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Abstract We consider a continuous time stochastic individual based model for a population
structured only by an inherited vector trait and with logistic interactions. We consider its
limit in a context from adaptive dynamics: the population is large, the mutations are rare and
the process is viewed in the timescale of mutations. Using averaging techniques due to Kurtz
(in Lecture Notes in Control and Inform. Sci., vol. 177, pp. 186–209, 1992), we give a new
proof of the convergence of the individual based model to the trait substitution sequence
of Metz et al. (in Trends in Ecology and Evolution 7(6), 198–202, 1992), first worked out
by Dieckman and Law (in Journal of Mathematical Biology 34(5–6), 579–612, 1996) and
rigorously proved by Champagnat (in Theoretical Population Biology 69, 297–321, 2006):
rigging the model such that “invasion implies substitution”, we obtain in the limit a process
that jumps from one population equilibrium to another when mutations occur and invade the
population.
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1 Introduction: The Logistic Birth and Death Model

We consider a stochastic individual based model (IBM) with trait structure and evolving as
a result of births and deaths, that was introduced by Dieckmann and Law [9] and Metz et
al. [23] and in rigorous detail by Champagnat [2]. We study its limit in an evolutionary time
scale when the population is large and the mutations are rare.

Champagnat [2] established the first rigorous proof of the convergence of a sequence of
such IBMs to the trait substitution sequence process (TSS) introduced by Metz et al. [22]
(with Metz et al. [23] as a follow up). Following Dieckmann and Law [9], the TSS can be
explained as follows. In the limit, the time scales of ecology and evolution are separated.
Mutations are rare and before a mutant arises, the resident population stabilizes around an
equilibrium. Under the “invasion implies substitution” Ansatz, there cannot be long term
coexistence of two different traits. Evolution thus proceeds as a succession of monomorphic
population equilibria. The fine structure of the transitions disappear on the time scale that is
considered and when a mutation occurs, invades, and fixates in the population by completely
replacing the resident trait, the TSS jumps from one state to another. Champagnat’s proof is
based on some fine estimates, including some fine large deviation results, to combine several
approximations of the microscopic process. We separate the different time scales that are
involved using averaging techniques due to Kurtz [17], and thus propose a new simplified
proof of Champagnat’s results that skips many technicalities linked with fine approximations
of the IBM. The aim of this paper is to exemplify the use of such averaging techniques in
adaptive dynamics, which we hope will pave the way for generalizations of the TSS.

We consider a structured population where each individual is characterized by a trait
x ∈ X, where X is a compact subset of Rd . We are interested in large populations. We assume
that the population’s initial size is proportional to a parameter K ∈ N

∗ = {1,2, . . . }, to be
interpreted as the area to which the population is confined. We will let K go to infinity while
keeping the density constant by counting the individuals with weight 1/K . The population
is assumed to be well mixed and its density is assumed to be limited by a fixed availability
of resources per unit area. The population at time t can be described by the following point
measure on X

XK(t) = 1

K

NK(t)∑

i=1

δxi
t
, (1.1)

where NK(t) is the total number of individuals in the population at time t and where xi
t ∈X

denotes the trait of individual i living at time t , the latter being numbered in lexicographical
order.

The population evolves by births and deaths. An individual with trait x ∈ X gives birth
to new individuals at rate b(x), where b(x) is a positive continuous function on X. With
probability uKp(x) ∈ [0,1], the daughter is a mutant with trait y, where y is drawn from the
mutation kernel m(x,dy) supported on X. Here uK ∈ [0,1] is a parameter depending on K

that scales the probability of mutation. With probability 1 − uKp(x) ∈ [0,1], the daughter
is a clone of her mother, and has the same trait x. In a population described by X ∈ MF (X),
the individual with trait x dies at rate d(x) + ∫

X
α(x, y)X(dy), where the natural death rate

d(x) and the competition kernel α(x, y) are positive continuous functions.
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Assumption 1.1 We assume that the functions b, d and α satisfy the following hypotheses:

(A) For all x ∈X, b(x) − d(x) > 0 and p(x) > 0.
(B) “Invasion implies substitution”: For all x and y in X, we either have:

(
b(y) − d(y)

)
α(x, x) − (

b(x) − d(x)
)
α(y, x) < 0 (1.2)

or

{
(b(y) − d(y))α(x, x) − (b(x) − d(x))α(y, x) > 0
(b(x) − d(x))α(y, y) − (b(y) − d(y))α(x, y) < 0.

(1.3)

(C) There exist α and α > 0 such that for every x, y ∈X:

0 < α ≤ α(x, y) ≤ α. (1.4)

Part (A) of Assumption 1.1 says that in the absence of competition, the population has a
positive natural growth rate. Also the probability of a birth resulting in a mutation is positive.
Part (B) corresponds to a condition known in adaptive dynamics as “invasion implies sub-
stitution”. It can be obtained from the analysis of the equilibria of the Lotka-Volterra system
that results from the ordinary large number limit of the logistic competition process without
mutation. The consequence of this condition is that when the mutant population manages to
reach a sufficiently large size, it wipes out the resident population. Of course the other pos-
sibility is that the mutant population becomes extinct quickly. Hence, the population should
be monomorphic away from the mutation events.

In this paper, we use the methods of Kurtz [18], based on martingale problems, for sepa-
rating time scales. We show that on one hand the populations stabilize around their equilibria
on the fast ecological scale, while on the other hand, rare mutations at the evolutionary time
scale may induce switches from one trait to another. Our proof differs from the one in [2] in
that we do not require comparisons with differential equations and large deviation results.
Instead we use comparisons with branching processes to exhibit the stabilization of the pop-
ulation around the equilibria determined by the resident trait. Some of our arguments are
similar in nature to those presented in [16] for a related model but with finite population
sizes.

In Sect. 2, we describe the IBM introduced in [2]. The model accounts only for a trait-
structure and otherwise has very simple dynamics. More general trait spaces (possibly func-
tional, as first introduced in [10, 24]) are considered in [14] where the “invasion implies sub-
stitution” assumption is also relaxed (see also [3, 13, 23]). There exist several other possible
generalisations of the IBMs that underlie the TSS, including for e.g. the physiological struc-
ture [11, 19], diploidy [7] or multi-resources [6]. We consider the process that counts the new
traits appearing due to mutations, and the occupation measure Γ K of the process XK under
a changed time scale. The tightness of this couple of processes is studied in Sect. 3. The lim-
iting values are shown to satisfy an equation that is considered in Sect. 4. This equation says
that when a favorable mutant appears, then the distribution describing the population jumps
to the equilibrium characterized by the new trait with a probability depending on the fitness
of the mutant trait compared to the resident trait. From the consideration of monomorphic
and dimorphic populations and constructing couplings with branching processes, we prove
the convergence in distribution of {Γ K} to the occupation measure Γ of a pure jump Markov
process that is called the TSS.

Notation Let E be a Polish space and let B(E) be its Borel sigma field. We denote
by MF (E) (resp. MP (E)) the set of nonnegative finite (resp. point) measures on E,
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endowed with the topology of weak convergence. If E is compact, this topology coin-
cides with the topology of vague convergence (see for e.g. [15]) and for any M > 0, the
set {μ ∈ MF (E) : μ(E) ≤ M} is compact. For a measure μ, we denote its support by
supp(μ). If f is a bounded measurable function on E and μ ∈ MF (E), we use the notation:
〈μ,f 〉 = ∫

E
f (x)μ(dx). With an abuse of notation, 〈μ,x〉 = ∫

E
xμ(dx). Convergence in

distribution of a sequence of random variables (or processes) is denoted by ‘⇒’. The min-
imum of any two numbers a, b ∈ R is given by a ∧ b. For any a ∈ R, its positive part is
denoted by [a]+ and 	a
 denotes the largest integer less than a. For any two N

∗-valued se-
quences {aK : K ∈ N

∗} and {bK : K ∈N
∗} we say that aK � bK if aK/bK → 0 as K → ∞.

Define a class of test functions on MF (X) by

F
2
b = {

Ff : Ff (μ) = F
(〈μ,f 〉), f ∈ Cb(X,R) and F ∈ C2

b (R,R) with compact support
}
.

Here Cb(X,R) is the set of all continuous and bounded real functions on X and C2
b (R,R)

is the set of bounded, twice continuously differentiable real-valued functions on R with
bounded first and second derivatives. This class F

2
b is separable and it is known (see for

example [8]) that it characterizes the convergence in distribution on MF (X).
The class of càdlàg processes from R+ to E is denoted by D(R+,E).
The value at time t of a process X is denoted by X(t) or sometimes Xt for notational

convenience.

2 IBM in the Evolutionary Time-Scale

The process XK is characterized by its generator LK , defined as follows. For any Ff ∈ F
2
b

let

LKFf (X) = K

∫

E

b(x)

[∫

X

(
Ff

(
X + 1

K
δy

)
− Ff (X)

)
MK(x,dy)

]
X(dx)

+ K

∫

E

(
d(x) + 〈

X,α(x, .)
〉)(

Ff

(
X − 1

K
δx

)
− Ff (X)

)
X(dx), (2.1)

where MK is the transition kernel given by

MK(x,dy) = uKp(x)m(x, dy) + (
1 − uKp(x)

)
δx(dy). (2.2)

Let K ∈ N
∗ be fixed. The martingale problem for LK has a unique solution for any initial

condition XK(0) ∈ MF (X) and it is possible to construct the solution of the martingale
problem by considering a stochastic differential equation (SDE) driven by Poisson point
processes which corresponds to the IBM used for simulations (see [4, 5]). The following
estimate will be needed in the sequel. It is proved in [2, Lemma 1]

Lemma 2.1 Suppose that supK∈N∗ E(〈XK(0),1〉2) < ∞, then

sup
K≥1, t≥0

E
(〈
XK(t),1

〉2)
< ∞.

In the sequel, we make some assumptions on the initial condition.

Assumption 2.2 Suppose that the sequence of MF (X)-valued random variables {XK(0) :
K ∈N

∗} satisfies the following conditions.
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(A) There exists a x0 ∈ X such that supp(XK(0)) = {x0} for all K ∈N
∗.

