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Abstract The classical Kramer sampling theorem provides a method for obtaining orthog-
onal sampling formulas. Besides, it has been the cornerstone for a significant mathematical
literature on the topic of sampling theorems associated with differential and difference prob-
lems. In this work we provide, in an unified way, new and old generalizations of this result
corresponding to various different settings; all these generalizations are illustrated with ex-
amples. All the different situations along the paper share a basic approach: the functions to
be sampled are obtaining by duality in a separable Hilbert space H through an H-valued
kernel K defined on an appropriate domain.
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Lagrange-type interpolation series · Zero-removing property · Semi-inner products ·
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1 The Classical Kramer Sampling Theorem

The classical Kramer sampling theorem provides a method for obtaining orthogonal sam-
pling theorems [8, 13, 29, 35, 48]. The statement of this general result is as follows. Let K
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be a complex function defined on D × I , where I ⊂ R is an interval and D is an open subset
of R, such that for every t ∈ D the sections K( · , t) are in L2(I ). Assume that there exists a
sequence of distinct real numbers {tn} ⊂ D, indexed by a subset of Z, such that {K(x, tn)}
is a complete orthogonal sequence of functions for L2(I ). Then for any f of the form

f (t) =
∫

I

F (x)K(x, t) dx, t ∈ D, (1)

where F ∈ L2(I ), we have

f (t) =
∑

n

f (tn)Sn(t), t ∈ D, (2)

with

Sn(t) :=
∫

I
K(x, t)K(x, tn) dx∫

I
|K(x, tn)|2 dx

, t ∈ D.

The series in (2) converges absolutely and uniformly on subsets of D where the function
t �→ ‖K(·, t)‖L2(I ) is bounded.

Perhaps, the most important example of the Kramer sampling theorem is the well-known
Whittaker-Shannon-Kotel’nikov sampling result:

Example 1.1 For I = [−π,π ], D = R, K(x, t) = eitx/
√

2π and the sequence {tn = n}n∈Z,
we get the WSK sampling formula

f (t) =
∞∑

n=−∞
f (n)

sinπ(t − n)

π(t − n)
, t ∈R,

for functions f ∈ L2(R) whose Fourier transform f̂ has support in the interval [−π,π], i.e.,
f (t) = 1√

2π

∫ π

−π
f̂ (w) eitw dw, t ∈R. The series converges absolutely and uniformly on R.

In other words, WSK sampling theorem works for functions f in the classical Paley-
Wiener space PWπ of band-limited signals to [−π,π ]. See Refs. [9, 18, 27, 28, 32]. Recon-
structing integral transforms other than the Fourier one from some sampled values occurs
frequently in some physical applications. One such integral transform is the Bessel-Hankel
transform. Sampling associated with this transform was first introduced by Kramer in his
seminal paper [35]. The Fourier-Bessel set {√xJν(xtn)}∞

n=1 is known to be an orthogonal
basis for L2(0,1), where tn is the nth positive zero of the Bessel function Jν(t), ν > −1 (see
also [29, p. 83]). The Bessel function of order ν is given by

Jν(t) = tν

2νΓ (ν + 1)

[
1 +

∞∑
n=1

(−1)n

n!(1 + ν) · · · (n + ν)

(
t

2

)2n
]
.

Using special function formulas, for a fixed t > 0, we have

√
xt Jν(xt) =

∞∑
n=1

2
√

tnt Jν(t)

J ′
ν(tn)(t

2 − t2
n )

√
x Jν(xtn), in L2(0,1).

Thus, if we take I = [0,1], D = R, K(x, t) = √
xtJν(xt) and {tn}∞

n=1 the sequence of the
positive zeros of Jν(t) we obtain:
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Example 1.2 Any function f of the form f (t) = ∫ 1
0 F(x)

√
xt Jν(xt) dx, t ∈ R, where

F ∈ L2(0,1), can be recovered from its samples at the positive zeros {tn}∞
n=1 of the Bessel

function Jν of ν-th order with ν > −1, through the sampling formula

f (t) =
∞∑

n=1

f (tn)
2
√

tnt Jν(t)

J ′
ν(tn)(t

2 − t2
n )

, t ∈ R.

The Kramer sampling theorem (announced by Weiss in [47]) has been the cornerstone
for a significant mathematical literature on the topic of sampling theorems associated with
differential or difference problems which has flourished for the past few years. As a small
but significant sample of examples see, for instance, [6, 13, 20, 48] and references therein.
Here we do not consider this approach.

The main goal in this survey is to give a common framework gathering most of the sam-
pling formulas coming from the Kramer sampling result. The starting point in this paper
is an abstract version of the Kramer sampling theorem. To this end, we work in the repro-
ducing kernel Hilbert space (written shortly as RKHS) of functions introduced by Saitoh in
[40] as follows: Let (H, 〈·, ·〉H) be a separable Hilbert space with orthonormal basis {en}∞

n=1.
Suppose K is a H-valued function defined on Ω a subset of R (or C). For each x ∈ H, de-
fine fx(t) = 〈x,K(t)〉H and let HK denote the collection of all such functions fx . In this
setting, an abstract version of the Kramer theorem is obtained assuming the existence of two
sequences, {tn}∞

n=1 in C, and {an}∞
n=1 in C \ {0}, such that K(tn) = an en for each n ∈ N. This

is a slight modification of a sampling result derived by Higgins in [30]. The non-orthogonal
case is also included by considering a Riesz basis {xn}∞

n=1 instead of the orthonormal ba-
sis {en}∞

n=1. Depending on the nature of the Hilbert space H, an L2-space, an �2-space, a
Sobolev space, a Hilbert space of distributions, etc., we exhibit different settings where the
Kramer sampling theorem applies (Sects. 2 and 4). In Sect. 2 we include the analytic ver-
sion of Kramer sampling theorem giving a necessary and sufficient condition to ensure when
the sampling formula (2) can be expressed as a Lagrange-type interpolation series. We also
propose a generalization in Banach spaces by considering a semi-inner-product (Sect. 3).
Finally to say that this work can be seen as a complement to other surveys in the subject [7,
8]; Chaps. 4–8 of Zayed’s book [48] are in fact a remarkable survey on Kramer’s sampling
theorem.

2 The Abstract Kramer Sampling Theorem

Since the functions f for which Kramer sampling theorem applies (1) are images of an
integral transform with kernel K , the reproducing kernel Hilbert spaces considered by Saitoh
in [40] are the suitable spaces where a generalization of the classical Kramer sampling
theorem also works (see also [41, 45] and [48, Sect. 10.1]):

2.1 The RKHS Setting

Let H be a separable Hilbert space, and Ω a fixed subset of R. Given an H-valued function
K : Ω → H, for any x ∈ H the function fx(t) := 〈x,K(t)〉H, t ∈ Ω , is well-defined as a
function fx : Ω →C. We denote by HK the set of functions obtained in this way and by TK

the linear transform

TK : H � x �→ fx ∈ HK. (3)
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In other words, HK := TK(H). Hereafter we refer the function K as the kernel of the linear
transform TK and henceforth we omit the subscript x for denoting the elements in HK . Note
that the continuity of the kernel K implies that the functions in HK are continuous in Ω .
If we define in HK the norm ‖f ‖HK

= inf{‖x‖H : f = TK(x)} we obtain a Hilbert space.
Moreover, for each t ∈ Ω , the evaluation functional Et(f ) := f (t), f ∈ HK , is bounded,
and the space HK becomes an RKHS whose reproducing kernel is given by, cf. [40, p. 21],

k(t, s) = 〈
K(s),K(t)

〉
H, t, s ∈ Ω, (4)

i.e., for each s ∈ Ω the function ks defined as ks(t) := k(t, s) belongs to HK , and the repro-
ducing property

f (s) = 〈f, ks〉HK
= 〈

f, k(·, s)〉HK
, s ∈ Ω,f ∈ HK, (5)

holds.
In an RKHS space HK , the convergence in the norm ‖ · ‖HK

implies pointwise con-
vergence which is uniform on those subsets of Ω where the function t �→ ‖K(t)‖H is
bounded; it follows form (5) by using Cauchy-Schwarz inequality, and having in mind that
k(t, t) = ‖K(t)‖2, t ∈ Ω .

Recall that the Moore-Aronszajn procedure [3] leads to the same RKHS via the positive
definite (or positive matrix) function k in (4). Under these circumstances it is known that
the linear operator TK is one-to-one if and only if TK is an isometry between H and HK ,
or, equivalently, if and only if the set {K(t)}t∈Ω is complete in H [40]. The RKHS HK has
been largely studied in the mathematical literature (see Ref. [40] and references therein).

