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Abstract This paper concerns an optimal stopping problem driven by the running maxi-
mum of a spectrally negative Lévy process X. More precisely, we are interested in capped
versions of the American lookback optimal stopping problem (Gapeev in J. Appl. Probab.
44:713–731, 2007; Guo and Shepp in J. Appl. Probab. 38:647–658, 2001; Pedersen in
J. Appl. Probab. 37:972–983, 2000), which has its origins in mathematical finance, and pro-
vide semi-explicit solutions in terms of scale functions. The optimal stopping boundary is
characterised by an ordinary first-order differential equation involving scale functions and,
in particular, changes according to the path variation of X. Furthermore, we will link these
capped problems to Peskir’s maximality principle (Peskir in Ann. Probab. 26:1614–1640,
1998).

Keywords Optimal stopping · Optimal stopping boundary · Principle of smooth fit ·
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1 Introduction

Let X = {Xt : t ≥ 0} be a spectrally negative Lévy process defined on a filtered probability
space (Ω, F ,F = {Ft : t ≥ 0},P) satisfying the natural conditions (cf. p. 39, Sect. 1.3 of [4]).
For x ∈ R, denote by Px the probability measure under which X starts at x and for simplicity
write P0 = P. We associate with X the maximum process X = {Xt : t ≥ 0} where Xt := s ∨
sup0≤u≤t Xu for t ≥ 0, x ≤ s. The law under which (X,X) starts at (x, s) is denoted by Px,s .

We are interested in the following optimal stopping problem:

V ∗
ε (x, s) := sup

τ∈M
Ex,s

[
e−qτ

(
eXτ ∧ε − K

)+]
, (1)
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where q ≥ 0,K ≥ 0, ε ∈ (log(K),∞], (x, s) ∈ E := {(x1, s1) ∈ R
2 |x1 ≤ s1}, and M is the

set of all F-stopping times (not necessarily finite). In particular, on {τ = ∞} we set

e−qτ
(
eXτ ∧ε − K

)+ := lim sup
t→∞

e−qt
(
eXt ∧ε − K

)+
.

This problem is, at least in the case ε = ∞, classically associated with mathematical finance.
It arises in the context of pricing American lookback options [9, 10, 19] and its solution may
be viewed as the fair price for such an option. If ε ∈ (log(K),∞), an analogous interpreta-
tion applies for an American lookback option whose payoff is moderated by capping it at a
certain level (a fuller description will be given in Sect. 2).

When K = 0 and ε = ∞, (1) is known as the Shepp-Shiryaev optimal stopping problem
which was first studied by Shepp and Shiryaev [25, 26] for the case when X is a linear
Brownian motion and later by Avram, Kyprianou and Pistorius [2] for the case when X is a
spectrally negative Lévy process. If K = 0 and ε ∈ R then the problem is a capped version
of the Shepp-Shiryaev optimal stopping problem and was considered by Ott [18]. Therefore,
our main focus in this paper will be the case K > 0 which we henceforth assume.

Our objective is to solve (1) for ε = (log(K),∞) by a “guess and verify” technique and
use this to obtain the solution to (1) when ε = ∞ via a limiting procedure. Our work extends
and complements results by Conze and Viswanathan [7], Guo and Shepp [10], Pedersen [19]
and Gapeev [9] all of which solve (1) for ε = ∞ and X a linear Brownian motion or a jump-
diffusion.

As we shall see, the general theory of optimal stopping [22, 28] and the principle of
smooth and continuous fit [1, 17, 21, 22] (and the results in [9, 10, 18, 19]) strongly suggest
that under some assumptions on q and ψ(1), where ψ is the Laplace exponent of X, the
optimal strategy for (1) is of the form

τ ∗
ε = inf

{
t ≥ 0 : Xt − Xt ≥ gε(Xt ) and Xt > log(K)

}
(2)

for some strictly positive solution gε of the differential equation

g′
ε(s) = 1 − esZ(q)(gε(s))

(es − K)qW(q)(gε(s))
on

(
log(K), ε

)
, (3)

where W(q) and Z(q) are the so-called q-scale functions associated with X (see Sect. 3). In
particular, we will find that the optimal stopping boundary s �→ s − gε(s) changes shape
according to the path variation of X. This has already been observed in [18] in the case of
the capped version of the Shepp-Shiryaev optimal stopping problem. It will also turn out
that our solutions exhibit a pattern suggested by Peskir’s maximality principle [20]. In fact,
we will be able to give a reformulation of our main results in terms of Peskir’s maximality
principle.

We conclude this section with an overview of the paper. In Sect. 2 we give an application
of our results in the context or pricing capped American lookback options. Section 3 is
an auxiliary section introducing some necessary notation, followed by Sect. 4 which gives
an overview of the different parameter regimes considered. Sections 5 and 7 deal with the
“guess” part of our “guess and verify” technique and our main results, which correspond to
the “verify” part, are presented in Sect. 6. The proofs of our main results can then be found
in Sect. 9. Finally, Sect. 8 provides an explicit example under the assumption that X is a
linear Brownian motion.
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2 Application to Pricing “Capped” American Lookback Options

The aim of this section is to give some motivation for studying (1).
Consider a financial market consisting of a riskless bond and a risky asset. The value of

the bond B = {Bt : t ≥ 0} evolves deterministically such that

Bt = B0e
rt , B0 > 0, r ≥ 0, t ≥ 0. (4)

The price of the risky asset is modeled as the exponential spectrally negative Lévy process

St = S0e
Xt , S0 > 0, t ≥ 0. (5)