(B) supK∈N∗ E(〈XK(0),1〉2) < ∞.
(C) XK(0) ⇒ X(0) as K → ∞ and 〈X(0),1〉 > 0 a.s.

From (2.1), we can see that the dynamics has two time scales. The slower time scale is of
order KuK and it corresponds to the occurrence of new mutants while the faster time scale
is of order 1 and it corresponds to the birth-death dynamics. We consider rare mutations
and so we require that KuK → 0 as K → ∞. Moreover as in [2], we will assume that the
speed of arrival of new mutants is slow enough to give each mutant enough time to invade
the population if it can (time of order logK) and fast enough to ensure that a new mutant
arrives while the resident population is near its equilibrium (time of order ecK for some
c > 0). We will therefore make the following assumption.

Assumption 2.3 For any c > 0

logK � 1

KuK

� ecK.

Consider the process

ZK(t) = XK

(
t

KuK

)
, t ≥ 0. (2.3)

In what follows, we denote by {FK
t : t ≥ 0} the canonical filtration associated with ZK . Due

to the change in time, the generator L
K of ZK is the generator LK of XK multiplied by

(1/KuK). Hence for any Ff ∈ F
2
b

L
KFf (Z) =

∫

X

p(x)b(x)

[∫

X

(
Ff

(
Z + 1

K
δy

)
− Ff (Z)

)
m(x,dy)

]
Z(dx)

+ 1

KuK

[∫

X

b(x)
(
1 − uKp(x)

)
K

(
Ff

(
Z + 1

K
δx

)
− Ff (Z)

)
Z(dx)

+
∫

X

(
d(x) + 〈

Z,α(x, .)
〉)
K

(
Ff

(
Z − 1

K
δx

)
− Ff (Z)

)
Z(dx)

]
. (2.4)

In the process ZK we have compressed time so that the mutations occur at a rate of order 1.
When we work at this time scale we can expect that between subsequent mutations, the fast
birth-death dynamics will average (see for e.g. [18]). Our aim is to exploit this separation in
the time scales of ecology (which is related to the births and deaths of individuals) and of
evolution (which is linked to mutations).

To study the averaging phenomenon, for the fast birth-death dynamics, we use the martin-
gale techniques developed by Kurtz [18]. We introduce the occupation measure Γ K defined
for any t ≥ 0 and for any set A ∈ B(MF (X)) by

Γ K
([0, t] × A

) =
∫ t

0
1A

(
ZK(s)

)
ds. (2.5)

Kurtz’s techniques have been used in the context of measure-valued processes in [20, 21]
for different population dynamic problems, but an additional difficulty arises here due to the
presence of non-linearities at the fast time scale.
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We introduce a MP (X)-valued process {χK(t) : t ≥ 0} which keeps track of the traits that
have appeared in the population. That is, for each t ≥ 0, χK(t) is a counting measure on X

that weights the traits that have appeared in the population until time t . The process χK is a
pure-jump Markov process that satisfies the following martingale problem. For any Ff ∈ F

2
b

M
χ,K
t := Ff

(
χK(t)

) − Ff

(
χK(0)

)
(2.6)

−
∫ t

0

∫

X

p(x)b(x)

∫

X

(
Ff

(
χK(s) + δy

) − Ff

(
χK(s)

))
m(x,dy)ZK(s, dx)ds

= Ff

(
χK(t)

) − Ff

(
χK(0)

)

−
∫ t

0

∫

MF (X)

[∫

X

p(x)b(x)

∫

X

(
Ff

(
χK(s) + δy

)

− Ff

(
χK(s)

))
m(x,dy)μ(dx)

]
Γ K(ds × dμ), (2.7)

is a square integrable {FK
t }-martingale.

The main result of the paper proves the convergence of {(χK,Γ K)} to a limit (χ,Γ ),
where the slow component χ is a jump Markov process and the fast component stabilizes in
an equilibrium that depends on the value of the slow component.

Theorem 2.4 Suppose that Assumptions 1.1, 2.2 and 2.3 hold.

(A) There exists a process χ with paths in D(R+,MP (X)) and a random measure
Γ ∈ MF ([0,∞) × MF (X)) such that (χK,Γ K) ⇒ (χ,Γ ) as K → ∞, where (χ,Γ )

satisfy the following. For all functions Ff ∈ F
2
b ,

Ff

(
χ(t)

) − Ff

(
χ(0)

)

−
∫ t

0

∫

MF (X)

[∫

X

b(x)p(x)

∫

X

(
Ff

(
χ(s) + δy

)

− Ff

(
χ(s)

))
m(x,dy)μ(dx)

]
Γ (ds × dμ) (2.8)

is a square integrable martingale with respect to the filtration

Ft = σ
{
χ(s),Γ

([0, s] × A
) : s ∈ [0, t],A ∈ B

(
MF (X)

)}
(2.9)

and for any t ≥ 0
∫ t

0

∫

MF (X)

BFf (μ)Γ (ds × dμ) = 0 for all Ff ∈ F
2
b a.s., (2.10)

where the nonlinear operator B is defined by

BFf (μ) = F ′(〈μ,f 〉)
∫

X

(
b(x) − (

d(x) + 〈
μ,α(x, .)

〉))
f (x)μ(dx). (2.11)

(B) Let Γ be as in part (A). Then for any t > 0 and A ∈ B(MF (X)) we have

Γ
([0, t] × A

) =
∫ t

0
1A(̂nχ ′(s)δχ ′(s))ds, (2.12)
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where {χ ′(t) : t ≥ 0} is a X-valued Markov jump process with χ ′(0) = x0 and generator
given by

Cf (x) = b(x)p(x)̂nx

∫

X

[Fit(y, x)]+
b(y)

(
f (y) − f (x)

)
m(x,dy), (2.13)

for any f ∈ Cb(X,R). Here the population equilibrium n̂x and the fitness function
Fit(y, x) are defined as

n̂x = (
b(x) − d(x)

)
/α(x, x) and Fit(y, x) = b(y) − d(y) − α(y, x)̂nx. (2.14)

Note that part (B) of the theorem characterizes the limiting occupation measure Γ . Once
Γ is known, χ is characterized by the martingale problem (2.8). The next remark motivates
the formula for n̂x and the fitness function Fit(y, x).

Remark 2.5 Consider a Lotka-Volterra system that results from the large number limit of
the logistic competition process without mutation. If the system has two traits x and y, then
the population sizes nx(t) and ny(t) corresponding to these traits evolve according to the
system of ordinary differential equations given by

dnx

dt
= nx(t)

(
b(x) − d(x) − α(x, x)nx(t) − α(x, y)ny(t)

)

dny

dt
= ny(t)

(
b(y) − d(y) − α(y, x)nx(t) − α(y, y)ny(t)

)
,

(2.15)

where α is the competition kernel. Observe that (̂nx,0) is a fixed point for this system.
The fitness function Fit(y, x) describes the growth rate of a negligible mutant population
with trait y in an environment characterized by n̂x . Furthermore, the fixed point (̂nx,0) is
asymptotically stable if and only if Fit(y, x) < 0. However, the analysis of such a dynamical
system (done in [2]) is not necessary for our purpose.

3 Tightness of {(χK,Γ K)}

To study the limit when K → ∞, we proceed by a tightness-uniqueness argument. First, we
show the tightness of the distributions of {(χK,Γ K) : K ∈N

∗} and derive certain properties
of the limiting distribution. The limiting values of {Γ K} satisfy an equation that charac-
terizes the state of the population between two mutations, thanks to the “invasion implies
substitution” assumption.

Theorem 3.1 Suppose that Assumption 1.1 is satisfied, supK≥1 E(〈XK(0),1〉2) < ∞ and
KuK → 0 as K → ∞. Then:

(A) The distributions of {(χK,Γ K) : K ∈N
∗} are tight in the space

P
(
D

(
R+,MP (X)

) ×MF

(
R+ ×MF (X)

))
.

(B) Suppose that (χK,Γ K) ⇒ (χ,Γ ), along some subsequence, as K → ∞. Then χ sat-
isfies the martingale problem given by (2.8) and Γ satisfies (2.10).
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Proof To prove the tightness of {χK : K ∈ N
∗}, we use a criterion from [12]. Let nK(t) =

〈χK(t),1〉 for t ≥ 0. This process counts the number of mutations that occurred in the pop-
ulation. For any T > 0 we have by Lemma 2.1 that

sup
K≥1

E
(
nK(T )

) ≤ ‖b‖∞T sup
K≥1,t≤T

E
(〈
ZK(t),1

〉) ≤ ‖b‖∞T sup
K≥1,t≥0

E
(〈
XK(t),1

〉)
< ∞.

(3.1)

From this estimate and the martingale problem (2.7), it can be checked by using Aldous and
Rebolledo criteria that for every test function f ∈ Cb(X,R), the laws of 〈χK,f 〉 are tight in
D(R+,R) and the compact containment condition is satisfied.

Let us now prove the tightness of {Γ K : K ∈ N
∗}. Let ε > 0 be fixed. Using Lemma 2.1,

there exists a Nε > 0 such that

sup
K≥1,t≥0

P
(〈
ZK(t),1

〉
> Nε

)
< ε. (3.2)

Since X is compact, the set Kε = {μ ∈ MF (X), 〈μ,1〉 ≤ Nε} is compact. We deduce that
for any T > 0

inf
K≥1

E
(
Γ K

([0, T ] ×Kε

)) ≥ (1 − ε)T . (3.3)

Indeed

Γ K
([0, T ] ×Kε

) =Γ K
([0, T ] ×MF (X)

) − Γ K
([0, T ] ×Kc

ε

) = T −
∫ T

0
1Kc

ε

(
ZK(t)

)
dt

and the result follows from Fubini’s theorem and (3.2). From Lemma 1.3 of [18], {Γ K : K ∈
N

∗} is a tight family of random measures. The joint tightness of {(χK,Γ K) : K ∈ N
∗} is

immediate from the tightness of {χK : K ∈N
∗} and {Γ K : K ∈ N

∗}. This proves part (A).
We now prove part (B). Our proof is adapted from the proof of Theorem 2.1 in [18].

