integrating factor V (x, y)

with V (0,0) �= 0 or applying the box-flow theorem after desingularizing the singular point.
The first integrability obstructions are α

(1)

3 = d1, and α
(2)

3 = d2. Imposing the vanishing
of these conditions, we obtain the following invariant values:

α
(2)

4 =
∣
∣∣∣

d3 d0

−c2 c3

∣
∣∣∣ , α

(1)

4 =
∣
∣∣∣

d3 d0

−(c4 + 5c0) c1 + 5c5

∣
∣∣∣ .

The case (a1 + 4b0)(4a4 + b3) = 0 implies d0d3 = 0. Therefore we divide the study in 3
cases:

(i) If d0 = d3 = 0, we obtain the Hamiltonian case described in (a).
(ii) If d0 �= 0 and d3 = 0 then we have α

(2)

4 = d0c2, and α
(1)

4 = d0(c4 +5c0). The vanishing of
these coefficients is equivalent to c2 = 0 and c4 = −5c0. In this case, the next invariant
values are:

α
(1)

5 = c0(d0 + c1 + 10c5),

α
(2)

5 = 2c3(d0 + 6c1 + 5c5) + 125c2
0.

(ii.1) If c0 = 0 then α
(1)

5 = 0 and α
(2)

5 = 0 is equivalent to either c3 = 0 or d0 =
−6c1 − 5c5.
(ii.1.1) If c0 = c3 = 0 then d1 = d2 = d3 = c2 = c0 = c3 = c4 = 0, d0 �= 0. Sys-

tem (3.3) becomes
(

ẋ

ẏ

)
=

(
y3

−x3

)
+

(
d0−4c1

5 xy3

d0+c1
5 y4 + c5x

4

)
,

which is reversible under the involution σ2(x, y) = (x,−y). Applying
the singular change of variables x = u, y4 = v, and scaling the time by
dτ = y3dt , we get

u′ = 1 + d0 − 4c1

5
u,

v′ = −4u3 + 4
d0 + c1

5
v + 4c5u

4,
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which is analytically integrable using the box-flow theorem. This case
corresponds to (b).

(ii.1.2) If c3 �= 0 and d0 = −6c1 − 5c3 then α
(2)

6 = 6c2
3 − 25c1c5 is zero if c5 =

6c2
3/(25c1) otherwise if c1 = 0 implies c3 = 0 and this is a contradiction.

In this case, system (3.3) becomes

(
ẋ

ẏ

)
=

(
y3

−x3

)
+

⎛

⎝ − 2
25

25c2
1+3c2

3
c1

xy3 − 2
5c3x

3y

− 1
25

6c2
3+25c2

1
c1

y4 + 3
5c3x

2y2 + 6
25

c2
3

c1
x4

⎞

⎠ .

It is easy to see that this system has an inverse integrating factor given by

V A where A = 15(5c2
1+c2

3)

6c2
3+25c2

1
and V = 1 + 2

625
25c2

1+6c2
3

c2
1

(−25c1x + 5c3c1y
2 +

3c2
3x

2). This case corresponds to (c).
(ii.2) If d0 = −c1 − 10c5 �= 0 and c0 �= 0, we have α

(2)

5 = d0(2c3(c5 − c1) − 25c2
0).

Taking into account that c3 �= 0 we get that α
(2)

5 is null if, and only if, c5 = c1 +
(25c2

0)/(2c3). The next invariant value is α
(3)

6 = c0d0(3c1c3 + 50c2
0). Therefore

c1 = −50c2
0/(3c3) and, in this case, α

(1)

6 and α
(2)

6 do not vanish simultaneously.
(iii) If d0 = 0 and d3 �= 0 doing the change x → y, y → x, dt → −dt , di → −d3−i for

i = 0,1,2,3 and ci → c5−i for i = 0,1,2,3,4,5, this case is transformed into (ii.1.1)
or (ii.1.2). These two cases correspond to the cases (d) and (e), respectively. �

Remark Notice that system (3.3) is invariant with respect to the change (x, y, t, ai, bi) ↔
(−x, y,−t,−b4−i ,−a4−i ), i = 0, . . . ,4. Therefore, any integrability condition of system
(3.3) is invariant by the change of parameters:

(ai, bi) → (−b4−i ,−a4−i ) i = 0, . . . ,4. (3.5)

It is easy to see that the condition (a) of Theorem 3.3 is invariant by the change (3.5).
Moreover, the conditions (d) and (e) are symmetric with respect to the conditions (b) and (c)
by the change (3.5), respectively.