In order to guarantee that our model is free of arbitrage we will assume that ψ(1) = r . If
Xt = μt + σWt , where W = {Wt : t ≥ 0} is a standard Brownian motion, we get the stan-
dard Black-Scholes model for the price of the asset. Extensive empirical research has shown
that this (Gaussian) model is not capable of capturing certain features (such as skewness
and heavy tails) which are commonly encountered in financial data, for example, returns on
stocks. To accommodate for the these problems, an idea, going back to [16], is to replace
the Brownian motion as model for the log-price by a general Lévy process X (cf. [6]). Here
we will restrict ourselves to the model where X is given by a spectrally negative Lévy pro-
cess. This restriction is mainly motivated by analytical tractability. It is worth mentioning,
however, that Carr and Wu [5] as well as Madan and Schoutens [15] have offered empirical
evidence to support the case of a model in which the risky asset is driven by a spectrally
negative Lévy process for appropriate market scenarios.

A capped American lookback option is an option which gives the holder the right to
exercise at any stopping time τ yielding payouts

Lτ := e−ατ
[(

M0 ∨ sup
0≤u≤τ

Su ∧ C
)

− K
]+

, C > M0 ≥ S0, α ≥ 0.

The constant M0 can be viewed as representing the “starting” maximum of the stock price
(say, over some previous period (−t0,0]). The constant C can be interpreted as cap and
moderates the payoff of the option. The value C = ∞ is also allowed and correspond to no
moderation at all. In this case we just get a normal American lookback option. Finally, when
C = ∞ it is necessary to choose α strictly positive to guarantee that it is optimal to stop in
finite time and that the value is finite (cf. Theorem 6.5).

Standard theory of pricing American-type options [27] directs one to solving the optimal
stopping problem

Vr(M0, S0,C) := B0 sup
τ

E
[
B−1

τ Lτ

]
(6)

where the supremum is taken over all F-stopping times. In other words, we want to find a
stopping time which optimizes the expected discounted claim. The right-hand side of (6)
may be rewritten as

sup
τ

Ex,s

[
e−qτ

(
eXτ ∧ε − K

)+]
,

where q = r + α,x = log(S0), s = log(M0) and ε = log(C). Hence, we recognise (1) which
is the problem of interest in this article.
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3 Preliminaries

It is well-known that a spectrally negative Lévy process X is characterised by its Lévy triplet
(γ, σ,Π), where σ ≥ 0, γ ∈ R and Π is a measure on (−∞,0) satisfying the condition∫

(−∞,0)
(1 ∧ x2)Π(dx) < ∞. By the Lévy-Itô decomposition, the latter may be represented

in the form

Xt = σBt − γ t + X
(1)
t + X

(2)
t , (7)

where {Bt : t ≥ 0} is a standard Brownian motion, {X(1)
t : t ≥ 0} is a compound Poisson

process with discontinuities of magnitude bigger than or equal to one and {X(2)
t : t ≥ 0} is a

square integrable martingale with discontinuities of magnitude strictly smaller than one and
the three processes are mutually independent. In particular, if X is of bounded variation, the
decomposition reduces to

Xt = dt − ηt (8)

where d> 0 and {ηt : t ≥ 0} is a driftless subordinator. Further let

ψ(θ) := E
[
eθX1

]
, θ ≥ 0,

be the Laplace exponent of X which is known to take the form

ψ(θ) = −γ θ + 1

2
σ 2θ2 +

∫

(−∞,0)

(
eθx − 1 − θx1{x>−1}

)
Π(dx).

Moreover, ψ is strictly convex and infinitely differentiable and its derivative at zero charac-
terises the asymptotic behavior of X. Specifically, X drifts to ±∞ or oscillates according to
whether ±ψ ′(0+) > 0 or, respectively, ψ ′(0+) = 0. The right-inverse of ψ is defined by

Φ(q) := sup
{
λ ≥ 0 : ψ(λ) = q

}

for q ≥ 0.
For any spectrally negative Lévy process having X0 = 0 we introduce the family of mar-

tingales

exp
(
cXt − ψ(c)t

)
, (9)

defined for any c ∈ R for which ψ(c) = log E[exp(cX1)] < ∞, and further the correspond-
ing family of measures {Pc} with Radon-Nikodym derivatives

dP
c

dP

∣
∣∣
∣

Ft

= exp
(
cXt − ψ(c)t

)
. (10)

For all such c the measure P
c
x will denote the translation of P

c under which X0 = x. In
particular, under P

c
x the process X is still a spectrally negative Lévy process (cf. Theorem 3.9

in [13]).
A special family of functions associated with spectrally negative Lévy processes is that

of scale functions (cf. [13]) which are defined as follows. For q ≥ 0, the q-scale function
W(q) : R −→ [0,∞) is the unique function whose restriction to (0,∞) is continuous and
has Laplace transform

∫ ∞

0
e−θxW(q)(x) dx = 1

ψ(θ) − q
, θ > Φ(q),
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and is defined to be identically zero for x ≤ 0. Equally important is the scale function
Z(q) : R −→ [1,∞) defined by

Z(q)(x) = 1 + q

∫ x

0
W(q)(z) dz.

The passage times of X below and above k ∈ R are denoted by

τ−
k = inf{t > 0 : Xt ≤ k} and

τ+
k = inf{t > 0 : Xt ≥ k}.