From part (A) we know that the distributions of {(χK,Γ K) : K ∈ N
∗} are tight. Therefore

there exists a subsequence {ηK} along which (χK,Γ K) converges in distribution to a limit
(χ,Γ ). We can take the limit in (2.7) along this subsequence and show that M

χ,K
t converges

in distribution to the martingale given by (2.8).
Let us now show that the limiting value Γ satisfies (2.10). From (2.4), for any Ff ∈ F

2
b ,

we get that

m
F,f,K
t = Ff

(
ZK(t)

) − Ff

(
ZK(0)

) −
∫ t

0
L

KFf

(
ZK(s)

)
ds

= Ff

(
ZK(t)

) − Ff

(
ZK(0)

) −
(

1

KuK

)∫ t

0

∫

MF (X)

BFf (μ)Γ K(ds × dμ)

− δF,f,K(t)

KuK

(3.4)

is a martingale. Here the operator B is defined by (2.11) and

δF,f,K(t) =
∫ t

0

(
KuKL

KFf

(
ZK(s)

) −BFf

(
ZK(s)

))
ds. (3.5)
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For any μ ∈ MF (X) we have

KuKL
KFf (μ) −BFf (μ)

= KuK

∫

X

p(x)b(x)

[∫

X

(
Ff

(
μ + 1

K
δy

)
− Ff (μ)

)
m(x,dy)

]
μ(dx)

+ K

∫

X

b(x)

(
Ff

(
μ + 1

K
δx

)
− Ff (μ) − 1

K
F ′(〈μ,f 〉)f (x)

)
μ(dx)

+ K

∫

X

(
d(x) + 〈

μ,α(x, .)
〉)(

Ff

(
μ − 1

K
δx

)
− Ff (μ) + 1

K
F ′(〈μ,f 〉)f (x)

)
μ(dx)

− KuK

∫

X

p(x)b(x)

(
Ff

(
μ + 1

K
δx

)
− Ff (μ)

)
μ(dx). (3.6)

For any x ∈X and μ ∈ MF (X), we have by Taylor expansion that for some α1, α2 ∈ (0,1):

Ff

(
μ ± 1

K
δx

)
− Ff (μ) = ±F ′

(
〈μ,f 〉 + α1

f (x)

K

)
f (x)

K

= ±F ′(〈μ,f 〉)f (x)

K
+ f (x)2

2K2
F ′′

(
〈μ,f 〉 + α2

f (x)

K

)
.

Therefore we get

∣∣∣∣Ff

(
μ ± 1

K
δx

)
− Ff (μ)

∣∣∣∣ ≤ ‖F ′‖∞‖f ‖2∞
K

and
∣∣∣∣K

(
Ff

(
μ ± 1

K
δx

)
− Ff (μ) ∓ 1

K
F ′(〈μ,f 〉)f (x)

)∣∣∣∣ ≤ ‖F ′′‖∞‖f ‖2∞
2K

.

Using these estimates and Assumption 1.1,

∣∣KuKL
KFf (μ) −BFf (μ)

∣∣ ≤ 2uK‖b‖∞
∥∥F ′∥∥∞‖f ‖2

∞〈μ,1〉

+ ‖F ′′‖∞‖f ‖2∞
2K

((‖b‖∞ + ‖d‖∞
)〈μ,1〉 + α〈μ,1〉2

)
.

Pick any T > 0. This estimate along with Lemma 2.1 implies that as K → ∞, δF,f,K(t)

(given by (3.5)) converges to 0 in L1(dP), uniformly in t ∈ [0, T ]. Multiplying (3.4)
by KuK and letting K → ∞, we get that along the subsequence ηK , the sequence
of martingales {KuKmF,f,K : K ∈ N

∗} converges in L1(dP), uniformly in t ∈ [0, T ] to∫ t

0

∫
MF (X)

BFf (μ)Γ (ds × dμ). The limit is itself a martingale. Since it is continuous and

has paths of bounded variation, it must be 0 at all times a.s. Hence for any Ff ∈ F
2
b ,

∫ t

0

∫

MF (X)

BFf (μ)Γ (ds × dμ) = 0 a.s.

Separability of F2
b ensures that (2.10) also holds. �
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Theorem 3.1 shows tightness of the family of occupation measures {Γ K : K ∈ N
∗}. In

the next section we will prove that this family has a unique limit point Γ which is the occu-
pation measure of the process {̂nχ ′(t)δχ ′(t) : t ≥ 0} (see Theorem 2.4) that corresponds to the
TSS. This demonstrates the convergence of ZK to the TSS in the sense of occupation mea-
sures. Note that the process ZK does not converge in the Skorokhod topology as K → ∞
(see Proposition 1 in [2]), due to sharp transitions in the process at the time of mutations.
Hence the convergence of ZK to the TSS is shown in the sense of finite dimensional dis-
tributions in [2]. In our approach, instead of working with ZK we work with its occupation
measure Γ K which remains relatively unaffected by the behaviour of ZK over small time
intervals. This mitigates the problem of having sharp mutation-induced transitions in ZK

and simplifies the analysis.

4 Characterization of the Limiting Values

4.1 Dynamics Without Mutation

As in [2, 4], to understand the information provided by (2.10), we need to consider the
dynamics of monomorphic and dimorphic populations. Our purpose in this section is to
show that under the time scale separation given by Assumption 2.3, the operator (2.11) and
Assumption 1.1(B) characterize the state of the population between two mutant arrivals.
Because of Assumption 1.1(B), we will see that two different traits cannot coexist in the
long term and thus it suffices to work with monomorphic or dimorphic initial populations
(i.e. the support of ZK

0 is one or two singletons).
In Sect. 4.1.1, we consider monomorphic or dimorphic populations and show conver-

gence of the occupation measures when the final trait composition of the population is
known. For instance, if the final trait is x0, then the occupation measure of ZK(dx, dt)

converges to n̂x0δx0(dx)dt . In Sect. 4.1.2, we use couplings with linear birth and death pro-
cesses to show that the distribution of the final trait composition of the population can be
computed from the fitness of the mutant and the resident.

4.1.1 Convergence of the Occupation Measure Γ K in the Absence of Mutation

First, we show that the “invasion implies substitution” assumption (Assumption 1.1(B))
provides information on the behavior of a dimorphic population when we know which trait
is fixed.

Definition 4.1 Let LK
0 be the operator LK (given by (2.1)) with p(x) = 0 for all x ∈ X.

We will denote by {Y K(t) : t ≥ 0} a process with generator LK
0 and an initial condition that

varies according to the case that is studied. This process has the same birth-death dynamics
as a process with generator LK , but there is no mutation.

In this section we investigate how a process with generator LK
0 behaves at time scales of

order (KuK)−1, when the population is monomorphic or dimorphic. We start by proving a
simple proposition.

Proposition 4.2 For any x, y ∈ X suppose that π ∈ P(MF (X)) is such that

π
({

μ ∈ MF (X) : {x} ⊂ supp(μ) ⊂ {x, y}}) = 1 (4.1)
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and
∫

MF (X)

BFf (μ)π(dμ) = 0 (4.2)

for all Ff ∈ F
2
b . Then for any A ∈ B(MF (X)) we have π(A) = 1A(̂nxδx) where n̂x has been

defined in (2.14).

Proof Since π satisfies (4.1), any μ picked from the distribution π has the form μ = nxδx +
nyδy with nx > 0. Let Φ be the map from MF (X) to R+ ×R+ defined by

Φ(μ) = (〈μ,1{x}〉, 〈μ,1{y}〉
)
.

Let π∗ = π ◦ Φ−1 ∈ P(R+ ×R+) be the image of the distribution π under Φ−1. Replacing
the operator B by its definition, we can rewrite (4.2) as

0 =
∫

MF (X)

F ′(〈μ,f 〉)
(〈

μ, (b − d)f
〉 −

∫

E

f (x)
〈
μ,α(x, .)

〉
μ(dx)

)
π(dμ)

=
∫

R+×R+
F ′(f (x)nx + f (y)ny

)[(
b(x) − d(x) − α(x, x)nx − α(x, y)ny

)
nxf (x)

+ (
b(y) − d(y) − α(y, x)nx − α(y, y)ny

)
nyf (y)

]
π∗(dnx, dny).

This equation can hold for all Ff ∈ F
2
b only if the support of π∗ consists of (nx, ny) with

nx > 0 that satisfy (b(x) − d(x) − α(x, x)nx − α(x, y)ny)nx = 0 and (b(y) − d(y) −
α(y, x)nx − α(y, y)ny)ny = 0. The only possible solutions are (̂nx,0) and

(̃nx, ñy) =
(

(b(x) − d(x))α(y, y) − (b(y) − d(y))α(x, y)

α(x, x)α(y, y) − α(x, y)α(y, x)
,

(b(y) − d(y))α(x, x) − (b(x) − d(x))α(y, x)

α(x, x)α(y, y) − α(x, y)α(y, x)

)
.

However due to Assumption 1.1, either ñx or ñy is negative and hence (̃nx, ñy) cannot be in
the support of π∗. Therefore π∗({(̂nx,0)}) = 1 and this proves the proposition. �

Remark 4.3 Note that (0,0), (̂nx,0), (0, n̂y) and (̃nx, ñy) are the stationary solutions of the
Lotka-Volterra system given by (2.15).

Heuristically, the “invasion implies substitution” assumption prevents two traits from
coexisting in the long run. If we know which trait survives, then we know that it fixates and
Proposition 4.2 provides the form of the solution π to (4.2). In this case, we can deduce the
convergence of the occupation measure of Y K(·/KuK).

Corollary 4.4 Let x, y ∈ X. For each K ∈ N
∗, let {Y K(t) : t ≥ 0} be a process with gener-

ator LK
0 and supp(Y K(0)) = {x, y}. Let T > 0, and suppose that there exists a δ > 0 such

that:

lim
K→∞

P

(
Y K

t {x} < δ for some t ∈
[

0,
T

KuK

])
= 0. (4.3)
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Then for any Ff ∈ F
2
b ,

∫ T

0

∫

MF (X)

Ff (μ)Γ K
0 (dt × dμ) :=

∫ T

0
Ff

(
Y K

(
t

KuK

))
dt ⇒ T × Ff (̂nxδx)

as K → ∞.