The following result simplifies system (3.3), for the case (a1 + 4b0)(4a4 + b3) �= 0.

Lemma 3.4 System (3.3) with (a1 + 4b0)(4a4 + b3) �= 0 is equivalent to

(
ẋ

ẏ

)
=

(
y3

−Sx3

)
+ 1

5
Xc5x5+c4x4y+c3x3y2+c2x2y3+c1xy4+c0y5

+ 1

5

(
x3 + d2x

2y + d1xy2 + y3
)
D0, (3.6)

where c0 = − a0(4a4+b3)1/3

(a1+4b0)4/3 , c1 = b0−a1
a1+4b0

, c2 = b1−a2
(a1+4b0)2/3(4a4+b3)1/3 , c3 = b2−a3

(a1+4b0)1/3(4a4+b3)2/3 ,

c4 = b3−a4
4a4+b3

, c5 = b4(a1+4b0)1/3

(4a4+b3)4/3 , d1 = 2a2+3b1
(4a4+b3)1/3(a1+4b0)2/3 , d2 = 3a3+2b2

(4a4+b3)2/3(a1+4b0)1/3 and

S = (a1+4b0)4/3

(4a4+b3)4/3 .

Proof The upscaling in the state variables and time x → 1
a1+4b0

x, y → (4a4+b3)1/3

(a1+4b0)4/3 y, dt =
(a1+4b0)3

4a4+b3
dτ transforms system (3.3) into the conservative-dissipative system (3.6). �
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Theorem 3.5 System (3.6) is analytically integrable in a neighborhood of the origin if, and
only if, one of the following conditions is verified

(a) d1 = d2 = 0, c3 = −Sc2, c5 = − 1
5 S(5c0S + c1 + c4), c1 = − 5S2c0+2c2

5S
,

c4 = (5S3−1)c2+10S2c0
10S

.
(b) d1 = d2 = 0, c3 = −c2, c4 = −c1, c5 = −c0, c1 = 10c0 − 2c2 − 1, S = 1, 9c2

2 − 225c2
0 −

30c0c2 + 5c2 + 25c0 = 0, c2(8c2 + 5 − 55c0) �= 0.
(c) d1 = d2 = c2 = c3 = c4 = c5 = 0, c1 = −1, c0 = 1

5S
.

(d) d1 = d2 = c2 = c3 = c0 = c1 = 0, c4 = 1, c5 = − S
5 .

(e) d1 = d2 = c2 = c3 = c0 = c5 = 0, c4 = 1, c1 = −1.
(f) d1 = d2 = c2 = c3 = 0, c5 = − S

9 , c4 = − 1
9 , c1 = 1

9 , c0 = 1
9S

.

Proof The first integrability obstructions are α
(1)

3 = d1, and α
(2)

3 = d2. Imposing the van-
ishing of these conditions we obtain the following invariant values α

(2)

4 = c3 + Sc2, α
(1)

4 =
5c5 + S(5c0S + c1 + c4). The vanishing of these coefficients is equivalent to

c3 = −Sc2,

c5 = −1

5
S(5c0S + c1 + c4).

In this case the next invariant values are α
(1)

5 and α
(2)

5 , where

α
(1)

5 = 5S(c1 + Sc0)(10Sc0 + 2c4 + c1 − 1) + 2(5Sc0 − 1 + 6c4)c2 − 4S2c2
2,

α
(2)

5 = [
c4 + 10S(c0 − Sc2) − 1

]
c1

+ (5Sc0 − 4c4)(c4 − 1 + 10Sc0) + 2S2(c4 + 5Sc0 − 1)c2 − 4Sc2
2.