The first generalization consists of stating the Kramer condition in terms of Riesz bases.
Recall that a Riesz basis in a separable Hilbert space is the image of an orthonormal basis by
means of a bounded invertible operator. Any Riesz basis {xn}∞

n=1 has a unique biorthogonal
(dual) Riesz basis {yn}∞

n=1, i.e., 〈xn, ym〉H = δn,m, such that the expansions

x =
∞∑

n=1

〈x, yn〉H xn =
∞∑

n=1

〈x, xn〉H yn,

hold for every x ∈ H (see [11, 46] for more details and proofs).

Definition 1 (Abstract Kramer kernel) A kernel K : Ω −→ H is said to be an abstract
Kramer kernel with respect to the data {tn}∞

n=1 ∈ Ω and {an}∞
n=1 ∈ C \ {0} if it satisfies

K(tn) = an xn, n ∈N, for some Riesz basis {xn}∞
n=1 for H.

For each fixed t ∈ Ω , K(t) can be written as K(t) = ∑∞
n=1 Sn(t) xn, where the functions

Sn(t) := 〈
yn,K(t)

〉
H, t ∈ Ω,n ∈N, (6)

belong to HK ; here {yn}∞
n=1 denotes the dual Riesz basis of {xn}∞

n=1 in H. The Kramer
condition, K(tn) = an xn for every n ∈ N, is equivalent to the interpolatory condition
Sn(tm) = anδn,m, n,m ∈N.

The Kramer condition also implies that the linear transform (3) is a bijective isometry
(unitary operator) between the Hilbert spaces H and HK . As a consequence, we obtain the
following sampling theorem for functions in HK :
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Theorem 1 (Abstract Kramer sampling theorem) Assume that K is an abstract Kramer
kernel for the data {tn}∞

n=1 ∈ Ω , {an}∞
n=1 ∈ C \ {0} and the Riesz basis {xn}∞

n=1 for H. Then,
the sequence of functions {Sn}∞

n=1 given in (6) forms a Riesz basis for the HK . Expanding
any f ∈ HK in this Riesz basis we obtain the nonorthogonal sampling expansion

f (t) =
∞∑

n=1

f (tn)
Sn(t)

an

, t ∈ Ω. (7)

The series converges in the HK -norm sense and also, absolutely and uniformly on subsets
of Ω where the function t �→ ‖K(t)‖H is bounded.

Proof By (6) we have that TK(ym) = Sm for each m ∈ N; since TK is a bijective isometry
we obtain that the sequence {Sm}∞

m=1 is a Riesz basis for HK whose biorthogonal basis
{Tm}∞

m=1 is given by Tm := TK(xm), m ∈ N. Expanding any f ∈ HK in this Riesz basis,
we have f = ∑∞

n=1〈f,Tn〉HK
Sn, in the HK -norm sense and, consequently, pointwise in Ω .

Moreover, having in mind that TK is an isometry, and that K(tn) = an xn, n ∈N, we obtain

〈f,Tn〉H = 〈
TK(x),TK(xn)

〉
HK

= 〈x, xn〉H = 〈
x,K(tn)/an

〉
H = f (tn)/an, n ∈N,

and hence the sampling expansion (7). Since a Riesz basis is an unconditional basis (any
orthonormal basis is an unconditional basis by using the Parseval equality), the sampling
series (7) is pointwise unconditionally convergent for each t ∈ Ω and hence pointwise ab-
solutely convergent. The uniform convergence of the series in (7) is a standard result in
RKHS’s theory. �

In the particular case when {xn}∞
n=1 is an orthonormal basis for H, it is self-dual and we

have the following result:

Corollary 2 Whenever the sequence {xn}∞
n=1 in Definition 1 is an orthonormal basis for H,

the sequence {Sn}∞
n=1 is an orthonormal basis for HK and the sampling expansion (7) is an

orthonormal expansion in HK having the same pointwise convergence properties.

Example 2.1 For H := L2[0,π ] we consider the kernel Kc : R −→ L2[0,π] defined, for
each t ∈ R, by [Kc(t)](x) = cos tx, x ∈ [0,π ]. Since the sequence {cosnx}∞

n=0 is an orthog-
onal basis for L2[0,π ], the kernel Kc satisfies the Kramer condition for n ∈ N0 := N ∪ {0}.
Thus, any function f (t) = 〈F, cos tx〉L2[0,π ], t ∈ R, where F ∈ L2[0,π], can be expanded
as

f (t) = f (0)
sinπt

πt
+ 2

π

∞∑
n=0

f (n)
(−1)nt sinπt

t2 − n2
, t ∈R.

Analogously, consider the kernel Ks : R −→ L2[0,π] defined, for each t ∈ R, by
[Ks(t)](x) = sin tx, x ∈ [0,π ]. Then, for any function f (t) = 〈F, sin tx〉L2[0,π ], t ∈ R,
where F ∈ L2[0,π], the sampling expansion

f (t) = 2

π

∞∑
n=1

f (n)
(−1)nn sinπt

t2 − n2
, t ∈R,

holds. The series above converge absolutely and uniformly on R.
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2.1.1 Kramer Sampling Theorem and Indeterminate Moment Problems

Discrete Kramer kernels K can be obtained from indeterminate Hamburger moment prob-
lem (see Refs. [1, 42] for the details on this theory); here H := �2(N0). Let s = {sn}n∈N0 ⊂R

be an indeterminate Hamburger moment sequence, i.e., there exists a non-unique positive
Borel measure μ on R such that

sn =
∫ ∞

−∞
tndμ(t), n ∈ N0.

Let Vs be the set of positive Borel measures μ on R satisfying the moment problem. The
functional L defined on the vector space C[x] of polynomials p(t) = ∑n

k=0 pkt
k by

L(p) :=
n∑

k=0

pksk =
∫ ∞

−∞
p(t)dμ(t)

is independent of μ ∈ Vs . Let {Pn}∞
n=0 be the corresponding orthonormal polynomials satis-

fying ∫ ∞

−∞
Pn(t)Pm(t)dμ(t) = δnm, for each μ ∈ Vs.

We assume that Pn is of degree n with positive leading coefficient. Recall that the sequence
{Pn(t)}∞

n=0 satisfy a three-term recurrence relation

tPn(t) = anPn+1(t) + bnPn(t) + an−1Pn−1(t), n ≥ 0

where P−1(t) = 0 and P0(t) = 1. The two sequences {bn}∞
n=0 and {an}∞

n=0 of real and positive
numbers, respectively, form the semi-infinite Jacobi matrix associated with the indetermi-
nate Hamburger moment problem (see, for instance, [42]). Since we are dealing with an
indeterminate Hamburger moment problem it is known that

∑∞
n=0 |Pn(t)|2 < ∞ for each

t ∈ R; in fact, uniformly on compact subsets of C (see [1, 42]). Thus, we can consider the
kernel

R � t
K�−→ K(t) := {

Pn(t)
}∞

n=0
∈ �2(N0),

and its associated HK space. Moreover, there exist sequences {tm}∞
m=0 in R such that the se-

quence {{P0(tm),P1(tm),P2(tm), . . . ,Pn(tm), . . .}}∞
m=0 is an orthogonal basis for �2(N0) (see

[19]). More can be said about these sequences {tm}∞
m=0 by using the well-known Hamburger

moment problem theory. An N -extremal measure μ is a solution of the Hamburger moment
problem for which the polynomials {Pn} are dense in L2(μ) [42]; the N -extremal measures
μx can be parametrized with x ∈ R∪ {∞} and we have that (see [42, p. 126]):

A(z) + xC(z)

B(z) + xD(z)
=

∫ ∞

−∞

dμx(y)

z − y
, z ∈C \R,

where A(z), B(z), C(z) and D(z) are the components of the so-called Nevalinna matrix of
the Hamburger indeterminate moment problem (see [42, p. 124]). The sequence of zeros of
the entire function, B(z) + xD(z) if x ∈ R or the zeros of D(z) if x = ∞, are precisely the
sampling points {tm}∞

m=0 (see [42, p. 127]).
As a consequence, associated with any indeterminate Hamburger moment problem we

obtain a discrete Kramer kernel K . Next we show a concrete example:
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Example 2.2 We consider the particular case of the so-called q−1-Hermite polynomials (0 <

q < 1). These polynomials have the explicit representation (see [31])

hn(t |q) =
n∑

k=0

(q;q)n

(q;q)k(q;q)n−k

(−1)kqk(k−n)
(
t +

√
t2 + 1

)n−2k
,

where the q-shifted factorial notation is used

(c1, c2, . . . , cp;q)n =
n∏

k=1

p∏
j=1

(
1 − cjq

k−1
)
, for n = 0,1, . . . ,∞.