Proof As in part (A) of Theorem 3.1 we can show that {Γ K
0 : K ∈ N

∗} is tight in the space
P(MF ([0, T ] × MF (X))). Let Γ0 be a limit point. Then from part (C) of Theorem 3.1 we
get that

∫ T

0

∫

MF (X)

BFf (μ)Γ0(dt × dμ) = 0 for all Ff ∈ F
2
b a.s., (4.4)

where the operator B is given by (2.11).
Since supp(Y K(0)) ⊂ {x, y} we also have that supp(Y K(t)) ⊂ {x, y} for all t ≥ 0. Let

Sδ = {
μ ∈ MF (X) : μ{x} ≥ δ

}
.

Observe that Γ K
0 ([0, T ] × Sδ) ≤ T a.s. and

0 ≤ E
(
T − Γ K

0

([0, T ] × Sδ

)) = KuKE

[∫ T
KuK

0

(
1 − 1Sδ

(
Y K(t)

))
dt

]

≤ T P

(
Y K

t {x} < δ for some t ∈
[

0,
T

KuK

])
.

Hence by (4.3) we get that Γ K
0 ([0, T ] × Sδ) converges to T in L1(dP). Because Sδ is a

closed set, Γ0([0, T ] × Sδ) = T a.s.
Let π be the P(MF (X))-valued random variable defined by π(A) = Γ0([0, T ] × A)/T

for any A ∈ B(MF (X)). Then π(Sδ) = 1 and hence π satisfies (4.1) almost surely. Further-
more

∫
MF (X)

BFf (μ)π(dμ) = 0 for all Ff ∈ F
2
b , almost surely. Therefore using Proposi-

tion 4.2 proves this corollary. �

4.1.2 Fixation Probabilities

We have seen in Corollary 4.4 that the behaviour of a dimorphic population is known pro-
vided we know which trait survives and then fixates. Following Champagnat et al. [2, 4],
we can answer this question by using couplings with branching processes. This is done in
Propositions 4.6 and 4.7, whose proofs are given in the Appendix. These propositions study
populations evolving as Markov processes with generator LK

0 (see Definition 4.1). Proposi-
tion 4.6 shows that over a time period of order (KuK)−1, a monomorphic population with a
non-negligible initial size does not die and a monomorphic population that is initially near
equilibrium remains near equilibrium. Proposition 4.7 considers a dimorphic population,
where the resident population is near equilibrium while the mutant population has a small
size. It shows that an unfavourable mutant will certainly die out quickly (in the evolutionary
time scale), while a favourable mutant can invade the population with a positive probability
whose value can be easily computed. Moreover after a successful invasion, the mutant pop-
ulation will not die in a time period of order (KuK)−1. Formally, the process we consider in
Propositions 4.6 and 4.7 can be defined as follows.
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Definition 4.5 Pick two trait values x, y ∈ X and two N
∗-valued sequences {zK

1 : K ∈ N
∗}

and {zK
2 : K ∈ N

∗}. Let {Y K(t) : t ≥ 0} be the process with generator LK
0 (see Definition 4.1)

and initial condition

Y K(0) = zK
1

K
δx + zK

2

K
δy.

Here x and y should be seen as the resident trait and the mutant trait respectively.

For any x ∈X and ε > 0 let

Nε(x) = {
μ ∈ MF (X) : supp(μ) = {x} and 〈μ,1〉 ∈ [̂nx − ε, n̂x + ε]}. (4.5)

Proposition 4.6 (Behaviour of a monomorphic population) Suppose that Assumptions 1.1
and 2.3 hold. Let {Y K(t) : t ≥ 0} be the process given by Definition 4.5. Assume that zK

2 = 0
for all K ∈N

∗. Then for any T > 0 we have the following.

(A) A monomorphic population with a non-negligible size does not die in a time of order
(KuK)−1: Suppose that for some ε > 0, zK

1 ≥ Kε for each K ∈N
∗. Then for some δ > 0

lim
K→∞

P

(
∃t ∈

[
0,

T

KuK

]
, Y K

t {x} < δ

)
= 0. (4.6)

(B) A monomorphic population with a size around equilibrium remains near equilibrium for
a time of order (KuK)−1: Suppose that for some ε > 0, zK

1 ∈ [K(̂nx − ε),K(̂nx + ε)]
for each K ∈N

∗. Then

lim
K→∞

P

(
∃t ∈

[
0,

T

KuK

]
, Y K(t) /∈ N2ε(x)

)
= 0. (4.7)

Proposition 4.7 (Behaviour of a dimorphic population) Suppose that Assumptions 1.1
and 2.3 hold. Let {Y K(t) : t ≥ 0} be the process given by Definition 4.5. We will as-
sume that the resident population is near equilibrium, that is, for a small ε > 0 we have
zK

1 ∈ [K(̂nx − ε),K(̂nx + ε)] for all K ∈ N
∗. Suppose that {tK} is any N

∗-valued sequence
such that logK � tK � 1/KuK . Let SK = (̂nx − 2ε, n̂x + 2ε) × (0,2ε) and let TSK

be the
stopping time

TSK
= inf

{
t ≥ 0 : Y K(t) /∈ SK

}
. (4.8)

Then we have the following.

(A) A favorable mutant with a non-negligible size does not die in a time of order (KuK)−1:
Suppose that Fit(y, x) > 0 and zK

2 > Kε for all K ∈ N
∗. There exists an ε0 > 0 such

that if ε < ε0 then

lim
K→∞

P

(
∃t ∈

[
0,

T

KuK

]
, Y K

t {y} <
ε

2

)
= 0. (4.9)

(B) An unfavorable mutant dies out in time tK : Let Fit(y, x) < 0 and zK
2 < Kε for all

K ∈N
∗. There exists an ε0 > 0 such that if ε < ε0 then

lim
K→∞

P
(
TSK

≤ tK,Y K
TSK

{y} = 0
) = 1. (4.10)
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(C) A favorable mutant either dies out or invades the population in time tK . The probability
of invasion is the fitness of the mutant with respect to the resident trait divided by its birth
rate: let Fit(y, x) > 0 and zK

2 = 1 for all K ∈ N
∗. Then there exist positive constants

c, ε0 such that for all ε < ε0 we have

lim sup
K→∞

∣∣∣∣P
(
TSK

≤ tK,Y K
TSK

{y} ≥ 2ε
) − Fit(y, x)

b(y)

∣∣∣∣ ≤ cε, (4.11)

and lim sup
K→∞

∣∣∣∣P
(
TSK

≤ tK,Y K
TSK

{y} = 0
) −

(
1 − Fit(y, x)

b(y)

)∣∣∣∣ ≤ cε. (4.12)

Using Propositions 4.6 and 4.7, we can retrieve the state of the process in a large time
window [ε/KuK, ε−1/KuK ] from the initial condition. This allows us to understand what
will happen to the population if we neglect the transitions due to rare mutation events.

Corollary 4.8 Suppose that Assumptions 1.1 and 2.3 hold. For each K ∈ N
∗ let {Y K(t) :

t ≥ 0} be a process with generator LK
0 .

(A) Suppose that for some x ∈X and ε > 0 we have supp(Y K(0)) = {x} and Y K
0 {x} > ε for

all K ∈ N
∗. Then

lim
K→∞

P

(
Y K(t) ∈ Nε(x) for all t ∈

[
ε

KuK

,
ε−1

KuK

])
= 1. (4.13)

(B) Suppose that for some x, y ∈ X and ε > 0, we have Fit(y, x) < 0, supp(Y K(0)) =
{x, y}, Y K

0 {x} ∈ [̂nx − ε, n̂x + ε] and Y K
0 {y} < ε for all K ∈ N

∗. Then for a sufficiently
small ε,

lim
K→∞

P

(
Y K(t) ∈ Nε(x) for all t ∈

[
ε

KuK

,
ε−1

KuK

])
= 1.

(C) Suppose that for some x, y ∈ X and ε > 0 we have Fit(y, x) > 0, supp(Y K(0)) = {x, y},
Y K

0 {x} ∈ [̂nx − ε, n̂x + ε] and Y K
0 {y} = 1/K for all K ∈N

∗. Then

lim
ε→0

lim
K→∞

P

(
Y K(t) ∈ Nε(x) for all t ∈

[
ε

KuK

,
ε−1

KuK

])

= 1 − lim
ε→0

lim
K→∞

P

(
Y K(t) ∈ Nε(y) for all t ∈

[
ε

KuK

,
ε−1

KuK

])

= 1 − Fit(y, x)

b(y)
.

Proof We first prove part (A). Let Y K be the process with generator LK
0 such that

supp(Y K(0)) = {x} and Y K
0 {x} > ε. Part (A) of Proposition 4.6 implies that for some δ > 0

lim
K→∞

P

(
Y K

t {x} < δ for some t ∈
[

0,
ε−1

KuK

])
= 0.

From Corollary 4.4 we know that for any t ≥ 0 and Ff ∈ F
2
b ,

∫ t

0
Ff

(
Y K

(
s

KuK

))
ds ⇒ tFf (̂nxδx)
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as K → ∞. Hence if we define σK
ε = inf{t ≥ 0 : Y K(t) ∈ Nε/2(x)}, then KuKσK

ε → 0 in
probability as K → ∞. Now let the process {Ỹ K(t) : t ≥ 0} be given by Ỹ K

ε (t) = Y K
ε (t +

σK
ε ). By the strong Markov property, this process also has generator LK

0 . Moreover its initial
state is inside Nε/2(x). Using part (B) of Proposition 4.6 proves part (A).

For part (B) consider the set SK = (̂nx − 2ε, n̂x + 2ε) × (0,2ε) and let TSK
be given by

(4.8). Let the sequence {tK} be as in Proposition 4.7 and consider the event EK(ε) = {TSK
≤

tK,Y K
TSK

{y} = 0}. Since Fit(y, x) < 0, part (B) of Proposition 4.7 says that as K → ∞,

the probability of the event EK(ε) approaches 1 for a sufficiently small ε > 0. Note that
KuKtK → 0 as K → ∞. The proof of part (B) follows from part (A) of this corollary along
with the strong Markov property at time TSK

.
For part (C), fix an ε > 0 and define {Y K(t) : t ≥ 0} with the initial condition specified in

the statement. Let SK and TSK
be as in the proof of part (B). We can write

P

(
Y K(t) ∈ Nε(x) for all t ∈

[
ε

KuK

,
ε−1

KuK

])

=
3∑

i=1

P

(
Y K(t) ∈ Nε(x) for all t ∈

[
ε

KuK

,
ε−1

KuK

]
;EK

i (ε)

)
, (4.14)

where EK
1 (ε) = {TSK

≤ tK,Y K
TSK

{y} = 0}, EK
2 (ε) = {TSK

≤ tK,Y K
TSK

{y} ≥ 2ε} and

EK
3 (ε) = (EK

1 (ε) ∪ EK
2 (ε))c .