We define C4 := c4 + 10S(c0 − Sc2) − 1. Now we divide the study in two cases (i) C4 �= 0
and (ii) C4 = 0.

(i) For C4 �= 0, we get α
(2)

5 = 0 taking

c1 = 4S(1 + 95S3)c2
2 + 2S2(39C4 + 20 − 220Sc0)c2 + C4(4C4 + 4 − 45Sc0)

C4
,

and

α
(1)

5 = [
40S3c2

2

(
10S + (

1 + 95S3
)
c2

) + 10S2c2

(
136S2c2 + 9

)
C4 + (

5 + 158S2c2

)
C2

4

+ 6C3
4 − 55S

(
C4 + 10S2c2

)(
C4 + 8S2c2

)
c0

]

× [
10S(C4 + 1) + (

95S3 + 1
)
c2 − 110S2c0

]
.

For vanishing α
(1)

5 we distinguish two cases (i.1) 10S(C4 + 1) + (95S3 + 1)c2 −
110S2c0 = 0 and (i.2) 10S(C4 + 1) + (95S3 + 1)c2 − 110S2c0 �= 0.

(i.1) If 10S(C4 +1)+(95S3 +1)c2 −110S2c0 = 0, then C4 = − (95S3+1)c2+10S(1−11Sc0)

10S
�=

0. In this case we obtain

ẋ = y3 + 2S

5
c2x

3y − (5S3 − 1)c2 + 10S(Sc0 − 1)

50S
x4 − 3c2

5
x2y2

+ 20S2c0 + 5S + 8c2

25S
xy3 − c0y

4,

ẏ = −Sx3 + 2(5S3 − 1)c2 + 5S(1 + 4Sc0)

25S
x3y − (S3 − 1)c2 + 10S2c0

10
x4

− 3Sc2

5
x2y2 + 2c2

5
xy3 − 5S(Sc0 − 1) + 2c2

25S
y4.
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This system has an inverse integrating factor given by V A where V = 1 + 1
A
x −

1
AS

y and A = 25S
5S(4Sc0+1)−2c2

. If c2 = 5S(4Sc0+1)

2 , this system has an inverse integrat-

ing factor given by exp(x − 1
S
y). This case corresponds to (a) with the additional

condition (95S3 + 1)c2 + 10S(1 − 11Sc0) �= 0.
(i.2) If 10S(C4 + 1) + (95S3 + 1)c2 − 110S2c0 �= 0, then we divide the study in three

cases: (i.2.1) C4 + 8S2c2 = 0, (i.2.2) C4 + 10S2c2 = 0, c2 �= 0 and (i.2.3) (C4 +
10S2c2)(C4 + 8S2c2) �= 0.
(i.2.1) If C4 = −8S2c2, then c2 �= 0 and (15S3 + 1)c2 − 10S(11Sc0 − 1) �= 0,

otherwise C4 = 0 and 10S(C4 + 1)+ (95S3 + 1)c2 − 110S2c0 = 0, respec-
tively. We obtain

α
(1)

5 = (S − 1)c2

(
S2 + S + 1

)[(
15S3 + 1

)
c2 − 10S(11Sc0 − 1)

]
,

and S = 1 is the only possibility to vanish this constant. In this case we
obtain α

(2)

6 = 0 and

α
(1)

6 = α
(3)

6 =
�=0

︷ ︸︸ ︷
(8c2 + 5 − 55c0)

(
9c2

2 + 5c2 − 30c0c2 − 225c2
0 + 25c0

)
.

Taking 9c2
2 + 5c2 − 30c0c2 − 225c2

0 + 25c0 = 0, we obtain

ẋ = y3 − 3

5
c2x

2y2 + 5 + 8(c2 − 5c0)

5
xy3 + 2

5
c2x

3y − c0y
4

− 2
c2 − 5c0

5
x4,

ẏ = −x3 − 3

5
c2x

2y2 + 2

5
c2xy3 + 5 + 8(c2 − 5c0)

5
x3y

− 2
c2 − 5c0

5
y4 − c0x

4.