We will make use of the following two identities (cf. [2]). For q ≥ 0 and x ∈ (a, b) it holds
that

Ex

[
e−qτ+

b I{τ+
b

<τ−
a }

] = W(q)(x − a)

W(q)(b − a)
, (11)

Ex

[
e−qτ−

a I{τ+
b

>τ−
a }

] = Z(q)(x − a) − W(q)(x − a)
Z(q)(b − a)

W(q)(b − a)
. (12)

For each c ≥ 0 we denote by W
(q)
c the q-scale function with respect to the measure P

c .
A useful formula (cf. [13]) linking the scale function under different measures is given by

W(q)(x) = eΦ(q)xWΦ(q)(x) (13)

for q ≥ 0 and x ≥ 0.
We conclude this section by stating some known regularity properties of scale functions

(cf. [12]).

Smoothness: For all q ≥ 0,

W(q)|(0,∞) ∈

⎧
⎪⎨

⎪⎩

C1(0,∞), if X is of bounded variation and Π has no atoms,

C1(0,∞), if X is of unbounded variation and σ = 0,

C2(0,∞), σ > 0.

Continuity at the origin: For all q ≥ 0,

W(q)(0+) =
{
d−1, if X is of bounded variation,

0, if X is of unbounded variation.
(14)

Right derivative at the origin: For all q ≥ 0,

W
(q)′
+ (0+) =

{
q+Π(−∞,0)

d2 , if σ = 0 and Π(−∞,0) < ∞,
2

σ 2 , if σ > 0 or Π(−∞,0) = ∞,
(15)

where we understand the second case to be +∞ when σ = 0.

For technical reasons, we require for the rest of the paper that W(q) is in C1(0,∞) (and
hence Z(q) ∈ C2(0,∞)). This is ensured by henceforth assuming that Π is atomless when-
ever X is of bounded variation.
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Fig. 1 An illustration of a possible function gε and the corresponding stopping boundary s �→ s − gε(s).
The vertical and horizontal lines are meant to schematically indicate the trace of an excursion of X away
from the running maximum. The candidate optimal strategy τgε then consists of continuing if the height of
the excursion away from the running maximum s does not exceed gε(s), otherwise we stop

4 The Different Parameter Regimes

Our analysis distinguishes between the following parameter regimes.

Main cases:

• q > 0 and ε ∈ (log(K),∞).
• q > 0 ∨ ψ(1) and ε = ∞,

Special cases:

• q = 0 and ε ∈ (log(K),∞),
• q = 0 and ε = ∞,
• 0 < q ≤ ψ(1) and ε = ∞.

5 Candidate Solution for the Main Cases

The aim of this section is to derive a candidate solution to (1) for the main cases via the
principle of smooth and continuous fit [1, 17, 21, 22].

We begin by heuristically motivating a class of stopping times in which we will look for
the optimal stopping time under the assumption that q > 0 and ε ∈ (log(K),∞). Because
e−qt (eXt ∧ε − K)+ = 0 as long as (X,X) is in the set

C∗
II := {

(x, s) ∈ E : s ≤ log(K)
}
,

it is intuitively clear that it is never optimal to stop the process (X,X) in C∗
II . Moreover, as

the process (X,X) can only move upwards by climbing up the diagonal in the (x, s)-plane
(see Fig. 1), it can only leave C∗

II through the point (log(K), log(K)). Therefore, one should
not exercise until the process (X,X) has hit the point (log(K), log(K)). It is possible that
this never happens as X might escape to −∞ before reaching level log(K). On the other
hand, if the process (X,X) is in {(x, s) ∈ E : s ≥ ε}, it should be stopped immediately due
to the discounting as the spatial part of the payout is deterministic and fixed at eε − K in
value. The remaining case is when (X,X) is in {(x, s) ∈ E : log(K) < s < ε} in which
case we can argue in the same way as described on p. 6, Sect. 3 of [20]: The dynamics
of the process (X,X) are such that X remains constant at times when X is undertaking
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an excursion below X. During such periods the discounting in the payoff is detrimental.
One should therefore not allow X to drop too far below X in value as otherwise the time
it will X take to recover to the value of its previous maximum will prove to be costly in
terms of the gain on account of exponential discounting. More specifically, given a current
value s, s ∈ (log(K), ε), of X, there should be a point gε(s) > 0 such that if the process X

reaches or jumps below the value (s −gε(s), s) we should stop instantly (see Fig. 1). In more
mathematical terms, we expect an optimal stopping time of the form

τgε := inf
{
t ≥ 0 : Xt − Xt ≥ gε(Xt ) and Xt > log(K)

}
(16)

for some function gε : (log(K), ε) → (0,∞) such that lims↑ε gε(s) = 0 and gε(s) = 0 for
s > ε. This is illustrated in Fig. 1. For (x, s) ∈ E, we define the value function associated
with τgε by

Vgε (x, s) := Ex,s

[
e−qτgε

(
eXτgε

∧ε − K
)+]

. (17)

Now suppose for the moment that we have chosen a function gε . The strong Markov property
and Theorem 3.12 of [13] then imply that, for (x, s) ∈ C∗

II ,

Vgε (x, s) = e−Φ(q)(log(K)−x)
Elog(K),log(K)

[
e−qτgε

(
eXτgε

∧ε − K
)]

= e−Φ(q)(log(K)−x) lim
s↓log(K)

Vgε (s, s).

This means that Vgε is determined on C∗
II as soon as Vgε is known on

E1 := {
(x, s) ∈ E : s > log(K)

}
.

This leaves us with two key questions:

• How should one choose gε?
• Given gε , what does Vgε (x, s) look like for (x, s) ∈ E1?