Let us consider the term in (4.14) corresponding to i = 1. On the event EK
1 (ε), we have

YTSK
{x} ∈ (̂nx − 2ε, n̂x + 2ε) and YTSK

{y} = 0. The strong Markov property at time TSK
,

along with part (A) of this corollary and part (C) of Proposition 4.7 imply that this term
converges to 1 − Fit(y, x)/b(y) as K → ∞ and ε → 0.

The term corresponding to i = 2 in (4.14) can be written as

P

(
Y K(t) ∈ Nε(x) for all t ∈

[
ε

KuK

,
ε−1

KuK

]
; EK

2 (ε)

)

= E

(
1{TSK

≤tK ;YK
TSK

{y}≥2ε}P
(

Y K(t) ∈ Nε(x) for all t ∈
[

ε

KuK

,
ε−1

KuK

]∣∣∣∣FTSK

))

(4.15)

On the event EK
2 (ε), Y K

TSK
{y} ≥ 2ε and Y K

TSK
{x} ∈ (̂nx − 2ε, n̂x + 2ε). From part (A) of

Proposition 4.7, the probability of the process {Y K
t {y} : t ≥ 0} going below ε between

times TSK
and TSK

+ ε−1/KuK tends to 0 as K → ∞. Hence the probability of the event
{∃t ∈ [TSK

,TSK
+ ε−1/KuK ] : y /∈ supp(Y K

t )} also tends to 0 as K → ∞. Note that if
y ∈ supp(Y K

t ) then Y K(t) /∈ Nε(x). Conditioning by FTSK
and using the strong Markov

property shows that the term corresponding to i = 2 in (4.14) converges to 0 as K → ∞ and
ε → 0.

Part (C) of Proposition 4.7 implies that

lim
ε→0

lim
K→∞

P
(
EK

1 (ε) ∪ EK
2 (ε)

) = 1.

Hence

lim
ε→0

lim
K→∞

P
(
EK

3 (ε)
) = 0

which shows that the term corresponding to i = 3 in (4.14) converges to 0.
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Gathering the results for i ∈ {1,2,3}, we get

lim
ε→0

lim
K→∞

P

(
Y K(t) ∈ Nε(x) for all t ∈

[
ε

KuK

,
ε−1

KuK

])
= 1 − Fit(y, x)

b(y)
.

The proof of

lim
ε→0

lim
K→∞

P

(
Y K(t) ∈ Nε(y) for all t ∈

[
ε

KuK

,
ε−1

KuK

])
= Fit(y, x)

b(y)

is similar. This completes the proof of part (C) of the corollary. �

4.2 Proof of Theorem 2.4: Convergence to the TSS

We now have the tools to prove Theorem 2.4. By Theorem 3.1, the distributions of
{(χK,Γ K) : K ∈ N

∗} are tight. Let (χ,Γ ) be a limiting value satisfying (2.8) and (2.10). If
we can prove that (2.12) holds for the process {χ ′(t) : t ≥ 0} (introduced in the statement
of Theorem 2.4), then the distribution of Γ is uniquely determined, which in turn uniquely
determines the distribution of χ due to the martingale problem given by (2.8). Hence we
only have to prove part (B) of Theorem 2.4.

Since (χ,Γ ) is a limiting value, due to Prohorov’s theorem, there exists a subsequence
{(χ̃K, Γ̃ K)} that converges in distribution to (χ,Γ ) as K → ∞. The Skorokhod represen-
tation theorem (see for e.g. [1]) says that on the same probability space as (χ,Γ ), we can
construct a sequence which we again denote by {(χK,Γ K)} with an abuse of notation, such
that (χK,Γ K) converges to (χ,Γ ) a.s. and (χK,Γ K) has the same marginal distributions
as {(χ̃K, Γ̃ K)}.

Assuming (χK,Γ K) → (χ,Γ ) a.s. as K → ∞, we now try to identify (χ,Γ ). The main
idea is that between subsequent appearances of new mutants, our process {XK(t) : t ≥ 0} be-
haves like the process considered in Corollary 4.8. When a fit mutant appears, it either gets
extinct quickly or the process stabilizes around the new monomorphic equilibrium charac-
terized by the mutant trait. Between two rare mutations, the trait and size of the population
can be inferred from the occupation measure, because the population is monomorphic and
the size is shown to reach an equilibrium.

Throughout this section whenever we say “as K → ∞ and ε → 0” we mean that the
limit K → ∞ is taken first and the limit ε → 0 is taken next. For K ∈ N

∗, i ∈N
∗ let τK

i and
τi be the i-th jump times of the process χK and χ respectively. For convenience we define
τK

0 = τ0 = 0. Since (χK,Γ K) → (χ,Γ ) a.s., for any m ∈ N
∗, (τK

1 , . . . , τK
m ) → (τ1, . . . , τm)

a.s. Using (2.8) and Lemma 2.1, we know that τi − τi−1 > 0 almost surely for each i ∈ N
∗.

Thus

lim
ε→0

lim
K→∞

P
(
τK
i − τK

i−1 > ε
) = 1. (4.16)

Pick an arbitrary xarb ∈X. For any i ∈ N
∗ and ε > 0 define

R
K,ε
i = 1{τK

i
−τK

i−1>ε}

∫ τK
i

(τK
i−1+ε)

∫
MF (X)

〈μ,x〉Γ K(ds × dμ)

∫ τK
i

(τK
i−1+ε)

∫
MF (X)

〈μ,1〉Γ K(ds × dμ)

+ 1{τK
i

−τK
i−1≤ε}xarb. (4.17)
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Note that if supp(ZK(s)) = {x} for all s ∈ [τK
i−1 + ε, τK

i ), then we have R
K,ε
i = x. Heuristi-

cally, R
K,ε
i is an estimator for the trait that fixates between the (i −1)th and the ith mutation.

Define an event

EK
i (ε) ={

τK
i ≥ τK

i−1 + ε and ZK(t) ∈ Nε

(
R

K,ε
i

)
for all t ∈ [

τK
i−1 + ε, τK

i

)}
,

where for any x ∈ X, Nε(x) is defined by (4.5). The next proposition shows how R
K,ε
i and

EK
i (ε) behave as K → ∞ and ε → 0.

Proposition 4.9 Suppose that Assumptions 1.1, 2.2 and 2.3 hold. Then for any i ∈N
∗

lim
ε→0

lim
K→∞

P
(
EK

i (ε)
) = 1. (4.18)

Furthermore for any measurable set A ⊂ X, x ∈ X and i ∈N
∗ we have

lim
ε→0

lim
K→∞

P
(
R

K,ε
i+1 ∈ A|RK,ε

i = x
)

= 1A(x)

∫

X

(
1 − [Fit(y, x)]+

b(y)

)
m(x,dy) +

∫

A

[Fit(y, x)]+
b(y)

m(x, dy). (4.19)

Proof For each i ∈ N
∗, we can construct a process {Y K

i (t) : t ≥ 0} with generator LK
0 such

that

ZK
(
τK
i−1 + t

) = Y K
i

(
t

KuK

)
for all t ∈ [

0, τK
i − τK

i−1

)
. (4.20)

For i = 1, we obtain from part (B) of Assumption 2.2 and part (A) of Corollary 4.8 that

lim
K→∞

P

(
Y K

1 (t) ∈ Nε(x0) for all t ∈
[

ε

KuK

,
ε−1

KuK

])
= 1. (4.21)

This limit along with (4.16) and (4.20) imply that R
K,ε
1 → x0 with probability converging to

1 as K → ∞ and ε → 0. Moreover (4.18) holds for i = 1 thanks to (4.20) and (4.21).
For any i ∈ N

∗, let UK
i denote the type of the new mutant that appears at time τK

i .
Pick x, y ∈ X. On the event {EK

i (ε),R
K,ε
i = x,UK

i = y}, we have supp(ZK(τK
i )) = {x, y},

ZK

τK
i

{y} = 1/K and ZK

τK
i

{x} ∈ [̂nx − ε, n̂x + ε]. Using parts (B) and (C) of Corollary 4.8 and

(4.20), we obtain that

lim
ε→0

lim
K→∞

P
(
EK

i+1(ε),R
K,ε
i+1 = x

∣∣EK
i (ε),R

K,ε
i = x,UK

i = y
) =

(
1 − [Fit(y, x)]+

b(y)

)

and lim
ε→0

lim
K→∞

P
(
EK

i+1(ε),R
K,ε
i+1 = y

∣∣EK
i (ε),R

K,ε
i = x,UK

i = y
) = [Fit(y, x)]+

b(y)
.

Since the distribution of UK
i conditionally to {EK

i (ε),R
K,ε
i = x} is m(x,dy), for any mea-

surable set A ⊂ X we get

lim
ε→0

lim
K→∞

P
(
EK

i+1(ε),R
K,ε
i+1 ∈ A

∣∣EK
i (ε),R

K,ε
i = x

)

= 1A(x)

∫

X

(
1 − [Fit(y, x)]+

b(y)

)
m(x,dy) +

∫

A

[Fit(y, x)]+
b(y)

m(x, dy). (4.22)
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Taking A = X in (4.22) we obtain

lim
ε→0

lim
K→∞

P
(
EK

i+1(ε)
∣∣EK

i (ε)
) = 1. (4.23)

This relation shows that if (4.18) holds for some i ∈ N
∗, then it also holds for (i + 1). Since

we have already shown that (4.18) holds for i = 1, by induction we can conclude that (4.18)
holds for all i ∈ N

∗. From (4.22) and (4.23) we can deduce that for any measurable set
A ⊂X, x ∈X and i ∈ N

∗

lim
ε→0

lim
K→∞

P
(
R

K,ε
i+1 ∈ A

∣∣RK,ε
i = x

) = lim
ε→0

lim
K→∞

P
(
EK

i+1(ε),R
K,ε
i+1 ∈ A

∣∣EK
i (ε),R

K,ε
i = x

)
.