The moment problem associated with {hn(t |q)}∞
n=0 is indeterminate, and the norms of the

polynomials are given by ‖hn‖ =
√

(q;q)n

qn(n+1)/2 (see [31]). In this case the kernel Kq is given by

Kq : R −→ �2(N0)

t �−→ Kq(t) := {Pn(t)}∞
n=0,

where {Pn := hn/‖hn‖}∞
n=0 is the sequence of orthonormal polynomials. Consider, for ex-

ample, the points ±tm := ± 1
2 (q−m−1/2 − qm+1/2), m ∈ N0, which are the zeros of the corre-

sponding D function, given by (see [31])

D(t) = − (qe2ξ , qe−2ξ ;q2)∞
(q;q2)2∞

, where t = sinh ξ.

We obtain that

{{
P0(tm),P1(tm),P2(tm), . . .

}}
m∈N0

∪ {{
P0(−tm),P1(−tm),P2(−tm), . . .

}}
m∈N0

is an orthogonal basis for �2(N0). Following [4, 20], for each m ∈N0 we have

S±
m(t) := 〈{

Pn(±tm)
}

n∈N0
,Kq(t)

〉
�2(N0)

= D(t)

(t ∓ tm)D′(±tm)
, t ∈ R.

Thus, Theorem 1 reads: Any function f given by f (t) = 〈{cn}, {Pn(t)}〉�2(N0), t ∈R, where
{cn} ∈ �2(N0), can be expanded as

f (t) =
∞∑

m=0

f (−tm)
D(t)

(t + tm)D′(−tm)
+

∞∑
m=0

f (tm)
D(t)

(t − tm)D′(tm)
, t ∈ R.

The series converges absolutely and uniformly on compact subsets of R.

2.2 A Sampling Formula in a Shift-Invariant Space

In order to avoid most of the drawbacks associated with classical Shannon’s sampling the-
ory, sampling and reconstruction problems have been investigated in spline spaces, wavelet
spaces, or in general shift-invariant spaces (see [16] and references therein for more details
and results on sampling in shift-invariant spaces).

Let V 2
ϕ := span{ϕ(· − n)}n∈Z be a shift-invariant space with stable generator ϕ ∈ L2(R)

which means that the sequence {ϕ(·−n)}n∈Z is a Riesz basis for V 2
ϕ . Recall that the sequence
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{ϕ(· − n)}n∈Z is a Riesz sequence in L2(R), i.e., a Riesz basis for V 2
ϕ (see, for instance, [11,

p. 143]) if and only if there exist two positive constants 0 < A ≤ B such that

A ≤
∑
k∈Z

|ϕ̂(w + k)|2 ≤ B, a.e. w ∈ [0,1],

where ϕ̂ stands for the Fourier transform of ϕ (defined as ϕ̂(w) := ∫ ∞
−∞ ϕ(t) e−2π iwtdt in

L1(R) ∩ L2(R) ). Thus we have that

V 2
ϕ =

{∑
n∈Z

an ϕ(· − n) : {an} ∈ �2(Z)

}
⊂ L2(R).

We assume that the functions in the shift-invariant space V 2
ϕ are continuous on R. This is

equivalent to say that the generator ϕ is continuous on R and the function t �→ ∑
n∈Z |ϕ(t −

n)|2 is bounded on R. Thus, any f ∈ V 2
ϕ is defined on R as the pointwise sum f (t) =∑

n∈Z anϕ(t − n) for each t ∈R.
On the other hand, the space V 2

ϕ is the image of the Hilbert space L2[0,1] by means of
the isomorphism

Tϕ : L2[0,1] −→ V 2
ϕ

{e−2πinx}n∈Z �−→ {ϕ(t − n)}n∈Z,

which maps the orthonormal basis {e−2πinw}n∈Z for L2[0,1] onto the Riesz basis {ϕ(t −
n)}n∈Z for V 2

ϕ . For any F ∈ L2[0,1] we have

TϕF (t) =
∑
n∈Z

〈
F, e−2πinx

〉
ϕ(t − n) =

〈
F,

∑
n∈Z

ϕ(t − n)e−2πinx

〉
= 〈F,Kt 〉L2[0,1], t ∈R,

where, for each t ∈R, the function Kt ∈ L2[0,1] is given by

Kt(x) :=
∑
n∈Z

ϕ(t − n)e−2πinx =
∑
n∈Z

ϕ(t + n)e−2πinx = Zϕ(t, x). (8)

Here, Zϕ(t, x) := ∑
n∈Z ϕ(t +n)e−2πinx is just the Zak transform of the function ϕ (see [11]

for properties and uses of the Zak transform).
As a consequence, the shift-invariant space V 2

ϕ is an RKHS in L2(R), and any function
f = TϕF ∈ V 2

ϕ can be expressed as

f (t) = 〈F,Kt 〉L2[0,1], t ∈R.

Thus, for a ∈ [0,1) fixed and m ∈ Z we have

f (a + m) = 〈F,Ka+m〉L2[0,1] = 〈
F, e−2πimxKa

〉
L2[0,1], F = T −1

ϕ f.

In order to apply Theorem 1, we look for sampling points of the form tm := a + m, m ∈ Z,
such that the sequence {e−2πimxKa(x)}m∈Z is a Riesz basis for L2[0,1].

Recalling that the multiplication operator mF : L2[0,1] → L2[0,1] given as the product
mF (f ) = Ff is well-defined if and only if F ∈ L∞[0,1], and then, it is bounded with norm
‖mF ‖ = ‖F‖∞, the following result comes out:
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Lemma 3 The sequence of functions {e−2πimxKa(x)}m∈Z is a Riesz basis for L2[0,1] if and
only if the inequalities 0 < ‖Ka‖0 ≤ ‖Ka‖∞ < ∞ hold, where ‖Ka‖0 := ess infx∈[0,1] |Ka(x)|
and ‖Ka‖∞ := ess supx∈[0,1] |Ka(x)|. Moreover, its dual Riesz basis is {e−2πimx/Ka(x)}m∈Z.
In particular, the sequence {e−2πimxKa(x)}m∈Z is an orthonormal basis in L2[0,1] if and
only if |Ka(x)| = 1 a.e. in [0,1].

Let a be a real number in [0,1) such that 0 < ‖Ka‖0 ≤ ‖Ka‖∞ < ∞. For each n ∈ N we
have

Sn(t) := 〈
e−2πinx/Ka(x),Kt (x)

〉
L2[0,1] = Tϕ

(
e−2πinx/Ka(x)

)
(t) = Sa(t − n), t ∈R,

where Sa := Tϕ(1/Ka) ∈ V 2
ϕ , and we have used the shifting property Tϕ(e−2πinxF )(t) =

(TϕF )(t −n), t ∈R and n ∈ Z, which satisfies Tϕ . As a consequence, Theorem 1 reads: Any
function f ∈ V 2

ϕ can be expanded as the sampling series

f (t) =
∞∑

n=−∞
f (a + n)Sa(t − n), t ∈R. (9)

The convergence of the series in (9) is absolute and uniform on R since the function t �→
‖Kt‖2 = ∑

n∈Z |ϕ(t − n)|2 is bounded on R.
Important examples of shift-invariant spaces V 2

ϕ are those generated by B-splines:

Example 2.3 Consider ϕ := Nm where Nm is the B-spline of order m − 1, i.e., Nm :=
N1 ∗ N1 ∗ · · · ∗ N1 (m times) where N1 := χ[0,1] denotes the characteristic function of the
interval [0,1]. It is known that the sequence {Nm(t − n)}n∈Z is a Riesz basis for V 2

Nm
(see,

for instance, [11]). For example, the following sampling formulas hold:

(1) For any f ∈ V 2
N2

, it is obvious that f (t) = ∑∞
n=−∞ f (n)N2(t + 1 − n), t ∈ R.