These questions can be answered heuristically in the spirit of the method applied in Sect. 3
of [20], but adapted to the case when X is a spectrally negative Lévy processes (rather than
a diffusion). More precisely, as we shall see in more detail in Sect. 7, the general theory of
optimal stopping [22, 28] together with the principle of smooth and continuous fit [1, 17,
21, 22] suggest that gε should be a solution to the ordinary differential equation

g′
ε(s) = 1 − esZ(q)(gε(s))

(es − K)qW(q)(gε(s))
on

(
log(K), ε

)
(18)

and that Vgε (x, s) = (es∧ε −K)Z(q)(x − s + gε(s)) for (x, s) ∈ E1. Note that there might be
many solutions to (18) without an initial/boundary condition. However, we are specifically
looking for the solution satisfying lims↑ε gε(s) = 0. Summing up, we have suggested/found
a candidate stopping time τgε and candidate value function Vgε .

As for the case q > 0 ∨ ψ(1) and ε = ∞, one might let ε tend to infinity which infor-
mally yields a candidate stopping time of the form (16) with gε replaced with g∞, where
g∞ should satisfy (18), but on (log(K),∞) instead of (log(K), ε). The corresponding value
function Vg∞ is then expected to be of the form Vg∞(x, s) = (es −K)Z(q)(x −s +g∞(s)) for
(x, s) ∈ E1. If we are to identify g∞ as a solution to (18), we need an initial/boundary con-
dition which in this case can be found as follows. For s � K the payoff in (1) resembles
the payoff of the Shepp-Shiryaev optimal stopping problem [2, 13, 18] and hence we expect
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s �→ s − g∞(s) to look similar to the optimal boundary of the Shepp-Shiryaev optimal stop-
ping problem for s � K . Therefore, we expect that lims↑∞ g∞(s) = k∗, where k∗ > 0 is the
unique root of the equation Z(q)(s) − qW(q)(s) = 0 (cf. [18]).

These heuristic arguments are made rigorous in the next section.

6 Main Results

6.1 The Different Solutions of the ODE

In this subsection we investigate, for q > 0, the solutions of the ordinary differential equation

g′(s) = 1 − esZ(q)(g(s))

(es − K)qW(q)(g(s))
(19)

whose graph lies in

U := {
(s,H) ∈ R

2 : s > log(K),H > 0
}
.

These solutions will, as already hinted in the previous section, play an important role. But
before we analyse (19), recall that the requirement W(q)(0+) < q−1 is the same as asking
that either X is of unbounded variation or X is of bounded variation with d> q . Similarly,
the condition W(q)(0+) ≥ q−1 means that X is of bounded variation with 0 < d ≤ q . Also
note that W(q)(0+) ≥ q−1 implies q ≥ d> ψ(1).

The existence of solutions to (19) and their behaviour under the different parameter
regimes is summarised in the next result.

Lemma 6.1 Assume that q > 0. For ε ∈ (log(K),∞), we have the following.

(a) If q > ψ(1) and W(q)(0+) < q−1, then there exists a unique solution gε : (log(K), ε) →
(0,∞) to (19) such that lims↑ε gε(s) = 0.

(b) If W(q)(0+) ≥ q−1 (and hence q > ψ(1)), then there exists a unique solution gε :
(log(K), ε ∧ β) → (0,∞) to (19) such that lims↑ε∧β gε(s) = 0. Here, the constant β

is given by β := log(K(1 − d/q)−1) ∈ (0,∞].
(c) If q ≤ ψ(1), then there exists a unique solution gε : (log(K), ε) → (0,∞) to (19) such

that lims↑ε gε(s) = 0.

For ε = ∞, we have in particular:

(d) If q >ψ(1) and W(q)(0+)<q−1, then there exists a unique solution g∞ : (log(K),∞)→
(0,∞) to (19) such that lims↑∞ g∞(s) = k∗, where k∗ ∈ (0,∞) is the unique root of
Z(q)(s) − qW(q)(s) = 0.

(e) If W(q)(0+) ≥ q−1 (and hence q > ψ(1)), then there exists a unique solution g∞ :
(log(K),β) → (0,∞) to (19) such that lims↑β g∞(s) = 0. The constant β is as in (b).

Moreover, all the solutions mentioned in (a)–(e) tend to +∞ as s ↓ log(K). Also note that
if β ≤ ε then the solutions in (b) and (e) coincide. Finally, the qualitative behaviour of the
solutions of (19) is displayed in Figs. 2, 3, and 4.

We will henceforth use the following convention: If a solution to (19) is not defined for
all s ∈ (log(K),∞), we extend it to (log(K),∞) by setting it equal to zero wherever it is
not defined (typically s ≥ ε).
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Fig. 2 A schematic illustration
of the solutions of (19) when
q > ψ(1) and W(q)(0+) = 0.
If q > ψ(1) and W(q)(0+) ∈ (0, q−1),
then the solutions look the same
except that they hit zero with
finite gradient (since
W(q)(0+) > 0)

Fig. 3 A schematic illustration
of the solutions of (19) when
W(q)(0+) ≥ q−1 and ε < β

Fig. 4 A schematic illustration
of the solutions of (19) when
q ≤ ψ(1) and W(q)(0+) = 0.
If q ≤ ψ(1) and W(q)(0+) ∈ (0, q−1),
then the solutions look the same
except that they hit zero with
finite gradient (since
W(q)(0+) > 0)

6.2 Verification of the Case q > 0 and ε ∈ (log(K),∞)

We are now in a position to state our first main result.