This system has an inverse integrating factor given by V β where

V = 1 − 1

β

[
y − x + c2 − 5c0

10

(
x2 + y2

) + 2
7c2 − 50c0 + 5

10
xy

]
,

and β = 1
c2−7c0+1 . Moreover if c2 = 7c0 − 1, this system has an inverse

integrating factor given by V = exp(x − y + 1
10 (1 − 2c0)(x

2 + y2) +
1
5 (c0 + 2)xy). This case corresponds to (b).

(i.2.2) If C4 = −10S2c2 then c2 �= 0 and (5S3 −1)c2 +10S(11Sc0 −1) �= 0, other-
wise C4 = 0 and 10S(C4 + 1)+ (95S3 + 1)c2 − 110S2c0 = 0, respectively.
We obtain

α
(1)

5 = c2

[(
5S3 − 1

)
c2 + 10S(11Sc0 − 1)

] �= 0.

(i.2.3) If [10S(C4 +1)+(95S3 +1)c2 −110S2c0](C4 +10S2c2)(C4 +8S2c2) �= 0,
then we get α

(1)

5 = 0 taking

c0 = 40S3c2
2(10S + (1 + 95S3)c2) + 10S2c2(136S2c2 + 9)C4 + (5 + 158S2c2)C

2
4 + 6C3

4

55S(C4 + 10S2c2)(C4 + 8S2c2)
.
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Therefore,

α
(1)

6 = p(C4, c2, S)q1(C4, c2, S),

α
(2)

6 = p(C4, c2, S)q2(C4, c2, S),

α
(3)

6 = c2p(C4, c2, S)q3(C4, c2, S),

where p(C4, c2, S) = 2SC2
4 + (41S3 −1)c2C4+6S2(35S3 −3)c2

2 = [C4 +
41S3−1

4S
c2]2 − S6+62S3+1

16S2 c2
2, and qi(C4, c2, S), i = 1,2,3, are polynomi-

als in the variables C4, c2 and S. To vanish α
(3)

6 we distinguish three
cases (i.2.3.1) c2 = 0, (i.2.3.2) p(C4, c2, S) = 0, c2 �= 0 and (i.2.3.3)
c2p(C4, c2, S) �= 0.
(i.2.3.1) If c2 = 0, then we obtain α

(3)

6 = 0 and

α
(1)

6 = C4(C4 − 1)(9C4 + 2),

α
(2)

6 = C4(C4 − 1)(6C4 + 5).

Then, C4 = 1 is the only possibility to cancel both constants. In
this case, we obtain the system

ẋ = y3 + 1

5
x4 + xy3 − 1

5S
y4,

ẏ = −Sx3 + 1

5
x3y.

This system has an inverse integrating factor given by V =
(1 − y

5S
)4(1 + x − y

5S
). This case corresponds to (c).

(i.2.3.2) Case p(C4, c2, S) = 0, (C4 + 10S2c2)(C4 + 8S2c2)c2 �= 0. In this
case, we obtain 10S(C4 + 1) + (95S3 + 1)c2 − 110S2c0 = 0, that
is contradictory.

(i.2.3.3) Case c2(C4 + 10S2c2)(C4 + 8S2c2)p(C4, c2, S) �= 0. In this case,
the resultant of polynomials q1(C4, c2, S) and q3(C4, c2, S) with
respect the variable C4 gives

R := (
998001S2c4

2 − 120925c2
2S + 2500

)(
7644c2

2S − 125
)
,

and no solution of R = 0 vanishes the remaining conditions.
(ii) If C4 = 0, then c4 = −10S(c0 − Sc2) + 1 and

α
(1)

5 = 5S(c1 + 1 − 10Sc0)(c1 + Sc0) + 10
(
1 + 10S3c1 + S

(
10S3 − 11

)
c0

)
c2

+ 116S2c2
2,

α
(2)

5 = c2
[
c2

(
95S3 + 1

) − 10S(11Sc0 − 1)
]
.