(2) For the quadratic spline N3 we have ZN3(t, x) = t2

2 + [ 3
4 − (t − 1

2 )2]z + (1−t)2

2 z2 where
z = e−2πix . Thus, for t = 0 we have ZN3(0, x) = z

2 (1 + z) which vanishes at x = 1/2.
However, for t = 1/2 we have ZN3(1/2, x) = 1

8 (1 + 6z + z2); according to (8) we
deduce 0 < ‖K1/2‖0 ≤ ‖K1/2‖∞ < ∞. Hence, for any f ∈ V 2

N3
, we have

f (t) =
∞∑

n=−∞
f

(
n + 1

2

)
S1/2(t − n), t ∈R,

where S1/2(t) = √
2
∑∞

n=−∞(2
√

2 − 3)|n+1| N3(t − n). This function has been obtained
from the Laurent expansion of the function 8(1 + 6z + z2)−1 in the annulus 3 − 2

√
2 <

|z| < 3 + 2
√

2.
(3) Since ZN4(0, x) = z

6 (1 + 4z + z2) = z
6 (z − λ)(z − 1/λ) where z = e−2πix and λ =√

3 − 2, according to (8) we deduce that 0 < ‖K0‖0 ≤ ‖K0‖∞ < ∞. Thus, for any
f ∈ V 2

N4
we have

f (t) =
∞∑

n=−∞
f (n)S0(t − n), t ∈R,

where S0(t) = √
3
∑∞

n=−∞(−1)n(2 − √
3)|n| N4(t − n + 2). To obtain the function S0

we have used the Laurent expansion of the function 6(z + 4z2 + z3)−1 in the annulus
2 − √

3 < |z| < 2 + √
3.
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2.3 The Analytic Version

Suppose that Ω = C and let K be an analytic H-valued function defined on C where H
denotes a separable complex Hilbert space. Set fx(z) := 〈K(z), x〉H, z ∈ C, and denote by
HK the collection of all such functions fx , x ∈ H. We place K in the first argument of the
inner product in order to transfer the analyticity of K to the functions of HK . In fact, K is an
analytic H-valued function defined on C if and only if every fx ∈ HK is an entire function
[43, p. 266]. As in the previous case, the space HK is a reproducing kernel Hilbert space
with reproducing kernel k(z,w) = 〈K(z),K(w)〉H, z,w ∈ C. Notice that the mapping TK

given by

H � x
TK�−→ fx ∈ HK (10)

is an anti-linear mapping from H onto HK . Thus, the space HK is an RKHS of entire func-
tions. Another characterization of the analyticity of the functions in HK is given in terms
of Riesz bases by using Montel’s theorem. Indeed, suppose that a Riesz basis {xn}∞

n=1 for H
is given and let {yn}∞

n=1 be its dual Riesz basis; expanding K(z), for each fixed z ∈ C, with
respect to the basis {xn}∞

n=1 we obtain

K(z) =
∞∑

n=1

〈
K(z), yn

〉
H xn,

where the coefficients 〈K(z), yn〉H, as functions in z, are in HK . The following result holds
(see [21] for the proof):

Lemma 4 The space HK is an RKHS of entire functions if and only if for each n ∈ N the
function

Sn(z) := 〈
K(z), yn

〉
H, z ∈C, (11)

is entire, and the function z �→ ‖K(z)‖H is bounded on compact subsets of C.

Now, according to Definition 1 the analytic kernel K : C −→ H is said to be an ana-
lytic Kramer kernel with respect to the data {zn}∞

n=1 ∈ C and {an}∞
n=1 ∈ C \ {0} if it satisfies

K(zn) = an xn, n ∈N, for some Riesz basis {xn}∞
n=1 for H.

An analytic kernel K is an analytic Kramer one if and only if the sequence of functions
{Sn}∞

n=1 in HK given by (11), where {yn}∞
n=1 is the dual Riesz basis of {xn}∞

n=1 satisfies
the interpolation property Sn(zm) = anδn,m, m,n ∈ N. As a consequence, limn→∞ |zn| =
+∞; otherwise the sequence {zn}∞

n=1 contains a bounded subsequence and hence, the entire
function Sn ≡ 0 for all n ∈N which contradicts that Sn(zn) = an for each n ∈N.

Concerning the existence of analytic Kramer kernels, it has been proved in [22] that,
associated with any arbitrary sequence of complex numbers {zn}∞

n=1 such that limn→∞ |zn| =
+∞, there exists an analytic Kramer kernel K .

Under the notation introduced so far a slight modification of Theorem 1 holds:

Theorem 5 (Analytic Kramer sampling theorem) Let K : C −→ H be an analytic Kramer
kernel with respect to the data {zn}∞

n=1 ∈ C and {an}∞
n=1 ∈ C \ {0}. Let HK be the corre-

sponding RKHS of entire functions. Then any f ∈ HK can be recovered from its samples
{f (zn)}∞

n=1 by means of the sampling series

f (z) =
∞∑

n=1

f (zn)
Sn(z)

an

, z ∈C, (12)
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where the reconstruction functions Sn are given in (11). The series converges absolutely and
uniformly on compact subsets of C.

Proof The anti-linear mapping TK given by (10) is a bijective isometry between H and HK .
As a consequence, the functions {Sn = TK(yn)}∞

n=1 form a Riesz basis for HK ; let {Tn}∞
n=1 be

its dual Riesz basis. Expanding any f ∈ HK in this basis we obtain f = ∑∞
n=1〈f,Tn〉HK

Sn

in HK . Moreover,

〈f,Tn〉HK
= 〈x, xn〉H = 〈

K(zn)/an, x
〉
H = f (zn)/an, n ∈N.

Since a Riesz basis is an unconditional basis, the sampling series will be pointwise uncon-
ditionally convergent and hence, absolutely convergent. The uniform convergence is a stan-
dard result in the setting of the RKHS theory since the function z �→ ‖K(z)‖H is bounded
on compact subsets of C. �

Let {Pn(z)}∞
n=0 be a sequence of orthonormal polynomials associated with an indetermi-

nate Hamburger moment problem. It is known (see [1, 42]) that the series
∑∞

n=0 |Pn(z)|2 <

∞, uniformly on compact subsets of C. Thus, we can define a discrete analytic kernel K as

C � z
K�−→ K(z) := {

Pn(z)
}∞

n=0
∈ �2(N0).

Let HK be its corresponding RKHS of entire functions; any f ∈ HK has the form

f (z) = 〈{
Pn(z)

}
, {cn}

〉
�2(N0)

, z ∈C,

where {cn} ∈ �2(N0). For the sequences {tm}∞
m=0 introduced in Sect. 2.1.1, the kernel K also

becomes an analytic Kramer kernel. Next we exhibit an example taken from polynomials
associated with birth and death processes (see the classical Ref. [33]):

Example 2.4 Consider birth and death polynomials {Pn}n∈N0 with quartic rates [5]. These
polynomials satisfy the three–term recurrence relation

xPn(x) = anPn+1(x) + bnPn(x) + an−1Pn−1(x), n ≥ 0

P−1(x) = 0; P0(x) = 1,

where, for n ≥ 0, the coefficients are given by

an = √
λnμn+1 bn = λn + μn

λn = (4n + 1)(4n + 2)2(4n + 3) μn = (4n − 1)(4n)2(4n + 1)

By Favard’s theorem these polynomials are orthonormal polynomials with respect to a nor-
malized Hamburger moment sequence s which is indeterminate [5]. The entire function D

in Nevanlinna parametrization is given by

D(z) = 4

π

√
z sin

(
4
√

z

2
K0

)
sinh

(
4
√

z

2
K0

)
, z ∈C,

whose zeros are zm = (2πm/K0)
4, m ∈ N0, and K0 denotes the constant Γ 2(1/4)

4
√

π
[5]. For

each m ∈N0 we have [5, 20]:

Sm(z) := 〈
K(z),

{
Pn(zm)

}∞
n=0

〉
�2(N0)

= D(z)

(z − zm)D′(zm)
, z ∈ C.



98 A.G. García et al.

Hence, any entire function of the form f (z) = 〈K(z), {cn}〉�2(N0) = ∑∞
n=0 cn Pn(z), z ∈ C,

where {cn} ∈ �2(N0) can be expanded as

f (z) = f (0)
4
√

z sin(
4√z

2 K0) sinh(
4√z

2 K0)

zK2
0

+ 16π

K2
0

∞∑
m=1

f

[(
2πm

K0

)4]
(−1)mm

sinh(mπ)

√
z sin(

4√z

2 K0) sinh(
4√z

2 K0)

(z − ( 2πm
K0

)4)
, z ∈C.

The series converges absolutely and uniformly on compact subsets of C.
We have used that

D′(0) = K2
0

π
and D′

[(
2πm

K0

)4]
= K2

0

4mπ2
(−1)m sinh(mπ).

Example 2.5 Let H 1(−π,π) be the Sobolev Hilbert space with its usual inner product

〈f,g〉1 :=
∫ π

−π

f (x)g(x) dx +
∫ π

−π

f ′(x)g′(x) dx, f, g ∈ H 1(−π,π).

The system {einx}n∈Z ∪{sinhx} forms an orthogonal basis for H 1(−π,π): It is easy to prove
that the orthogonal complement of {einx}n∈Z in H 1(−π,π) is one-dimensional and sinhx

belongs to it. Given a ∈ C \Z we define a kernel Ka :C −→ H 1(−π,π) by setting

[
Ka(z)

]
(x) = (z − a) eizx + sinπz sinhx, x ∈ (−π,π).