Theorem 6.2 Suppose that q > 0 and ε ∈ (log(K),∞). Then the solution to (1) is given by

V ∗
ε (x, s) =

{
(es∧ε − K)Z(q)(x − s + gε(s)), (x, s) ∈ E1,

e−Φ(q)(log(K)−x)Aε, (x, s) ∈ C∗
II ,

(20)

with value Aε ∈ (0,∞) given by

Aε := Elog(K),log(K)

[
e−qτ∗

ε
(
e

Xτ∗
ε

∧ε − K
)] = lim

s↓log(K)

(
es − K

)
Z(q)

(
gε(s)

)
,

and optimal stopping time

τ ∗
ε = inf

{
t ≥ 0 : Xt − Xt ≥ gε(Xt ) and Xt > log(K)

}
, (21)
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where gε is given in Lemma 6.1. Moreover,

Px,s

[
τ ∗
ε < ∞] =

{
1, if ψ ′(0+) ≥ 0,

e−Φ(q)(log(K)−x), if ψ ′(0+) < 0.

Remark 6.3 With the help of excursion theory, it is possible to obtain an alternative represen-
tation for V ∗

ε (s, s) for log(K) ≤ s < ε ∧β . (See Appendix B for the relevant computations.)
Specifically, under the same assumptions as in Theorem 6.2, we have

V ∗
ε (s, s) =

∫ ε∧β

s

(
et − K

)
f̂

(
gε(t)

)
exp

(
−

∫ t

s

W (q)′(gε(u))

W(q)(gε(u))
du

)
dt

+ (
eε∧β − K

)
exp

(
−

∫ ε∧β

s

W(q)′(gε(u))

W(q)(gε(u))
du

)
(22)

where f̂ (u) = Z(q)(u)W(q)′(u)

W(q)(u)
− qW(q)(u) and we understand β = ∞ unless W(q)(0+) ≥ q−1,

in which case we take β = log(K(1 − d/q)−1) as before. In particular, we can identify the
value Aε as the above expression, setting s = log(K).

Remark 6.4 Assume that (x, s) ∈ E such that log(K) < s < ε ∧ β and set β = ∞ unless
W(q)(0+) ≥ q−1. The excursion theoretic calculation that led to (22) contains an additional
result, namely that Px,s[τ ∗

ε = τ+
ε∧β] ∈ (0,1). To see this, note that it follows from the com-

putation in Appendix B that

Ex,s

[
e−qτ∗

ε 1{τ∗
ε =τ+

ε∧β }
] = exp

(
−

∫ ε∧β

s

W(q)′(gε(u))

W(q)(gε(u))
du

)
.

Hence, the claim follows provided the integral on the right-hand side is strictly positive and
finite. Indeed, changing variables according to v = gε(u) and using the explicit form of g′

ε

gives
∫ ε∧β

s

W(q)′(gε(u))

W(q)(gε(u))
du =

∫ gε (s)

0

W(q)′(v)

y(v)
dv,

where y(v) := eg
−1
ε (v)

q(eg
−1
ε (v)−K)

Z(q)(v) − W(q)(v) and g−1
ε is the inverse of gε . Using (14) one

may then deduce that y(v) is bounded on (0, gε(s)] by a constant, say C > 0, and that

∫ gε (s)

0

W(q)′(v)

y(v)
dv ≤ C−1

∫ gε (s)

0
W(q)′(v) dv = C−1

(
W(q)

(
gε(s)

) − W(q)(0)
)
.

This proves the claim. A similar phenomenon in a different context has been observed
in [14].

Let us now discuss some consequences of Theorem 6.2. Firstly, it shows that if
ψ ′(0+) ≥ 0 the stopping problem has an optimal solution in the smaller class of [0,∞)-
valued F-stopping times. On the other hand, if there is a possibility that the process X drifts
to −∞ before reaching log(K), which occurs exactly when ψ ′(0+) < 0, then the probabil-
ity that τ ∗

ε is infinite is strictly positive and τ ∗
ε is only optimal in the class of [0,∞]-valued

F-stopping times.



Optimal Stopping for the Maximum Process 157

Fig. 5 For the two pictures on the left it is assumed that q > 0 and W(q)(0+) = 0, whereas on the right it is
assumed that q > 0, W(q)(0+) ≥ q−1 and ε < β

Secondly, when W(q)(0+) ≥ q−1 or, equivalently, X is of bounded variation with q ≥ d,
the result shows that gε(s) hits the origin at ε ∧ β , where β = log(K(1 − d/q)−1) (see
Fig. 5). Intuitively speaking, if β < ε, the discounting is so strong that it is best to stop even
before reaching the level ε. On the other hand, if β ≥ ε, it would be better to wait longer,
but as there is a cap we are forced to stop as soon as we have reached it.

As already observed in [18], it is also the case in our setting that, if W(q)(0+) < q−1,
the slope of gε at ε (and hence the shape of the optimal boundary s �→ s − gε(s)) changes
according to the path variation of X. Specifically, it holds that

lim
s↑ε

g′
ε(s) =

{
−∞, if X is of unbounded variation.

1 − eεd
(eε−K)q

, if X is of bounded variation.

Next, introduce the sets

C∗
I = C∗

I,ε := {
(x, s) ∈ E : x > log(K), x > s − gε(s)

}
,

D∗ = D∗
ε := {

(x, s) ∈ E : s > log(K), x ≤ s − gε(s)
}
.

(23)

Two examples of gε and the corresponding continuation region C∗
I ∪C∗

II and stopping region
D∗ are pictorially displayed in Fig. 5.