To vanish α
(2)

5 we distinguish two cases (ii.1) c2(95S3 + 1) − 10S(11Sc0 − 1) = 0 and
(ii.2) c2 = 0, 11Sc0 − 1 �= 0.
(ii.1) If c2(95S3 + 1) − 10S(11Sc0 − 1) = 0, we get c0 = 1

110S2 (95S3c2 + c2 + 10S). In
this case, we obtain

α
(1)

5 = (
22Sc1 + 9c2 + 2S + 19S3c2

)(
55Sc1 − 27c2 + 5S + 625S3c2

)
,
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we divide the study in two cases:

(ii.1.1) If c1 = − (19S3+9)c2+2S

22S
, then we have

ẋ = y3 + 10S − c2(15S3 − 1)

55S
x4 − 3

5
c2x

2y2 − 2c2(19S3 + 9) + 15S

55S
xy3

+ 2S

5
c2x

3y − c2(95S3 + 1) + 10S

110S2
y4,

ẏ = −Sx3 − c2(53S3 − 5) + 5S

55
x4 − 3S

5
c2x

2y2 + 2

5
c2xy3

− 4c2(15S3 − 1) + 15S

55S
x3y − c2(19S3 + 9) − 20S

110S
y4.

It is easy to prove that this system, if 2c2(19S3 − 2) + 15S �= 0, has
an inverse integrating factor given by V A where A = 55S

2c2(19S3−2)+15S
and

V = 1 + 1
A
(x − 1

S
y). If c2 = − 15S

2(19S3−2)
then this system has an inverse

integrating factor given by exp(x − 1
S
y). This case corresponds to case

(a) with the additional condition (95S3 + 1)c2 + 10S(1 − 11Sc0) = 0.
(ii.1.2) Case c1 = − (625S3−27)c2+5S

55S
�= − (19S3+9)c2+2S

22S
, i.e., c2(35S3 − 3) �= 0 and

c1 = − (625S3−27)c2+5S

55S
. In this case α

(1)

6 , α
(2)

6 and α
(3)

6 do not vanish simul-
taneously.

(ii.2) If c2 = 0, 11Sc0 − 1 �= 0, then α
(1)

5 = (c1 + Sc0)(c1 + 1 − 10Sc0).
(ii.2.1) Case c1 = −Sc0. In this case, we get α

(1)

6 = 0, α
(2)

6 = c0(11Sc0 − 1) ×
(6Sc0 − 1), α

(3)

6 = c0(11Sc0 − 1)(9Sc0 − 1).
c0 = 0 is the only possibility to vanish both constants. In this case, we

have the system
(

ẋ

ẏ

)
=

(
y3

−Sx3

)
+

(
1
5xy3

− S
5 x4 + x3y + 1

5 y4

)
.

This system has an inverse integrating factor given by V = (1 + x
5 )4(1 +

x
5 − y

S
). This case corresponds to (d).

(ii.2.2) If c1 = 10Sc0 − 1, then we have α
(1)

6 = α
(3)

5 = c0(9Sc0 − 1)(11Sc0 − 1),
therefore we study two different cases.
(ii.2.2.1) In the case c0 = 0 system (3.6) becomes

(
ẋ

ẏ

)
=

(
y3

−Sx3

)
+

(
xy3

x3y

)
,

and this system has an integrating factor given by V =
(1 + x)(1 − 1

S
y). This case corresponds to (e).

(ii.2.2.2) In the case c0 = 1
9S

we have
(

ẋ

ẏ

)
=

(
y3

−Sx3

)
+

(
2
9x4 + 1

9 xy3 − 1
9S

y4

− S
9 x4 + 1

9 x3y + 2
9y4

)
,

which has an inverse integrating factor given by V A where
A = 9

2 and V = 1 + 2
9 (x − 1

S
y) + 1

81 (x + 1
S
y)2. This case cor-

responds to (f). �

Remark Notice that the conditions (a), (b), (e) and (f) of Theorem 3.5 are invariant by the
change (3.5) rewrite in terms of ci and di , and (d) is symmetric by the change (3.5) of (c).
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4 The Integrability of a Family of Systems (1.4)

We consider the following differential planar system
(

ẋ

ẏ

)
= F7 + F8 + F9 + · · · , where F7 =

(
y3 + 2ax3y

−x5 − 3ax2y2

)
∈ Q(2,3)

7 , (4.1)

F8 = (a50x
5 + a22x

2y2, b41x
4y + b13xy3)T ∈ Q(2,3)

8 , F9 = (a41x
4y + a13xy3, b60x

6 +
b32x

3y2 +b04y
4)T ∈ Q(2,3)

9 and the dots represent quasihomogeneous terms of degree higher
than nine.