Expanding Ka(z) ∈ H 1(−π,π) with respect to the above orthogonal basis we obtain

Ka(z) = [
1−i(z−a)

]
sinπz sinhx+(z−a)

∞∑
n=−∞

1 + zn

1 + n2
sinc(z−n)einx in H 1(−π,π),

where sinc z = sinπz/πz denotes the cardinal sine function. As a consequence, Theorem 5
reads: Any entire function f given by

f (z) =
∫ π

−π

F (x)
[
Ka(z)

]
(x) dx +

∫ π

−π

F ′(x)
[
Ka(z)

]′
(x) dx = 〈

Ka(z),F
〉
1
, z ∈C,

where F ∈ H 1(−π,π), can be recovered from its samples {f (n)}n∈Z ∪ {f (a)} by means of
the sampling formula

f (z) = [
1 − i(z − a)

] sinπz

sinπa
f (a) +

∞∑
n=−∞

f (n)
z − a

n − a

1 + zn

1 + n2
sinc(z − n), z ∈C.

The series converges absolutely and uniformly on compact subsets of C.

2.3.1 Analytic Kramer Kernels and Lagrange-Type Interpolation Series

A more difficult question concerns whether the sampling expansion (12) can be written, in
general, as a Lagrange-type interpolation series. Note that, for any f ∈ PWπ , the corre-
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sponding sampling formula can be written as:

f (z) =
∞∑

n=−∞
f (n)

sinπ(z − n)

π(z − n)
=

∞∑
n=−∞

f (n)
P (z)

P ′(n)(z − n)
, z ∈C,

where P (z) = sinπz is an entire function having simple zeros at Z. A complete answer to
this question involves the following algebraic property:

Definition 2 A space H of entire functions has the zero-removing property (ZR property
hereafter) if for any g ∈ H and any zero w of g the function g(z)/(z − w) belongs to H.

The classical Paley-Wiener space PWπ := {f ∈ L2(R) ∩ C(R), supp f̂ ⊆ [−π,π]},
where f̂ stands for the Fourier transform of f , satisfies the ZR property. It follows, for
instance, from its characterization by using the classical Paley-Wiener theorem [46, p.101],
i.e.,

PWπ = {
f entire function: |f (z)| ≤ Aeπ |z|, f |R ∈ L2(R)

}
.

Other examples where the ZR property holds can be found in [15]. There exists a necessary
and sufficient condition to ensure when the sampling formula (12) associated with an ana-
lytic Kramer kernel can be expressed as a Lagrange-type interpolation series (see Refs. [14,
15] for the proof):

Theorem 6 Let HK be an RKHS of entire functions obtained from an analytic Kramer
kernel K with respect to the sequence {zn}∞

n=1 ⊂ C. Then, the sampling formula (12) for HK

can be written as a Lagrange-type interpolation series

f (z) =
∞∑

n=−∞
f (zn)

P (z)

(z − zn)P ′(zn)
, z ∈C,

where P denotes an entire function having simple zeros at {zn} if and only if the space HK

satisfies the ZR property.

Example 2.6 (The Paley-Wiener-Levinson theorem revisited) Let {zn}n∈Z be a sequence
in C satisfying supn |Re zn − n| < 1/4 and supn |Im zn| < ∞. It is known that the system
{eiznw/

√
2π}n∈Z is a Riesz basis for L2[−π,π ] (see [46, p. 196]). The Fourier kernel C �

z �→ K(z) = eiz ·/
√

2π ∈ L2[−π,π ] is an analytic Kramer kernel for the data {zn}n∈Z and
an = 1. Thus, for any function f ∈ PWπ we have the sampling expansion

f (z) =
∞∑

n=−∞
f (zn)Sn(z) =

∞∑
n=−∞

f (zn)
P (z)

(z − zn)P ′(zn)
, z ∈C,

where, for each n ∈ Z, the sampling function Sn(z) = 〈K(z),hn〉L2[−π,π ], z ∈ C, being
{hn(w)}n∈Z the dual Riesz basis of {eiznw/

√
2π}n∈Z in L2[−π,π], and P is an entire func-

tion having only simple zeros at {zn}n∈Z. Since a result from Titchmarsh [44] assures that the
functions in PWπ are completely determined by their zeros, we derive that, up to a constant
factor, the entire function P (z) coincides with the (convergent) infinite product

(z − z0)

∞∏
n=1

(
1 − z

zn

)(
1 − z

z−n

)
, z ∈C.
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Example 2.7 The space HKa in Example 2.5 does not satisfy the ZR property. Indeed, the
function (z − a) sinc z belongs to HKa since (z − a) sinc z = 〈Ka(z),1/2π〉1 for all z ∈ C.
However, by using the sampling formula for HKa it is straightforward to check that the
function sinc z does not belong to HKa . As a consequence, the sampling formula in Example
2.5 cannot be expressed as a Lagrange-type interpolation series.

Example 2.8 Let K : C → H be an analytic kernel such that K(z0) = 0 for some z0 ∈ C.
Then all the functions in the associated space HK have a zero at z0 and the ZR property does
not hold in HK . Indeed, let f be a nonzero entire function in HK and let r denote the order
of its zero z0. The function f (z)/(z − z0)

r is not in HK since it does not vanish at z0.
The kernel Ks : C −→ L2[0,π ] defined, for each z ∈ C, by [Ks(z)](x) = sin zx, x ∈

[0,π] is an analytic Kramer kernel. Any function f (z) = 〈sin zx,F 〉L2[0,π ], z ∈ C, where
F ∈ L2[0,π], satisfies the sampling expansion

f (z) = 2

π

∞∑
n=1

f (n)
(−1)nn sinπz

z2 − n2
, z ∈C.

Since Ks(0) = 0, the ZR property does not hold and the above sampling formula cannot be
written as a Lagrange-type interpolation series.

3 The Semi-Inner-Product Version in Banach Spaces

A semi-inner-product in a Banach space possesses some but not all properties of an inner
product. Thus, some Hilbert space arguments and results become available in the presence
of a semi-inner-product in a Banach space. The needed preliminaries for this section are
taken from [23] and references therein.

3.1 Reproducing Kernel Banach Spaces

Following Ref. [49], a reproducing kernel Banach space on Ω ⊆ R (or C) is a reflexive
Banach space B of functions on Ω for which its dual space B∗ is isometric to a Banach
space B̃ of functions on Ω and the point evaluation is continuous on both B and B̃ for each
t ∈ Ω . It has been proved in [49] that there exists a reproducing kernel for an RKBS as
defined above. To this end, we introduce the bilinear form on B × B∗ by setting

(
u,v∗)

B := v∗(u), u ∈ B, v∗ ∈ B∗.

As B is a reflexive Banach space, then for any bounded linear functional T on B∗ there exists
a unique u ∈ B such that T (v∗) = (u, v∗)B for each v∗ ∈ B∗. The following result holds [49,
Theorem 2]:

Theorem 7 Suppose that B is an RKBS on Ω . Then there exists a unique function k : Ω ×
Ω −→ C such that the following statements hold:

(a) For every t ∈ Ω , k(·, t) ∈ B∗ and f (t) = (f, k(·, t))B for all f ∈ B.
(b) For every t ∈ Ω , k(t, ·) ∈ B and f ∗(t) = (k(t, ·), f ∗)B for all f ∗ ∈ B∗.
(c) The linear span of {k(t, ·) : t ∈ Ω} is dense in B.
(d) The linear span of {k(·, t) : t ∈ Ω} is dense in B∗.
(e) For all t, s ∈ Ω , k(t, s) = (k(t, ·), k(·, s))B .
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The function k in Theorem 7 is the reproducing kernel for the RKBS B. This repro-
ducing kernel is unique. However, as showed in [49], different RKBSs may have the same
reproducing kernel: For 1 < p < ∞, the Paley-Wiener classes

Bp := {
f ∈ C(R) | supp f̂ ⊂ [−1/2,1/2] and f̂ ∈ Lp[−1/2,1/2]}

with norm ‖f ‖Bp := ‖f̂ ‖Lp [−1/2,1/2] are RKBSs (not isomorphic), and they all have the

function k(t, s) = sinc(t − s) as the reproducing kernel (here f (t) = ∫ 1/2
−1/2 f̂ (w) e2π iwtdw ).

In other words, although we have at hand a reproducing kernel k, we cannot determine the
norm on B. Also, the reproducing kernel for a general RKBS may be an arbitrary function on
Ω × Ω which, in particular, might be non-symmetric or non-positive definite [49, Prop. 5].
In order for the reproducing kernel of an RKBS to have the desired properties of that of an
RKHS, we impose certain structures on RKBSs, which in some sense are substitutes of the
inner product for RKHSs. For this purpose, we adopt the semi-inner-product introduced by
Lumer [36] (see also [24, 49]):

3.2 Semi-Inner-Product Reproducing Kernel Banach Space

Let B be a Banach space. A semi-inner-product on B is a function

[·, ·] : B × B −→ C,

such that, for all x1, x2, x3 ∈ B and α ∈C:

1. [x1 + x2, x3] = [x1, x3] + [x2, x3],
2. [αx1, x2] = α[x1, x2] and [x1, αx2] = α [x1, x2],
3. [x1, x1] > 0 for all x1 �= 0,
4. |[x1, x2]|2 ≤ [x1, x1][x2, x2].