Hence (4.19) holds due to (4.22). This completes the proof of the proposition. �

We now complete the proof of part (B) of Theorem 2.4 by using Proposition 4.9.

Proof of Theorem 2.4(B) For each i ∈ N
∗ define

Ri =
∫ τi

τi−1

∫
MF (X)

〈μ,x〉Γ (dt × dμ)
∫ τi

τi−1

∫
MF (X)

〈μ,1〉Γ (dt × dμ)
.

Since (χK,Γ K) → (χ,Γ ) a.s. for any positive integer m we must have (R
K,ε
1 , . . . ,RK,ε

m ) →
(R1, . . . ,Rm) a.s. as K → ∞ and ε → 0. Proposition 4.9 implies that {Ri : i ∈ N

∗} is a
Markov chain over X with R1 = x0 and transition probabilities given by

P(Ri+1 ∈ A|Ri = x) = 1A(x)

∫

X

(
1 − [Fit(y, x)]+

b(y)

)
m(x,dy) +

∫

A

[Fit(y, x)]+
b(y)

m(x, dy)

(4.24)

for any measurable set A ⊂ X, x ∈X and i ∈N
∗.

Define two X-valued processes as

χ ′K,ε(t) = x01{t<ε} +
∞∑

i=1

R
K,ε
i 1[τK

i−1+ε,τK
i

+ε)(t) and χ ′(t) =
∞∑

i=1

Ri1[τi−1,τi )(t).

The almost sure convergence of (χK,Γ K) → (χ,Γ ) implies that χ ′K,ε converges almost
surely to χ ′ as K → ∞ and ε → 0 in the Skorokhod space D([0, T ],X) for any T > 0.

We now show that the process {χ ′(t) : t ≥ 0} uniquely characterizes the distribution of
the limiting occupation measure Γ . For any Ff ∈ F

2
b, i ∈ N

∗ and t ≥ 0, define the real-valued
variables

ρ
K,ε
i =

∫ τK
i

∧t

(τK
i−1+ε)∧t

∫

MF (X)

Ff (μ)Γ K(ds × dμ) and

ρi =
∫ τi∧t

τi−1∧t

∫

MF (X)

Ff (μ)Γ (ds × dμ).

(4.25)

Then certainly ρ
K,ε
i → ρi a.s. as K → ∞ and ε → 0. Suppose Ff has the form Ff (μ) =

F(〈μ,f 〉) for some f ∈ Cb(X,R) and F ∈ C2
b (R,R). Then for any μ ∈ Nε(x)

∣∣Ff (μ) − Ff (̂nxδx)
∣∣ = ∣∣F

(〈μ,f 〉) − F (̂nxf (x)
∣∣ ≤ ∥∥F ′∥∥∞‖f ‖∞ε.
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Therefore, on the event EK
i (ε),

∣∣∣∣ρ
K,ε
i −

∫ τK
i

∧t

(τK
i−1+ε)∧t

F
(
n̂

R
K,ε
i

f
(
R

K,ε
i

))
ds

∣∣∣∣ =
∣∣∣∣
∫ τK

i
∧t

(τK
i−1+ε)∧t

(
Ff

(
ZK

s

) − F
(
n̂

R
K,ε
i

f
(
R

K,ε
i

)))
ds

∣∣∣∣

≤
∫ τK

i
∧t

(τK
i−1+ε)∧t

∣∣Ff

(
ZK

s

) − F
(
n̂

R
K,ε
i

f
(
R

K,ε
i

))∣∣ds

≤ ∥∥F ′∥∥
∞‖f ‖∞ε

(
τK
i ∧ t − (

τK
i−1 + ε

) ∧ t
)
.

Since

∫ τK
i

∧t

(τK
i−1+ε)∧t

F
(
n̂

R
K,ε
i

f
(
R

K,ε
i

))
ds = (

τK
i ∧ t − (

τK
i−1 + ε

) ∧ t
)
F

(
n̂

R
K,ε
i

f
(
R

K,ε
i

))

converges to (τi ∧ t − τi−1 ∧ t)Ff (̂nRi
δRi

) as K → ∞ and ε → 0, we have that

ρi = (τi ∧ t − τi−1 ∧ t)Ff (̂nRi
δRi

) =
∫ τi∧t

τi−1∧t

Ff (̂nχ ′(s)δχ ′(s))ds.

This is true for each i ∈N
∗ and this ensures that (2.12) holds with χ ′ defined as above.

Recall that the process {χ(t) : t ≥ 0} satisfies the martingale problem given by (2.8).
Using (2.12) we obtain that for any Ff ∈ F

2
b

Ff

(
χ(t)

) − Ff

(
χ(0)

) −
∫ t

0
b
(
χ ′(s)

)
p
(
χ ′(s)

)
n̂χ ′(s)

×
(∫

X

(
Ff

(
χ(s) + δy

) − Ff

(
χ(s)

))
m

(
χ ′(s), dy

))
ds,

is a martingale. This shows that if χ ′(t) = x, then the next jump time of the process χ is
exponentially distributed with parameter b(x)p(x)̂nx . Therefore for each i ∈N

∗, (τi − τi−1)

is exponentially distributed with parameter b(Ri)p(Ri )̂nRi
. Since {Ri : i ∈ N

∗} is a Markov
chain with R1 = x0 and transition probabilities given by (4.19), we can conclude that {χ ′(t) :
t ≥ 0} is a Markov process with generator C (given by (2.13)) and initial state x0. This
completes the proof of part (B) of Theorem 2.4. �

Acknowledgements The authors thank Sylvie Méléard for invaluable discussions. We also wish to give
special thanks to a reviewer whose suggestions were very helpful in improving the presentation of our paper.
This work benefited from the support of the ANR MANEGE (ANR-09-BLAN-0215), from the Chair “Mod-
élisation Mathématique et Biodiversité” of Veolia Environnement-Ecole Polytechnique-Museum National
d’Histoire Naturelle-Fondation X. V.C.T. was also supported in part by the Labex CEMPI (ANR-11-LABX-
0007-01).

Appendix

Our main aim in this section is to prove Propositions 4.6 and 4.7. The proof will involve
several stages. We start by recalling some useful results for one-dimensional branching pro-
cesses (Lemma A.2). We then consider a two-dimensional birth and death process, where
the two components interact by influencing each other’s death rate. In Proposition A.3
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we present some coupling relationships between the components of this process and one-
dimensional branching processes. These relationships enable us to prove Propositions A.4
and A.5, which give some important estimates for the two-dimensional process. Finally we
show how these estimates can be used in proving Propositions 4.6 and 4.7.

Definition A.1 For any b, d ∈ R+ and n ∈ N, let P(b, d,n) denote the law of the N-valued
continuous time branching process starting at n with birth rate b and death rate d . For con-
venience, we will consider P(b,∞, n) to be the law of the process that is 0 at all times.

Lemma A.2 For each positive integer K let {BK(t) : t ≥ 0} be a continuous time branching
process with law P(b, d,K) where b �= d . Let {tK} be any N

∗-valued sequence satisfying
logK � tK . Pick an ε ∈ [0,1] and define a stopping time

σK = inf
{
t ≥ 0 : BK(t) ≤ K(1 − ε) or BK(t) > K(1 + ε)

}
.

Then we have the following.

(A) If b < d then P(BK(σK) > K(1 + ε)) ≤ exp(−Kε log(d/b)) and if b > d then
P(BK(σK) ≤ K(1 − ε)) ≤ exp(−Kε log(b/d)).

(B) If bd = 0 and ε /∈ {0,1} then infK≥1 E(σK) > 0 and supK≥1 E(σ 2
K) < ∞.

(C) If ε = 1 and if b < d then limK→∞ P(σK ≤ tK,BK(σK) = 0) = 1.
(D) Let {Y (t) : t ≥ 0} be a branching process with law P(b, d,1), where b > d . For any

ε > 0 define

γK = inf
{
t ≥ 0 : Y (t) = 0 or Y (t) ≥ Kε)

}
.

Then

1 − lim
K→∞

P
(
γK ≤ tK, Y (γK) ≥ Kε

) = lim
K→∞

P
(
γK ≤ tK, Y (γK) = 0

) = d

b
.

Proof Note that σK < ∞ a.s. since a branching process either goes to 0 or to ∞ almost
surely. We can easily check that MK(t) = (d/b)BK(t∧σK ) is a bounded martingale. Then by
the optional sampling theorem we get

E
(
MK(σK)

) = E
(
MK(0)

) =
(

d

b

)K

. (A.1)

If b < d then E(MK(σK)) ≥ P(BK(σK) > K(1 + ε))(d/n)K(1+ε) and if b > d then
E(MK(σK)) ≥ P(BK(σK) ≤ K(1 − ε))(d/b)K(1−ε). Substituting these estimates in (A.1)
proves part (A).

For part (B) we assume that d = 0 and b > 0. The case where b = 0 and d > 0 is sim-
ilar. We can also assume that K(1 + ε) is a positive integer. Since d = 0, the process BK

is monotonically increasing and hence BK(σK) = K(1 + ε). We can show with Dynkin’s
formula that BK(t) − b

∫ t

0 BK(s)ds is a martingale, and obtain by the optional sampling
theorem that

K = E
(
BK(σK)

) − bE

(∫ σK

0
BK(s)ds

)
= K(1 + ε) − bE

(∫ σK

0
BK(s)ds

)
.
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Since BK(t) ∈ [K,K(1 + ε)] for t ≤ σK we have KE(σK) ≤ E(
∫ σK

0 BK(s)ds) ≤ K(1 +
ε)E(σK), and hence

ε

b(1 + ε)
≤ inf

K≥1
E(σK) ≤ sup

K≥1
E(σK) ≤ ε

b
. (A.2)

From the fact that tBK(t) − ∫ t

0 BK(s)(bs + 1)ds is also a martingale, we obtain that

KE

(
b

2
σ 2

K + σK

)
≤ E

(∫ σK

0
BK(s)(bs + 1)ds

)
= E

(
σKBK(σK)

) = K(1 + ε)E(σK).