In this case we choose the type t = (2,3), then D0 = (2x,3y)T and the quasi-
homogeneous principal part is of degree 7 given by

F7 = Xh =
(

y3 + 2ax3y

−x5 − 3ax2y2

)
,

where

h = 1

12
D0 ∧ F7 = − 1

12

[
2x6 + 3y4 + 12ax3y2

]

= −1

6

[
(
x3 + 3ay2

)2 + 3

2

(
1 − 6a2

)
y4

]
∈ Pt

12.

In [7] the following results are stated.

Lemma 4.1 The origin of system (4.1) is monodromic if and only if − 1√
6

< a < 1√
6
.

Theorem 4.2 System (4.1) with 6a2 − 1 �= 0, is formally equivalent to:

(
ẋ

ẏ

)
=

(
y3 + 2ax3y

−x5 − 3ax2y2

)
+ β9Xx4y2 +

∞∑

l=0

[(
α

(1)

12l+8x
4hl + α

(2)

12l+8xy2hl
)
D0

+ α12l+9x
3yhlD0 + α12l+10x

2y2hl(x)D0 + α12l+11x
4yhl(x)D0

+ (
α

(1)

12l+12h
l+1(x) + α

(2)

12l+12x
3y2hl(x)

)
D0

+ (
α

(1)

12l+14xhl+1(x) + α
(2)

12l+14x
4y2hl(x)

)
D0 + α12l+15yhl+1(x)D0

+ α12l+16x
2hl+1(x)D0 + α12l+17xyhl+1(x)D0

+ (
α

(1)

12l+18x
3hl+1(x) + α

(2)

12l+18y
2hl+1(x)

)
D0 + α12l+19x

2yhl+1(x)D0
]
, (4.2)

where α
(i)

12l+j are the invariant values of the normal form which are polynomials on the
parameters aij and bij and the first invariant values are

α
(1)

8 = 13d40, α
(2)

8 = 13d12,

α9 = −25ad03 − 2(3a − 1)c14 − 2c42 + 8d31 − 26((2a2 + 1)c23 − 4ac50)

6a2 − 1
d12

+ 52(2ac23 − c50)

6a2 − 1
d40,

β9 = −9ad03 − 2(5a − 1)c14 + 3

2
c42 + 9

2
d31 − 2d12c23 − 42ac70 + 3d40c50

− 7
((

8a2 + 3
)
c2

23 + (
9a2 + 5

)
c2

50 − 26c23ac50

)
/
(
6a2 − 1

)
,
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where

d40 = b41 + 5a50

13
, c50 = 2b41 − 3a50

13
, d12 = 3b13 + 2a22

13
, c23 = 2b13 − 3a22

13
,

d31 = 2b32 + 4a41

14
, c42 = 2b32 − 3a41

14
, d03 = 4b04 + a13

14
, c14 = 2b04 − 3a13

14
,

c70 = 2b60

14
.

Notice that the value β9 in (4.2) is univocally determined therefore it is an invariant of
system (4.1).

Now we apply the results given in this section to a concrete family of polynomial vector
fields. More specifically, we consider the system given by

(
ẋ

ẏ

)
=

(
y3 + 2ax3y

−x5 − 3ax2y2

)
+

(
a0x

5 + a1x
4y + a2x

3y2 + a3x
2y3 + a4xy4 + a5y

5

b1x
4y + b2x

3y2 + b3x
2y3 + b4xy4 + b5y

5

)
.

(4.3)

If − 1√
6

< a < 1√
6
, Lemma 4.1 proves that system (4.3) has a monodromic singular point at

the origin. Therefore if system (4.3) is analytic integrable then it has a center at the origin.