The difference between a semi-inner-product and an inner product is the conjugate sym-
metry and, as a consequence, a semi-inner-product may not be additive in the second vari-
able. Every normed vector space B has a semi-inner-product that induces its norm [24, 36],
i.e., ‖x‖B = [x, x]1/2 for each x ∈ B. In general, a semi-inner-product for a normed vector
space may not be unique; however, if the space B is uniformly Fréchet differentiable we
obtain the uniqueness of the semi-inner-product (see [49] for the details). Recall that the
space B is uniformly Fréchet differentiable if for all x, y ∈ B with x �= 0, the limit

lim(
t∈R
t→0

) ‖x + ty‖B − ‖x‖B

t

exists and it is uniform on S(B) × S(B) where S(B) := {x ∈ B : ‖x‖B = 1}.
Assuming also that the Banach space is uniformly convex we obtain a Riesz representa-

tion theorem [24]: For each f ∈ B∗ there exists a unique x ∈ B such that f = x∗. In other
words,

f (y) = [y, x]B for all y ∈ B.

Moreover, ‖f ‖B∗ = ‖x‖B . Recall that B is uniformly convex if for all ε > 0 there exists
δ > 0 such that ‖x + y‖B ≤ 2 − δ for all x, y ∈ S(B) with ‖x − y‖B ≥ ε. Notice that if B
is uniformly convex then it is reflexive (see [39, p. 410]) and strictly convex, i.e., for every
x, y ∈ B with x �= y and ‖x‖ = ‖y‖ = 1, we have that ‖x + y‖ < 2.
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For 1 < p < ∞, the classical Lp(I), where I denotes any interval on R, and �p(N) spaces
are uniformly convex and uniformly Fréchet differentiable Banach spaces. Their semi-inner-
product are given, respectively, by

[f,g]p := ‖g‖2−p
p

∫
I

f (t) g(t) |g(t)|p−2 dt and [x, y]p := ‖y‖2−p
p

∞∑
n=1

xn yn |yn|p−2.

We define a semi-inner-product reproducing kernel Banach space (hereafter s.i.p. RKBS)
on Ω as a uniformly convex and uniformly Fréchet differentiable reproducing kernel Banach
space on Ω .

An RKHS is an s.i.p. RKBS. Also, the dual of an s.i.p. RKBS remains an s.i.p. RKBS.
An s.i.p. RKBS B has a unique semi-inner-product which represents the interaction between
B and B∗. This leads to a more specific representation of the reproducing kernel. Precisely,
we have the following result [49, Th. 9]:

Theorem 8 Let B be an s.i.p. RKBS on Ω and k its reproducing kernel. Then there exists a
unique function G : Ω × Ω −→C such that {G(t, ·) : t ∈ Ω} ⊂ B and

f (t) = [
f,G(t, ·)]B for all f ∈ B, t ∈ Ω.

Moreover, there holds the relationship

k(·, t) = (
G(t, ·))∗

, t ∈ Ω

and

f ∗(t) = [
k(t, ·), f ]

B for all f ∈ B, t ∈ Ω.

We call the unique function G in theorem above the s.i.p. kernel of the s.i.p. RKBS B.
It coincides with the reproducing kernel k when B is an RKHS. In general, when G = k

in Theorem 8, we call G an s.i.p. reproducing kernel. Thus, an s.i.p. reproducing kernel G

satisfies that G(t, s) = [G(t, ·),G(s, ·)]B, t, s ∈ Ω .

3.3 The Analogous Kramer Sampling Result

Consider a separable complex uniform (i.e., both uniformly Fréchet differentiable and uni-
formly convex) Banach space B and denote by [·, ·]B the unique compatible semi-inner
product on B; let B∗ be its dual space. The counterpart to Riesz bases expansions in an s.i.p.
RKBS is given by Xd -Riesz and X∗

d -Riesz bases.
Let Xd be a BK-space on N, i.e., a Banach space of sequences c = {cn}n∈N ∈ C

N such
that the linear functionals c �→ cn are continuous on Xd for n ∈ N. It is known [34] that its
dual space X∗

d is also a BK-space such that the series
∑∞

n=1 cn dn converges for every c ∈ Xd

and d ∈ X∗
d . We suppose that if the series above converges for every c ∈ Xd , then d ∈ X∗

d and
if it converges for every d ∈ X∗

d , then c ∈ Xd . We also assume that Xd is reflexive, and that
the sequence of the canonical unit vectors {δn}∞

n=1 is a Schauder basis for both Xd and X∗
d .

An example of such BK-spaces is Xd = �p(N) for 1 < p < ∞; in this case, X∗
d = �q(N)

with 1/p + 1/q = 1.
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Let {x∗
n}∞

n=1 ⊂ B∗ be an X∗
d -Riesz basis for B∗. This means that

1. span{x∗
n : n ∈ N} = B∗.

2.
∑∞

n=1 cnx
∗
n converges in B∗ for all c ∈ X∗

d .
3. There exist 0 < A ≤ B < ∞ such that

A‖c‖X∗
d
≤

∥∥∥∥∥
∞∑

n=1

cnx
∗
n

∥∥∥∥∥
B∗

≤ B ‖c‖X∗
d

for all c ∈ X∗
d . (13)

By [50, Thm. 2.15], there exists a unique (dual) Xd -Riesz basis {yn}∞
n=1 for B such that

[ym, xn]B = δm,n for m,n ∈N, and satisfying the expansions:

x =
∞∑

n=1

[x, xn]B yn for all x ∈ B and x∗ =
∞∑

n=1

[yn, x]B x∗
n for all x∗ ∈ B∗. (14)

If the spaces Xd and X∗
d possess the additional property that for all c ∈ Xd and d ∈ X∗

d

the series
∑∞

n=1 cndn converges absolutely, then the expansions in (14) are unconditionally
convergent, i.e., independent of the summation order (see [50, p. 7]). In particular, it is true
for �p-Riesz bases due to Hölder inequality.

Next, we obtain an s.i.p. RKBS with explicit s.i.p. reproducing kernel where a sampling
theory holds: It is the Banach counterpart of the Kramer sampling theorem given in Sect. 2.
Consider a B-valued function K : Ω ⊂ C→ B and define, for each x ∈ B, the function

fx : Ω −→ C

t �−→ [x,K(t)]B.

Then, we have a linear transform TK on B with values in C
Ω such that TKx = fx . Indeed,

for x, y ∈ B and α,β ∈C, we have

fαx+βy(t) = [
αx + βy,K(z)

]
B = α

[
x,K(t)

]
B + β

[
y,K(t)

]
B = αfx(t) + βfy(t),

for all t ∈ Ω .
Having in mind (14), for each t ∈ Ω , we can write [K(t)]∗ = ∑∞

n=1[yn,K(t)]B x∗
n . We

denote Sn(t) := [yn,K(t)]B = fyn(t), t ∈ Ω . Suppose that there exists a sequence {tn}∞
n=1 in

Ω and {an}∞
n=1 in C \ {0} such that the interpolatory condition

Sn(tm) = an δn,m, (15)

holds. Then, we have that [K(tm)]∗ = am x∗
m and that TK is one-to-one. Indeed, if fx(t) = 0

for all t ∈ Ω ,

0 = fx(t) = [
x,K(t)

]
B =

[ ∞∑
n=1

[x, xn]B yn,K(t)

]

=
∞∑

n=1

[x, xn]B
[
yn,K(t)

]
B =

∞∑
n=1

[x, xn]B Sn(t),

where we have used that x �→ [x, y]B is a continuous functional for any fixed y ∈ B. Evalu-
ating at tm, we have that [x, xm]B = 0 for each m ∈ N. This implies that x = 0 and then TK

is one-to-one.
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Denote BK := TK(B), the range of the operator TK . If we define ‖fx‖BK
:= ‖x‖B we

obtain that BK is a Banach space of functions defined on Ω and valued on C. Moreover,
[fx, fy]BK

:= [x, y]B defines a compatible semi-inner-product on BK . The space BK be-
comes an s.i.p. RKBS whose s.i.p. reproducing kernel is given by

k(t, s) = [
K(t),K(s)

]
B, t, s ∈ Ω.

Indeed, for each t ∈ Ω , the evaluation functional Et : BK −→C is continuous:

|Et(fx)| = |fx(t)| =
∣∣[x,K(t)

]
B

∣∣ ≤ ‖x‖B‖K(t)‖B = ‖K(t)‖B‖fx‖BK
.