This along with (A.2), proves part (B). Parts (C) and (D) follow directly from [2, Theo-
rem 4]. �

Proposition A.3 Let {N(t) = (N1(t),N2(t)) : t ≥ 0} be a N×N-valued pure jump Markov
process with the following transition rates.

mb1 from (m,n) to (m + 1, n)

nb2 from (m,n) to (m,n + 1)

md1(m,n) from (m,n) to (m − 1, n)

nd2(m,n) from (m,n) to (m,n − 1).

Here b1, b2 are positive constants and d1, d2 are functions from N×N to R+. Suppose that
there is a set S ⊂ R+ ×R+ and constants d+

1 , d−
1 , d+

2 , d−
2 ∈ [0,∞] such that

d−
i ≤ inf

{
di(m,n) : (m,n) ∈ S ∩ (N×N)

} ≤ sup
{
di(m,n) : (m,n) ∈ S ∩ (N×N)

} ≤ d+
i ,

for i = 1,2. Assume that (N1(0),N2(0)) ∈ S and let TS be the random time defined by

TS = inf
{
t ≥ 0 : N(t) /∈ S

}
.

Let z+
1 , z−

1 , z+
2 , z−

1 be positive integers satisfying z−
1 ≤ N1(0) ≤ z+

1 and z−
2 ≤ N2(0) ≤ z+

2 .
Then on the same probability space as {N(t) : t ≥ 0}, we can construct four N-valued
processes B+

1 ,B−
1 , B+

2 and B−
2 with laws P(b1, d

−
1 , z+

1 ), P(b1, d
+
1 , z−

1 ), P(b2, d
−
2 , z+

2 ),
P(b2, d

+
2 , z−

1 ) such for all t ≤ TS the following relations are satisfied almost surely,

B−
1 (t) ≤ N1(t) ≤ B+

1 (t) and B−
2 (t) ≤ N2(t) ≤ B+

2 (t).

Proof The proof follows from the direct coupling of these processes. �

We now introduce some notation that will be used in Propositions A.4 and A.5. For
each K ∈ N

∗, let {NK(t) = (NK
1 (t),NK

2 (t)) : t ≥ 0} be the N × N-valued Markov process
described in Proposition A.3. We allow the functions d1 and d2 to depend on K and so
we denote them as dK

1 and dK
2 respectively. Corresponding to any set SK ⊂ R

2 define the
stopping time TSK

by

TSK
= inf

{
t ≥ 0 : NK(t) /∈ SK

}
. (A.3)

Proposition A.4 (Exit of NK
1 from sets away from 0) Suppose that Assumption 2.3 is sat-

isfied. Let SK = [AK,BK) × [CK,DK) for some positive real numbers AK , BK , CK and
DK . Assume that (NK

1 (0),NK
2 (0)) ∈ SK and there exist constants η > 0, ε ∈ (0,1) such that
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[Kη(1 − ε),Kη(1 + ε)] ⊂ [AK,BK). Let d−
1 (η, ε) and d+

1 (η, ε) be positive constants that
satisfy

d−
1 (η, ε) ≤ inf

K∈N∗ inf
{
dK

1 (m,n) : (m,n) ∈ [
Kη(1 − ε),Kη(1 + ε)

] × [CK,DK)
}

(A.4)

and d+
1 (η, ε) ≥ sup

K∈N∗
sup

{
dK

1 (m,n) : (m,n) ∈ [
Kη(1 − ε),Kη(1 + ε)

] × [CK,DK)
}
.

(A.5)

Let TSK
be given by (A.3). Then we have the following.

(A) If b1 < d−
1 (η, ε) and NK

1 (0) ≤ Kη then in a time interval of order (KuK)−1, NK
1 does

not exit the interval [AK,BK) by BK almost surely: For any T > 0

lim
K→∞

P

(
TSK

≤ T

KuK

,NK
1 (TSK

) ≥ BK

)
= 0.

(B) If b1 > d+
1 (η, ε) and NK

1 (0) ≥ Kη then in a time interval of order (KuK)−1, NK
1 does

not exit the interval [AK,BK) by AK almost surely: For any T > 0

lim
K→∞

P

(
TSK

≤ T

KuK

,NK
1 (TSK

) < AK

)
= 0.

(C) Now assume that there exist ε1, ε2 ∈ (0,1) and η1 < η2 such that [Kηi(1− εi),Kηi(1+
εi)] ⊂ [AK,BK) for i = 1,2. Let d+

1 (η1, ε1) be a positive constant that satisfies (A.5)
for η = η1 and ε = ε1. Similarly let d−

1 (η2, ε2) be a positive constant that satisfies (A.4)
for η = η2 and ε = ε2.

If d+
1 (η1, ε1) < b1 < d−

1 (η2, ε2) and NK
1 (0) ∈ [Kη1,Kη2] then in a time interval of

order (KuK)−1, NK
1 does not exit the interval [AK,BK) almost surely: For any T > 0

lim
K→∞

P

(
TSK

≤ T

KuK

,NK
1 (TSK

) /∈ [AK,BK)

)
= 0.

Proof We first prove part (A). Without loss of generality, we can assume that Kη,Kη(1 −
ε),Kη(1 + ε) are positive integers and NK

1 (0) = Kη. Define

σK = inf
{
t ≥ 0 : NK(t) /∈ [

Kη(1 − ε),Kη(1 + ε)
] × [CK,DK)

}
.

In order for the process NK
1 , started at Kη, to go beyond level BK it must exit the inter-

val [Kη(1 − ε),Kη(1 + ε)] from above. The probability to go from Kη to Kη(1 + ε)

is exponentially small. Indeed, since b1 < d−
1 (η, ε), by Proposition A.3 we can con-

struct a coupled subcritical branching process BK+ with law P(b1, d
−
1 (η, ε),K) such that

BK+ (t) ≥ NK
1 (t) for all t ≤ σK almost surely. Hence if γK is the first time BK+ leaves the set

[Kη(1 − ε),Kη(1 + ε)] then from part (A) of Lemma A.2 we obtain that for some c > 0

P
(
NK

1 (σK) > Kη(1 + ε)
) ≤ P

(
BK

+ (γK) > Kη(1 + ε)
) ≤ e−cK . (A.6)

Before NK
1 exits [AK,BK) from above, this process crosses the interval [Kη(1 − ε),Kη]

several times. Let ρK be the number (possibly 0) of these passages in the interval [0,TSK
].

Because of (A.6), for any n ∈ N,

P(ρK < n) ≤ ne−cK . (A.7)
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Let nK = 	1/KuK
2. Then

P

(
TSK

≤ T

KuK

,NK
1 (TSK

) ≥ BK

)

≤ P

(
TSK

≤ T

KuK

,NK
1 (TSK

) ≥ Kη(1 + ε), ρK ≥ nK

)
+ P(ρK < nK)

≤ P

(
nK∑

i=1

τK,i <
T

KuK

)
+ P(ρK < nK), (A.8)

where the τK,1, . . . , τK,nK
denotes the durations of the first nK passages of NK

1 from Kη(1−
ε) to Kη. The last term in the r.h.s. of (A.8) tends to 0 with K due to our choice of nK , (A.7)
and Assumption 2.3. Using the couplings of Proposition A.3, it is possible to dominate NK

1
by a pure birth process with distribution P(b1,0,Kη(1 − ε)) on each of its excursions from
Kη(1 − ε) to Kη. Thus, each τK,i can be bounded above by the time σK,i needed by a pure
birth process with distribution P(b1,0,Kη(1 − ε)) to reach Kη. The σK,i ’s can be chosen
to be i.i.d. and by part (B) of Lemma A.2, infK≥1 E(τK,1) > 0 and supK≥1 E(τ 2

K,1) < ∞.
Applying Chebychev’s inequality we get

P

(
nK∑

i=1

τK,i ≤ T

KuK

)
≤ P

(
1

nK

nK∑

i=1

σK,i −E(σK,i) ≤ T

KuKnK

−E(σK,1)

)

≤ E(σ 2
K,1)

nK(E(σK,1) − T
KuKnK

)+ .

As K → ∞, T/(KuKnK) → 0 and nK → ∞. This proves part (A). Proof of part (B) is
similar and part (C) is a direct consequence of parts (A) and (B). �

Proposition A.5 (Exit of NK
2 from sets close to 0) Suppose that Assumption 2.3 is satisfied.

Let the process {NK(t) = (NK
1 (t),NK

2 (t)) : t ≥ 0} and the set SK = [AK,BK) × [CK,DK)

be as in Proposition A.4. Let [CK,DK) = [1,Kε) for some ε > 0 and let {tK} be any N
∗-

valued sequence such that logK � tK � 1
KuK

. Suppose d−
2 (ε) and d+

2 (ε) are positive con-
stants that satisfy

d−
2 (ε) ≤ inf

K∈N∗ inf
{
dK

2 (m,n) : (m,n) ∈ [AK,BK) × [1,Kε)
}

and d+
2 (ε) ≥ sup

K∈N∗
sup

{
dK

2 (m,n) : (m,n) ∈ [AK,BK) × [1,Kε)
}
.

Let TSK
be given by (A.3). Then we have the following.

(A) If b2 < d−
2 (ε) and NK

2 (0) ≤ Kε/2 then

lim
K→∞

P
(
TSK

≤ tK,NK
2 (TSK

) = 0
) = 1.

(B) If b2 > d+
2 (ε) and NK

2 (0) = 1 then

lim inf
K→∞

P
(
TSK

≤ tK,NK
2 (TSK

) ≥ εK
) ≥ 1 − d+

2 (ε)

b2
,
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lim sup
K→∞

P
(
TSK

≤ tK,NK
2 (TSK

) ≥ εK
) ≤ 1 − d−

2 (ε)

b2
,

lim inf
K→∞

P
(
TSK

≤ tK,NK
2 (TSK

) = 0
) ≥ d−

2 (ε)

b2

and lim sup
K→∞

P
(
TSK

≤ tK,NK
2 (TSK

) = 0
) ≤ d+

2 (ε)

b2
.