6.3 Verification of the Case q > 0 ∨ ψ(1) and ε = ∞
The analogous result to Theorem 6.2 reads as follows.

Theorem 6.5 Suppose that q > 0 ∨ ψ(1) and ε = ∞. Then the solution to (1) is given by

V ∗
∞(x, s) =

{
(es − K)Z(q)(x − s + g∞(s)), (x, s) ∈ E1,

e−Φ(q)(log(K)−x)A∞, (x, s) ∈ C∗
II ,

(24)
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with value A∞ ∈ (0,∞) given by

A∞ := Elog(K),log(K)

[
e−qτ∗∞

(
e

Xτ∗∞ − K
)] = lim

s↓log(K)

(
es − K

)
Z(q)

(
g∞(s)

)
,

and optimal stopping time

τ ∗
∞ = inf

{
t ≥ 0 : Xt − Xt ≥ g∞(Xt ) and Xt > log(K)

}
, (25)

where g∞ is given in Lemma 6.1. Moreover,

Px,s

[
τ ∗
∞ < ∞] =

{
1, if ψ ′(0+) ≥ 0,

e−Φ(q)(log(K)−x), if ψ ′(0+) < 0.

Remark 6.6 As in Remark 6.3, V ∗∞(s, s) can be identified as the integral in (22) with ε = ∞
for log(K) ≤ s < β in the case W(q)(0+) ≥ q−1. Otherwise it is identified as

V ∗
∞(s, s) =

∫ ∞

s

(
et − K

)
f̂

(
g∞(t)

)
exp

(
−

∫ t

s

W (q)′(g∞(u))

W(q)(g∞(u))
du

)
dt,

where f̂ (u) = Z(q)(u)W(q)′(u)

W(q)(u)
− qW(q)(u) as before. (See again the computations in Ap-

pendix B.) In particular, one obtains an alternative expression for A∞.

Similarly to Theorem 6.2 one sees again that if ψ ′(0+) ≥ 0 there is an optimal stopping
time in the class of all [0,∞)-valued F-stopping times. Furthermore, let C∗

I = C∗
I,∞ and

D∗ = D∗∞ denote the same sets as in (23), but with g∞ instead of gε . The (qualitative)
behaviour of g∞ and the resulting shape of the continuation region C∗

I ∪ C∗
II and stopping

region D∗ are illustrated in Fig. 6.

6.4 The Special Cases

In this subsection we deal with the cases that have not been considered yet, i.e., the special
cases (see Sect. 4).

Lemma 6.7 Suppose that q = 0 and ε ∈ (log(K),∞).

(a) When ψ ′(0+) < 0 and Φ(0) �= 1, then the solution to (1) is given by

V ∗
ε (x, s) =

⎧
⎪⎨

⎪⎩

eε − K, s ≥ ε,

es − K + exΦ(0)

Φ(0)−1 (es(1−Φ(0)) − eε(1−Φ(0))), log(K) ≤ s < ε,

e−Φ(0)(log(K)−x)Aε, s < log(K),

where Aε := KΦ(0)(K1−Φ(0)−eε(1−Φ(0)))

Φ(0)−1 , and τ ∗
ε = τ+

ε . If Φ(0) = 1, then the middle term
on the right-hand side in the expression for V ∗

ε (x, s) has to be replaced by es − K +
ex(ε − s) and Aε by K(ε − log(K)).

(b) When ψ ′(0+) ≥ 0, then solution to (1) is given by V ∗
ε ≡ eε − K and τ ∗

ε = τ+
ε .
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Fig. 6 For the two pictures on the left it is assumed that q > 0 ∨ψ(1) and W(q)(0+) < q−1, whereas on the
right it is assumed that q > 0 ∨ ψ(1) and W(q)(0+) ≥ q−1

Note that although the optimal stopping time is the same in both parts of Lemma 6.7,
in (a) it attains the value infinity with positive probability, whereas in (b) this happens with
probability zero. Hence, in (b) there is actually an optimal stopping time in the class of
[0,∞)-valued F-stopping times.

Lemma 6.8 Suppose that ε = ∞.

(a) Assume that q = 0. If ψ ′(0+) < 0 and Φ(0) > 1, we have

V ∗
∞(x, s) =

{
es − K + exΦ(0)+s(1−Φ(0))

Φ(0)−1 , s ≥ log(K),

e−Φ(0)(log(K)−x) K
Φ(0)−1 , s < log(K),

(26)

and the optimal stopping time is given by τ ∗∞ = ∞. On the other hand, if either
ψ ′(0+) < 0 and Φ(0) ≤ 1 or ψ ′(0+) ≥ 0, then V ∗∞(x, s) ≡ ∞ and τ ∗∞ = ∞.

(b) When 0 < q ≤ ψ(1), we have V ∗∞(x, s) ≡ ∞.

The second part in the Lemma 6.8 is intuitively clear. If 0 < q ≤ ψ(1), then the average
upwards motion of X (and hence X) is stronger than the discounting. On the other hand,
ψ ′(0+) < 0 means that X will eventually drift to −∞ and thus X will eventually attain its
maximum (in the pathwise sense). Of course, we do not know when this happens, but since
there is no discounting we do not mind waiting forever. The other cases in Lemma 6.8 have
a similar interpretation.
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6.5 The Maximality Principle

The maximality principle was understood as a powerful tool to solve a class of stopping
problems for the maximum process associated with a one-dimensional time-homogeneous
diffusion [20]. Although we work with a different class of processes, our main results
(Lemma 6.1, Theorems 6.2, 6.5 and Lemma 6.8(b)) can be reformulated through the maxi-
mality principle.

Lemma 6.9 Suppose that q > 0 and ε ∈ (log(K),∞). Define the set

S := {
g|(log(K),ε) |g is a solution to (19) defined at least on

(
log(K), ε

)}
.

Let g∗
ε be the minimal solution in S . Then the solution to (1) is given by (20) and (21) with

gε replaced by g∗
ε .