Observe that, by definition, kt := k(t, ·) = fK(t) ∈ BK for all t ∈ Ω . Hence we deduce that

fx(t) = [
x,K(t)

]
B = [fx, kt ]BK

= [
fx, k(t, ·)]BK

,

being k the s.i.p. reproducing kernel for BK . See [49, Th. 10] for more details.
Note also that convergence in the norm of BK implies pointwise convergence and uniform

convergence in subsets of Ω where the function t �→ ‖K(t)‖B is bounded.

Lemma 9 For every t ∈ Ω , the sequence {Sn(t)}∞
n=1 is an element of X∗

d .

Proof Consider c ∈ Xd and t ∈ Ω . We must prove that
∑∞

n=1 cnSn(t) is convergent. Indeed,
by using that for each z ∈ B the mapping x �→ [x, z]B is a continuous linear functional on
B, and {yn}∞

n=1 is an Xd -Riesz basis for B, we get
∣∣∣∣∣

∞∑
n=1

cnSn(t)

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=1

cn

[
yn,K(t)

]
B

∣∣∣∣∣ =
∣∣∣∣∣
[ ∞∑

n=1

cnyn,K(t)

]

B

∣∣∣∣∣

≤ ‖K(t)‖B

∥∥∥∥∥
∞∑

n=1

cnyn

∥∥∥∥∥
B

≤ B‖K(t)‖B‖c‖Xd
.

�

Theorem 10 (A Kramer-type sampling theorem for BK ) Suppose that, for each t ∈ Ω ,
we have the expansion [K(t)]∗ = ∑∞

n=1 Sn(t)x
∗
n , where {x∗

n}∞
n=1 ⊂ B∗ is an X∗

d -Riesz basis
for B∗ and Sn(t) = [yn,K(t)]B , being {yn}∞

n=1 the dual Xd -Riesz basis for B of {x∗
n}∞

n=1.
Assume also the existence of sequences {tm}∞

m=1 ⊂ C and {am}∞
m=1 ⊂ C \ {0} such that the

interpolatory condition (15) holds. Then, the sequence {Sn}∞
n=1 is an Xd -Riesz basis for BK

and, for each f ∈ BK , we have the sampling expansion

f (t) =
∞∑

n=1

f (tn)
Sn(t)

an

, t ∈ Ω.

The convergence of the above series is in the norm of BK , and uniform on subsets of Ω

where the function t �→ ‖K(t)‖B is bounded.

Proof First, we prove that the sequence {Sn}∞
n=1 is an Xd -Riesz basis for BK .

1. Consider t ∈ Ω and x ∈ B. Then

fx(t) = [
x,K(t)

]
B =

[ ∞∑
n=1

[x, xn]B yn,K(t)

]

B

=
∞∑

n=1

[x, xn]B Sn(t),

hence, span{Sn}∞
n=1 = BK .
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2. Let c be in Xd . As TK is an isometry and {yn}∞
n=1 is an Xd -Riesz basis for B,

∥∥∥∥∥
∞∑

n=1

cnSn

∥∥∥∥∥
BK

=
∥∥∥∥∥

∞∑
n=1

cnyn

∥∥∥∥∥
B

,

and thus the series
∑∞

n=1 cn Sn converges in BK for each c ∈ Xd .
3. As TK is an isometry, for every c ∈ Xd ,

A‖c‖Xd
≤

∥∥∥∥∥
∞∑

n=1

cn yn

∥∥∥∥∥
B

=
∥∥∥∥∥

∞∑
n=1

cn Sn

∥∥∥∥∥
BK

≤ B ‖c‖Xd
.

Now consider m ∈N; we have that

fx(tm) = [
x,K(tm)

]
B =

∞∑
n=1

[x, xn]B Sn(tm) = am[x, xm]B.

Thus,

fx(t) =
∞∑

n=1

[x, xn]B Sn(t) =
∞∑

n=1

fx(tn)

an

Sn(t),

in the norm of BK . The pointwise and uniform convergence comes from the fact that BK is
an s.i.p. RKBS. �

Example 3.1 Consider p ∈ (1,2] and its conjugate index q ∈ R, i.e., 1/p + 1/q = 1. We
consider the compatible semi-inner-product for B := Lp[−1/2,1/2] given by

[f,g]p := ‖g‖2−p
p

∫ 1/2

−1/2
f (x)g(x) |g(x)|p−2 dx.

Remember that B∗ = Lq [−1/2,1/2]. We take Xd := �q(Z), then, X∗
d = �p(Z).

Define en(w) := e2π inw for n ∈ Z. Easy computations show that ‖en‖p = 1. On the other
hand, by [49], we have that e∗

n(w) = e−2π inw and that ‖e∗
n‖q = ‖en‖p = 1. We know that (see

[46, p. 20]):

span
{
e−2π inw : n ∈ Z

} = Lq[−1/2,1/2].
We define the linear operator

U : Lp[−1/2,1/2] −→ C
Z

F �−→ {[F,en]p}n∈Z
.

The Hausdorff-Young theorem (see [51, p. 101]) ensures that U is a bounded operator with
values on �q(Z) (and thus a closed operator). We have that U(Lp[−1/2,1/2]) is a closed
subspace of �q(Z) and thus, a Banach space with the metric induced by �q(Z). Remember
that {δn}n∈Z where δn(m) = 0 if n �= m and δn(n) = 1, is a Schauder basis for �q(Z). Thus,
as δn = U(en), we obtain that U is a surjective mapping. By using [50, Prop. 2.12], the
sequence {e∗

n}n∈Z is an �p(Z)-Riesz basis for B∗ = Lq[−1/2,1/2].
Now, we define K(z) := e2π iz · ∈ Lp[−1/2,1/2] for every z ∈ C. Thus, we obtain the

following s.i.p. RKBS

BK := {
f (z) = [

F, e2π izw
]
p
, z ∈C, where F ∈ Lp[−1/2,1/2]},

endowed with the norm ‖f ‖BK
:= ‖F‖Lp [−1/2,1/2].
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Next, we compute Sn(z) := [en,K(z)]p . First, observe that, if we write z = x + iy,

‖K(z)‖p =
(∫ 1/2

−1/2
|e2π izw|pdw

)1/p

=
(∫ 1/2

−1/2
e−2πywpdw

)1/p

= sinc1/p(iyp).

Thus, we have that

Sn(z) = [
en,K(z)

]
p

= sinc(2−p)/p(iyp)

∫ 1/2

−1/2
e2π inwe−2π izwe−2πyw(p−2)dw

= sinc(2−p)/p(iyp)

∫ 1/2

−1/2
e−2π i[(z−n)−iy(p−2)]wdw

= sinc(2−p)/p(iyp) sinc
[
(z − n) − iy(p − 2)

]
, z ∈C,

for n ∈ Z. Moreover, Sn(m) = δm,n for every m,n ∈ Z.
Finally, Theorem 10 gives the following sampling formula for any f ∈ BK :

f (z) = sinc(2−p)/p(iyp)

∞∑
n=−∞

f (n) sinc
[
(z − n) − iy(p − 2)

]
, z = x + iy ∈C. (16)

The convergence of the series in (16) is uniform on horizontal strips of C. Observe that, if
p = 2 or z ∈R, formula (16) coincides with the cardinal series.

For further information on the recent topic of sampling in Banach spaces, see, for in-
stance, Refs. [2, 10, 25, 26, 38, 50].

4 The Distributional Version

Following Ref. [17], a Hilbert space H whose elements are distributions supported on the in-
terval I = [0,1] and for which the natural injection from H into E ′(R) (the space of compact
supported distributions) is continuous is called a Hilbert space of distributions on I . In gen-
eral, it is clear that a Hilbert space of distributions on I having the system {e2π inxχI (x)}n∈Z as
a complete orthogonal system is completely determined by the sequence of positive numbers
cn = ‖e2π inxχI (x)‖H, n ∈ Z. In [17], it is proved that if the sequence {c−1/2

n e2π inxχI (x)}n∈Z
is a complete orthonormal system for a Hilbert space H of distributions on I , then we have

∑
n∈Z

1

cn(1 + n2)
< ∞ (17)

and the inner product in H is given by

〈T ,S〉H =
∑
n∈Z

cnT̂ (n) Ŝ(n), T , S ∈ H,

where T̂ and Ŝ are, respectively, the distributional Fourier transforms of T and S. Further-
more, since 〈

T , c−1/2
n e2π inxχI (x)

〉
H = c1/2

n T̂ (n) for all T ∈ H, (18)
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any T ∈ H can be expanded as

T =
∑
n∈Z

T̂ (n) e2π inxχI (x), (19)

where the series converges both in the Hilbert space of distributions H, and in E ′(R) (see
[17] for the details).