Proof We first prove part (A). Since b2 < d−
2 (ε) and NK

2 (0) ≤ Kε/2, Proposition A.3 shows
that NK

2 can be dominated on [0, TSK
] by a subcritical branching process BK+ with distribu-

tion P(b2, d
−
2 (ε), 	Kε/2
). Let

γ +
K = inf

{
t ≥ 0 : BK

+ (t) = 0 or BK
+ (t) ≥ Kε

}
. (A.9)

The coupling ensures that if TSK
≥ γ +

K and BK+ (γ +
K ) = 0 then NK

2 (γ +
K ) = 0 and TSK

=
γ +

K . Since BK+ (t) ∈ (0,Kε) for t ∈ [0, γ +
K ) we can also see that if TSK

< γ +
K then either

NK
2 (TSK

) = 0 or NK
1 (TSK

) /∈ [AK,BK). Hence

P
(
γ +

K ≤ tK,BK
+

(
γ +

K

) = 0
)

≤ P
(
γ +

K ≤ tK,BK
+

(
γ +

K

) = 0, TSK
≥ γ +

K

) + P
(
γ +

K ≤ tK, TSK
< γ +

K

)

≤ P
(
TSK

≤ tK,NK
2 (TSK

) = 0, TSK
= γ +

K

) + P
(
TSK

≤ tK,NK
2 (TSK

) = 0, TSK
< γ +

K

)

+ P
(
TSK

≤ tK,NK
1 (TSK

) /∈ [AK,BK),TSK
< γ +

K

)

≤ P
(
TSK

≤ tK,NK
2 (TSK

) = 0
) + P

(
TSK

≤ tK,NK
1 (TSK

) /∈ [AK,BK)
)
. (A.10)

Due to part (C) of Proposition A.4, the limit of the second term in the r.h.s. of (A.10) is 0.
Since part (C) of Lemma A.2 tells us that the limit of the l.h.s. is 1, this completes the proof
of part (A).

We now prove part (B). Since b2 > d+
2 (ε) > d−

2 (ε) and NK
2 (0) = 1, using Proposi-

tion A.3, we can construct two coupled supercritical branching processes BK− ,BK+ with dis-
tributions P(b2, d

+
2 (ε),1),P(b2, d

−
2 (ε),1) such that BK− (t) ≤ NK

2 (t) ≤ BK+ (t) for all t ≤ TSK

almost surely. Let γ +
K be given by (A.9) and γ −

K be the corresponding stopping time for BK− .
The fact that BK− is below NK

2 until time TSK
, (A.10) and part (C) of Proposition A.4 allow

us to prove that

lim
K→∞

P
(
γ +

K ≤ tK,BK
+

(
γ +

K

) = 0
) ≤ lim inf

K→∞
P
(
TSK

≤ tK,NK
2 (TSK

) = 0
)

(A.11)

and lim sup
K→∞

P
(
TSK

≤ tK,NK
2 (TSK

) = 0
) ≤ lim

K→∞
P
(
γ −

K ≤ tK,BK
−

(
γ −

K

) = 0
)
. (A.12)

Since BK+ is above NK
2 until time TSK

, we obtain

lim sup
K→∞

P
(
TSK

≤ tK, NK
2 (TSK

) ≥ Kε
) ≤ lim

K→∞
P
(
γ +

K ≤ tK, BK
+

(
γ +

K

) ≥ Kε
)
. (A.13)

Finally, by a proof similar to the one of (A.10), we have

lim
K→∞

P
(
γ −

K ≤ tK,BK
−

(
γ −

K

) ≥ Kε
) ≤ lim inf

K→∞
P
(
TSK

≤ tK,NK
2 (TSK

) ≥ Kε
)
. (A.14)
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From part (D) of Lemma A.2 and Assumption 2.3 we can deduce that

1 − lim
K→∞

P
(
γ +

K ≤ tK,BK
+

(
γ +

K

) ≥ Kε
) = lim

K→∞
P
(
γ +

K ≤ tK,BK
+

(
γ +

K

) = 0
) = d−

2 (ε)

b2

and 1 − lim
K→∞

P
(
γ −

K ≤ tK,BK
−

(
γ −

K

) ≥ Kε
) = lim

K→∞
P
(
γ −

K ≤ tK,BK
−

(
γ −

K

) = 0
) = d+

2 (ε)

b2
.

These relations along with (A.11), (A.12), (A.13) and (A.14) prove part (B). �

Remark A.6 Let {Y (t) : t ≥ 0} be the process described in Definition 4.5. Define the N×N-
valued process {NK(t) = (NK

1 (t),NK
2 (t)) : t ≥ 0} by NK

1 (t) = K〈Y K(t),1{x}〉 and NK
2 (t) =

K〈Y K(t),1{y}〉. Then {NK(t) : t ≥ 0} is an instance of the N × N-valued Markov process
considered in Propositions A.4 and A.5 with b1 = b(x), b2 = b(y),

dK
1 (m,n) =

(
d(x) + α(x, x)

m

K
+ α(x, y)

n

K

)
and

dK
2 (m,n) =

(
d(y) + α(y, x)

m

K
+ α(y, y)

n

K

)
.

Using Propositions A.4 and A.5 we now give the proofs of Propositions 4.6 and 4.7.

Proof of Proposition 4.6 Corresponding to the process {Y K(t) : t ≥ 0} let {NK(t) : t ≥ 0}
be the N×N-valued Markov process described in Remark A.6.

We first prove part (A). Since zK
2 = 0, NK

2 (t) = 0 for all t ≥ 0 and K ∈ N
∗. Note that

b(x) − d(x) > 0 and so we can pick a δ > 0 such that b(x) − d(x) − 2α(x, x)δ > 0 and
2δ < ε. Let S ′

K = [Kδ,∞) × {0} and let TS′
K

be given by (A.3). The only way NK can exit
the set S ′

K is by having NK
1 go below Kδ. Therefore

lim
K→∞

P

(
Y K

t {x} < δ for some t ∈
[

0,
T

KuK

])
= lim

K→∞
P

(
TS′

K
≤ T

KuK

,NK
1 (TS′

K
) < Kδ

)
.

(A.15)

Observe that on the set [Kδ,2Kδ] × {0}, the supremum of dK
1 is bounded above by d(x) +

2α(x, x)δ which is less than b(x). Therefore by part (B) of Proposition A.4, the limit on the
r.h.s. of (A.15) is 0. This proves part (A).

For part (B) we can choose an ε > 0 sufficiently small such that n̂x > 2ε. Let η1 = n̂x − ε

and η2 = n̂x + ε. We can find ε1, ε2 > 0 such that [η1(1 − ε1), η1(1 + ε1)] ⊂ [̂nx − 2ε, n̂x),
[η2(1 − ε2), η2(1 + ε2)] ⊂ (̂nx, n̂x + 2ε) and on the set [Kη1(1 − ε1),Kη1(1 + ε1)]× {0} the
supremum of dK

1 is strictly below b(x) while on the set [Kη2(1 − ε2),Kη2(1 + ε2)] × {0}
the infimum of dK

1 is strictly above b(x). Let S ′
K = [K(̂nx − 2ε),K(̂nx + 2ε)) × {0} and let

TS′
K

be given by (A.3). From part (C) of Proposition A.4 we get

lim
K→∞

P

(
TS′

K
≤ T

KuK

,NK
1 (TS′

K
) /∈ [

K(̂nx − 2ε),K(̂nx + 2ε)
)) = 0.

Observe that supp(Y K(t)) = {x} for all t ≥ 0. Hence this limit proves part (B). �

Proof of Proposition 4.7 Corresponding to the process {Y K(t) : t ≥ 0} let {NK(t) : t ≥ 0}
be the N×N-valued Markov process described in Remark A.6.
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We first prove part (A). Note that Fit(y, x) > 0. We can choose an ε0 > 0 such that d(y)+
α(y, x)(̂nx + 2ε0) + 2α(y, y)ε0 = b(y). Now let ε < ε0 and assume that zK

1 < K(̂nx + ε)

and zK
2 > Kε for all K ∈N

∗. Define the set S ′
K = [0,K(̂nx + 2ε))×[Kε/2,∞) and let TS′

K

be given by (A.3). It is easy to see that

lim
K→∞

P

(
Y K

t {y} <
ε

2
for some t ∈

[
0,

T

KuK

])

≤ lim
K→∞

P

(
TS′

K
≤ T

KuK

)

≤ lim
K→∞

[
P

(
TS′

K
≤ T

KuK

,NK
1 (TS′

K
) ≥ K(̂nx + 2ε)

)

+ P

(
TS′

K
≤ T

KuK

,NK
2 (TS′

K
) <

Kε

2

)]
.

On the set [K(̂nx + ε/2),K(̂nx + 3ε/2)] × [Kε/2,∞), the infimum of dK
1 is greater that

b(x). Part (A) of Proposition A.4 shows that the first limit on the right is 0. On the set
[0,K(̂nx +2ε))×[Kε/2,3Kε/4), the supremum of dK

2 is less than b(y). We can use part(B)
of Proposition A.4, to see that the second limit on the right is also 0. This proves part (A).

For part (B), observe that Fit(y, x) < 0 and let ε0 > 0 satisfy d(y)+α(y, x)(̂nx − 2ε0) =
b(y). Pick an ε ∈ (0, ε0). On the set [K(̂nx − 2ε),K(̂nx + 2ε)] × [1,2Kε) the infimum of
dK

2 is greater than b(y). Part (A) of Proposition A.5 proves part (B).
For part (C), note that Fit(y, x) > 0 and let ε0 > 0 satisfy d(y) + α(y, x)(̂nx + 2ε0) +

2α(y, y)ε0 = b(y). Pick an ε ∈ (0, ε0). On the set [K(̂nx − 2ε),K(̂nx + 2ε)] × [1,2Kε) the
supremum of dK

2 is less than d+
2 (ε) := d(y)+α(y, x)(̂nx +2ε)+2α(y, y)ε and the infimum

of dK
2 is greater than d−

2 (ε) := d(y)+α(y, x)(̂nx − 2ε). Both d+
2 (ε) and d−

2 (ε) are less than
b(y). Part (B) of Proposition A.5 proves part (C). �
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