In the case that there is a cap, it cannot happen that the value function becomes infinite.
This changes when there is no cap.

Lemma 6.10 Let q > 0 and ε = ∞.

1. Let g∗∞ denote the minimal solution to (19) which does not hit zero (whenever such a
solution exists). Then the solution to (1) is given by (24) and (25) with g∞ replaced
by g∗∞.

2. If every solution to (19) hits zero, then the value function in (1) is given by
V ∗∞(x, s) ≡ ∞.

Remark 6.11

1. We select the minimal solution rather than the maximal one as in [20], since our func-
tions gε(s) are the analogue of s − gε(s) in [20].

2. The “right” boundary conditions which were used to select gε and g∞ from the class of
solutions of (19) (see Sect. 5) are not used in the formulation of Lemmas 6.9 and 6.10.
In fact, by choosing the minimal solution, it follows as a consequence that g∗

ε and g∗∞
have exactly the “right” boundary conditions. Put differently, the “minimality principle”
is a means of selecting the “good” solution from the class of all solutions of (19). This
is a reformulation of [20] in our specific setting.

3. A similar observation is contained in [8], but in a slightly different setting.
4. If ε = ∞, the solutions to (19) that hit zero correspond to the so-called “bad-good”

solutions in [20]; “bad” since they do not give the optimal boundary, “good” as they can
be used to approximate the optimal boundary.

7 Guess via Principle of Smooth and Continuous Fit

Our proofs are essentially based on a “guess and verify” technique. Here we provide the
missing details from Sect. 5 on how to “guess” a candidate solution. The following presen-
tation is an adaptation of the argument of Sect. 3 of [20] to our setting.

Assume that q > 0 and ε ∈ (log(K), ε). Let gε : (log(K), ε) → (0,∞) be continuously
differentiable and define the stopping time τgε as in (16) and let Vgε be as in (17). For sim-
plicity assume from now on that X is of unbounded variation (if X is of bounded variation a
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similar argument based on the principle of continuous fit applies, see [1, 21, 22]). From the
general theory of optimal stopping, [22, 28], we would expect that Vgε satisfies for (x, s) ∈ E

such that log(K) < s < ε the system

Γ Vgε (x, s) = qVgε (x, s) for s − gε(s) < x < s with s fixed,

∂Vgε

∂s
(x, s)|x=s− = 0 (normal reflection), (27)

Vgε (x, s)|x=(s−gε(s))+ = es − K (instantaneous stopping),

where Γ is the infinitesimal generator of the process X under P. For functions h ∈ C∞
0 (R)

and z ∈ R, it is given by

Γ h(z) = −γ h′(z) + σ 2

2
h′′(z)

+
∫

(−∞,0)

(
h(z + y) − h(z) − yh′(z)1{y≥−1}

)
Π(dy). (28)

Here C∞
0 (R) denotes the class of infinitely differentiable functions h on R such that h and

its derivatives vanish at infinity. In addition, the principle of smooth fit (cf. [17, 22]) suggests
that the system above should be complemented by

∂Vgε

∂x
(x, s)|x=(s−gε(s))+ = 0 (smooth fit). (29)

Note that the smooth fit condition is not necessarily part of the general theory, it is imposed
since by the “rule of thumb” outlined in Sect. 7 in [1] one suspects it should hold in this
setting because of path regularity. This belief will be vindicated when we show that sys-
tem (27) and (29) leads to the desired solution. Applying the strong Markov property at τ+

s

and using (11) and (12) shows that

Vgε (x, s) = (
es − K

)(
Z(q)

(
x − s + gε(s)

) − W(q)
(
x − s + gε(s)

) Z(q)(gε(s))

W(q)(gε(s))

)

+ W(q)(x − s + gε(s))

W(q)(gε(s))
Vgε (s, s).

Furthermore, the smooth fit condition (29) implies

0 = lim
x↓s−gε(s)

∂Vgε

∂x
(x, s)

= lim
x↓s−gε(s)

W (q)′(x − s + gε(s))

W(q)(gε(s))

(
Vgε (s, s) − (

es − K
)
Z(q)

(
gε(s)

))
.

By (15) the first factor tends to a strictly positive value or infinity which shows that
Vgε (s, s) = (es −K)Z(q)(gε(s)). This would mean that for all (x, s) ∈ E such that log(K) <

s < ε we have

Vgε (x, s) = (
es − K

)
Z(q)

(
x − s + gε(s)

)
. (30)
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Finally, using the normal reflection condition shows that our candidate function gε should
satisfy the first-order differential equation

g′
ε(s) = 1 − esZ(q)(gε(s))

(es − K)qW(q)(gε(s))
on

(
log(K), ε

)
. (31)

8 Example

Suppose that Xt = (μ− 1
2σ 2)t +σWt , where μ ∈ R, σ > 0 and (Wt)t≥0 is a standard Brow-

nian motion. It is well-known that in this case the scale functions are given by

W(q)(x) = 2

σ 2δ
eγ x sinh(δx) and Z(q)(x) = eγ x cosh(δx) − γ

δ
eγx sinh(δx),

on x ≥ 0, where δ(q) = δ =
√

(
μ

σ 2 − 1
2 )2 + 2q

σ 2 and γ = 1
2 − μ

σ 2 . Additionally, let γ1 := γ − δ

and γ2 := γ + δ = Φ(q) both of which are the roots of the quadratic equation σ 2

2 θ2 +
(μ − σ 2

2 )θ − q = 0 and satisfy γ2 > 0 > γ1. Using the specific form of Z(q) and W(q) it
straightforward to obtain the following result.