Assume that {Tn := c
−1/2
n e2π inxχI (x)}n∈Z is a complete orthonormal system for a Hilbert

space H of distributions on I . Since the embedding of H into E ′(R) is continuous, for each
test function φ ∈ D(R) (the vector space of all complex-valued functions that are infinitely
smooth and zero outside some finite interval endowed with its usual topology) there exists
a constant Cφ ≥ 0 such that |T (φ)| ≤ Cφ‖T ‖H, for any T in H. In particular, if we choose
φt (x) = e−2π itx on a neighborhood of I then, for every t ∈R, there exists a constant Ct such
that |T̂ (t)| ≤ Ct‖T ‖H for any T in H, where T̂ denotes the distributional Fourier transform
of T . This implies that, for every t ∈ R, the linear functional T �−→ T̂ (t) is continuous in
H. As a consequence, there exists an element K(t) in H such that

T̂ (t) = 〈
T ,K(t)

〉
H, t ∈R.

Having in mind (18), for every n ∈ Z we have that K(n) = c
−1/2
n Tn. Besides, an easy calcu-

lation shows that

Sn(t) := 〈
Tn,K(t)

〉
H = T̂n(t) = c−1/2

n e−iπ(t−n) sinπ(t − n)

π(t − n)
, t ∈R.

Besides, the function t �→ ‖K(t)‖ = sup‖T ‖=1 |T̂ (t)| is bounded on compact subsets of R.
Indeed, by applying both sides of (19) on the test function e−2π itx it follows that

T̂ (t) =
∑
n∈Z

T̂ (n)
1 − e−2π it

2π i(t − n)
=

∑
n∈Z

c−1/2
n T̂ (n)

1 − e−2π it

c
−1/2
n 2π i(t − n)

, t ∈R.

The boundedness on compact subsets of R is deduced by using Cauchy-Schwarz inequality
and taking into account that ‖T ‖2 = ∑

n∈Z cn |T̂ (n)|2 and (17).
According to Theorem 1, the corresponding sampling theorem for the RKHS HK :=

F(H), where F denotes the distributional Fourier transform, reads as follows:

Example 4.1 Let H be a Hilbert space of distributions on I = [0,1] such that the sequence
{c−1/2

n e2π inxχI (x)}n∈Z is a complete orthonormal system. Then, any function g ∈ HK , i.e.,
g(t) = 〈T ,K(t)〉H, t ∈R, for some T ∈ H, can be recovered from its samples at Z by means
of the sampling formula

g(t) =
∑
n∈Z

c1/2
n g(n)Sn(t) =

∑
n∈Z

g(n)e−iπ(t−n) sinπ(t − n)

π(t − n)
, t ∈R.

The series converges in the HK -norm sense and also absolutely and uniformly on compact
subsets of R.

4.1 Hilbert Spaces of Distributions Having a Reproducing Distribution

A distributional version of Kramer sampling theorem can be stated in terms of Hilbert
spaces of distributions having a reproducing distribution. Let D := D(R) be the vector
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space of test functions, let H be a separable Hilbert space and let K : D → H be a con-
tinuous conjugate linear function. In particular, whenever H = L2(R) the conjugate map K

is just a generalized stochastic process in the sense of [12, 37]. For any x ∈ H the function
hx(φ) := 〈x,K(φ)〉H is well-defined as a function hx : D → C. Moreover, hx is a continu-
ous linear form because K is continuous and conjugate linear. Denote by HK ⊂ D′ the set
of distributions obtained in this way and by TK the linear transform

TK : H � x �−→ hx ∈ HK (20)

Note that TK : H −→ D′ is the transpose of the function K . If we endow HK with the norm
‖h‖HK

= inf{‖x‖H : h = TK(x)}, we obtain a reproducing distribution Hilbert space whose
reproducing distribution is given by, cf. [12, p. 40],

k(φ,ψ) = 〈
K(ψ),K(φ)

〉
H, φ ,ψ ∈ D, (21)

i.e., for each ψ ∈ D the function kψ defined as kψ(φ) := k(φ,ψ) belongs to HK , and the
reproducing property

h(ψ) = 〈h, kψ 〉HK
= 〈

h, k(·,ψ)
〉
HK

, ψ ∈ D, h ∈ HK (22)

holds. Note that the space HK is nothing but the completion of the range space TKK(D)

which is a pre-Hilbert space with the norm defined by ‖h‖ = ‖K(φ)‖H where φ ∈ D is such
that h = TKK(φ) (see [37]). As for a functional RKHS, the linear operator TK is one-to-one
if and only if the set {K(φ)}φ∈D is complete in H.
Note that, in particular, a continuous H-valued function K : R → H can be considered as a
continuous conjugate linear function K : D → H through the formula

K(φ) =
∫ ∞

−∞
φ(t)K(t)dt.

The (Bochner) integral in this formula has always a meaning because for every fixed φ ∈
D the integral is defined on a set of finite measure, the H-valued function φ K is weakly
Lebesgue measurable and then strongly Lebesgue measurable since H is separable, and∫ ∞

−∞ ‖φ(t)K(t)‖H dt < ∞. Thus, the distributional version is indeed a generalization of the
RKHS setting of Sect. 2.

The corresponding Kramer sampling theorem for distributions in HK reads as follows:

Theorem 11 Assume that there exist {φn}∞
n=1 ∈ D, {an}∞

n=1 ∈ C \ {0} such that K(φn) =
an xn for some Riesz basis {xn}∞

n=1 for H. Then, the sequence of distributions {Sn}∞
n=1 given

by

Sn(φ) := 〈
yn,K(φ)

〉
H, φ ∈ D, n ∈N,

where {yn}∞
n=1 is the dual base of {xn}∞

n=1, forms a Riesz basis for the space HK . Expanding
any h ∈ HK in this Riesz basis we obtain

h(φ) =
∞∑

n=1

h(φn)
Sn(φ)

an

, φ ∈ D. (23)

The series in (23) converges in the HK -norm sense and also, absolutely and uniformly on
subsets of D where φ �→ ‖K(φ)‖H is bounded.
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Proof It is similar to the proof of Theorem 1: From K(φn) = an xn we deduce that TK is a
bijective isometry and since TK(ym) = Sm, m ∈ N, we obtain that {Sm}∞

m=1 is a Riesz basis
for HK whose biorthonormal basis {Tm}∞

m=1 is given by Tm = TK(xm), m ∈ N. Expanding
any h ∈ HK in this Riesz basis, we have

h =
∞∑

n=1

〈h,Tn〉HK
Sn,

in the HK -norm sense and, consequently, pointwise in D since for any φ ∈ D the mapping
h �→ h(φ) is continuous on HK [12, p. 41]. Moreover, having in mind that TK is an isometry,
and that K(φn) = an xn we obtain

〈h,Tn〉H = 〈
TK(x),TK(xn)

〉
HK

= 〈x, xn〉H = 〈
x,K(φn)/an

〉
H = h(φn)/an, n ∈N,

and hence the sampling expansion (23). As in Theorem 1, the absolute convergence of the
series on each φ ∈ D follows from its unconditionally convergence and the uniform conver-
gence on subsets of D where φ �→ ‖K(φ)‖H is bounded follows by using Cauchy-Schwarz’s
inequality in the reproducing property (22). �

Example 4.2 Let {en}n∈Z be an orthonormal basis of a separable Hilbert space H and let
a non zero function φ0 ∈ D such that suppφ0 ⊂ I where I ⊂ R is an arbitrary interval of
length l(I ) ≤ 1. For every n ∈ Z, set φn(t) := φ0(t − n), t ∈ R, and consider the function
K : D → H defined by

K(ψ) =
∑
n∈Z

〈φn,ψ〉L2 en, ψ ∈ D.

Note that for every fixed ψ ∈ D there are only a finite set of non-zero addends in the above
summation, so that K(ψ) ∈ H and it is easily tested that K is an H-valued continuous
conjugate linear function. Moreover,

K(φm) =
∑
n∈Z

〈φn,φm〉L2 en = ‖φm‖2
L2 em = ‖φ0‖2

L2 em.

In order to apply Theorem 11 we compute Sm(ψ):

Sm(ψ) = 〈
em,K(ψ)

〉
H =

〈
em,

∑
n∈Z

〈φn,ψ〉L2 en

〉
H

= 〈ψ,φm〉L2 .

Therefore, for every h ∈ HK the sampling expansion (23) reads as

h(ψ) = 1

‖φ0‖2
L2

∑
n∈Z

h(φn) 〈ψ,φn〉L2 , ψ ∈ D,

where the series converges in the HK -norm sense and also, absolutely and uniformly on
subsets of D where ψ �→ ∑

n∈Z |〈φn,ψ〉L2 |2 is bounded.
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