Theorem 4.3 System (4.3) is analytically integrable in a neighborhood of the origin if and
only if one of the following conditions is satisfied

(a) 5a0 + b1 = b2 + 2a1 = b3 + a2 = 2b4 + a3 = a4 + 5b5 = 0, (Hamiltonian case).
(b) 5a0 + b1 = b2 + 2a1 = b3 + a2 = a = a4 + 5b5 − 2a0a3 − 4a0b4 = a2 − 6a1a0 + 20a3

0 =
b5 − 4a3

0a1 − a0b4 + 16a5
0 = a5 + (a1 + 4a2

0)(b4 − a3 + 2(a1 + 4a2
0)(a1 + 10a2

0)) = 0
and 2b4 + a3 �= 0.

Proof To get the integrability conditions we transform system (4.3) into its normal form
(4.2) computing the invariant values of the normal form α

(i)

12l+j . From Theorem 1.3 the van-

ishing of these invariant values α
(i)

12l+j is a necessary and sufficient condition to have analytic
integrability. In practice we only compute some of them in order to obtain some necessary
conditions.

The first integrability obstructions are α
(1)

8 = 5a0 + b1, and α
(2)

8 = 0. Imposing the van-
ishing of these conditions, we obtain that the following invariant value is

α9 = b2 + 2a1.

In this case α10 = b3 +a2, and α11 = a(2b4 +a3). Therefore we divide the study in 2 cases:

(i) If 2b4 + a3 = 0, we obtain α
(1)

12 = 12(a4 + 5b5) and α
(2)

12 = 2a(a4 + 5b5). Therefore if
we impose a4 + 5b5 = 0, we obtain the Hamiltonian case described in (a).

(ii) If a = 0 and 2b4 + a3 �= 0 then we have α
(1)

12 = 12
5 (a4 + 5b5 − 2a0a3 − 4a0b4) and

α
(2)

12 = 0. In this case we obtain α
(2)

14 = −2(a2 − 6a1a0 + 20a3
0)(2b4 + a3), and α

(1)

14 = 0.
From the vanishing of these coefficients is deduced that α15 = 0 and α16 = 40

3 (b5 −
4a3

0a1 − a0b4 + 16a5
0)(a3 + 2b4). In this case, the next invariant values are

α17 = −24

5
(2b4 + a3)

(
a5 + (

a1 + 4a2
0

)(
b4 − a3 + 2

(
a1 + 4a2

0

)(
a1 + 10a2

0

)))
.
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Under such conditions system (4.3) becomes

ẋ = y3 + a0x
5 + a1x

4y + 2a0
(
3a1 − 10a2

0

)
x3y2 + a3x

2y3

− a0

(
b4 − 2a3 + 20a2

0a1 − 80a4
0

)
xy4

+ (
a1 − 4a2

0

)(
a3 − b4 + 16a4

0 + 4a2
0a1 − 2a2

1

)
y5,

ẏ = −x5 − 5a0x
4y − 2a1x

3y2 − 2a0

(
3a1 − 10a2

0

)
x2y3

+ b4xy4 + a0

(
b4 + 4a2

0a1 − 16a4
0

)
y5.

It is easy to see that this system has an inverse integrating factor given by V A where
A = 2b4+a3

a3+8a2
0a1−2a2

1
and V = 1 + (a3 + 8a2

0a1 − 2a2
1)(x

2 + 2a0xy + (a1 − 4a2
0)y

2) and if

a3 + 8a2
0a1 − 2a2

1 = 0 then this system has an inverse integrating factor given by eW

where W = 2(b4 − 4a2
0a1 + a2

1)(x
2 + 2a0xy + (a1 + 4a2

0)y
2). This case corresponds

to (b).

This completes the proof of the theorem. �

Remark 1 Family (4.3) was also studied in [14] where such type of degenerate systems were
called generalized nilpotent systems. However the results obtained there do not coincide with
the ones given in this work. This is because in [14] only were found the analytic integrable
systems that have a first integral of the form H(x,y) = y4 + f5(x)y5 + · · · , which is re-
strictive because the first integral can be of the form H(x,y) = y4 + f5(x, y) + · · · , where
fi(x, y) are homogeneous polynomials of degree i.
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