Lemma 8.1 Let ε = ∞ and assume that q > ψ(1) or, equivalently, q > μ. Then the solution
to (1) is given by

V ∗
∞(x, s) =

⎧
⎪⎪⎨

⎪⎪⎩

es − K, (x, s) ∈ D∗,
es−K
γ2−γ1

(γ2e
γ1(x−s+g∞(s)) − γ1e

γ2(x−s+g∞(s))), (x, s) ∈ C∗
I

e−γ2(log(K)−x) γ1
γ1−γ2

A∞, (x, s) ∈ C∗
II ,

where A∞ = lims↓log(K)(e
s − K)eγ2g∞(s). The corresponding optimal strategy is given by

τ ∗∞ := inf{t > 0 : Xt − Xt ≥ g∞(Xt ) and Xt > log(K)}, where g∞ is the unique strictly
positive solution to the differential equation

g′
∞(s) = 1 − es

es − K

(
γ −1

2 eγ2g∞(s) − γ −1
1 eγ1g∞(s)

eγ2g∞(s) − eγ1g∞(s)

)
on

(
log(K),∞)

such that lims↑∞ g∞(s) = k∗, where the constant k∗ ∈ (0,∞) is given by

k∗ = 1

γ2 − γ1
log

(
1 − γ −1

1

1 − γ −1
2

)
.

Lemma 8.1 is nothing other than Theorem 2.5 of [19] or Theorem 1 of [10] which shows
that our results are consistent with the existing literature.

9 Proof of Main Results

Proof of Lemma 6.1 Recall that q > 0. We distinguish three cases:

• q > ψ(1) and W(q)(0+) < q−1,
• W(q)(0+) ≥ q−1 (and hence q > ψ(1), see beginning of Sect. 6.1),
• ψ(1) ≥ q .
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Fig. 7 A qualitative picture of
the direction field when q > ψ(1)

and W(q)(0+) = 0. The case
when W(q)(0+) ∈ (0, q−1) is
similar except that the solutions
(finer line) hit zero with finite
slope instead of infinite slope
(since W(q)(0+) > 0)

The Case q > ψ(1) and W(q)(0+) < q−1 The assumptions imply that the function H �→
Z(q)(H) − qW(q)(H) is strictly decreasing on (0,∞) and has a unique root k∗ ∈ (0,∞)

(cf. Proposition 2.1 of [18]). In particular, Z(q)(H)

qW(q)(H)
> 1 for H < k∗, Z(q)(H)

qW(q)(H)
< 1 for H > k∗

and Z(q)(k∗)

qW(q)(k∗)
= 1. It is also known that the mapping H �→ Z(q)(H)

qW(q)(H)
is strictly decreas-

ing on (0,∞) (cf. first Remark in Sect. 3 of [23]) and that limH→∞ Z(q)(H)

qW(q)(H)
= Φ(q)−1

(cf. Lemma 1 of [2]). We will make use of these properties below.
The ordinary differential equation (19) has, at least locally, a unique solution for ev-

ery starting point (s0,H0) ∈ U by the Picard-Lindelöf theorem (cf. Theorem 1.1 in [11]),
on account of local Lipschitz continuity of the field. It is well-known that these unique
local solutions can be extended to their maximal interval of existence (cf. Theorem 3.1
of [11]). Hence, whenever we speak of a solution to (19) from now on, we implicitly mean
the unique maximal one. In order to analyse (19), we sketch its direction field based on vari-
ous qualitative features of the ODE. The 0-isocline, that is, the points (s,H) in U satisfying

1 − esZ(q)(H)

(es−K)qW(q)(H)
= 0, is given by the graph of

f (H) = log

(
K

(
1 − Z(q)(H)

qW(q)(H)

)−1)
, H ∈ (

k∗,∞)
. (32)

Using analytical properties of the map H �→ Z(q)(H)/(qW(q)(H)) given at the beginning
of the paragraph above, one deduces that f is strictly decreasing on (k∗,∞) and that
η := limH↑∞ f (H) = log(K(1 − Φ(q)−1)−1) and limH↓k∗ f (H) = ∞. Moreover, the in-
verse of f , which exists due to the strict monotonicity of f , will be denoted by f −1. Using
the 0-isocline and what was said in the paragraph above, we obtain qualitatively the direction
field shown in Fig. 7.

We continue by investigating two types of solutions. Let s0 > log(K) and let g(s) be the
solution such that g(s0) = k∗ which is defined on the maximal interval of existence, say Ig ,
of g. From the specific form of the direction field and the fact that solutions tend to the
boundary of U (cf. Theorem 3.1 of [11]), we infer that Ig = (log(K), s̃) for some s̃ > s0,
lims↑s̃ g(s) = 0 and lims↓log(K) g(s) = ∞. In other words, the solutions of (19) which in-
tersect the horizontal line H = k∗ come from infinity and eventually hit zero (with infinite
gradient if W(q)(0+) = 0 and with finite gradient if W(q)(0+) ∈ (0, q−1)). Next, suppose
that s0 > η and let g(s) be the solution such that g(s0) = f −1(s0). Similarly to above, we
conclude that Ig = (log(K),∞), lims↑∞ g(s) = ∞ and lims↓log(K) g(s) = ∞. Put differ-
ently, every solution that intersects the 0-isocline comes from infinity and tends to infin-
ity.

Let S − be the set of solutions of (19) whose range contains the value k∗ and S + the set
of solutions of (19) whose graph s �→ g(s) intersects the 0-isocline (see Fig. 7). Both these
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sets are non-empty as explained in the previous paragraph. For fixed s∗ > η define

H ∗
− := sup

{
H ∈ (0,∞) | there exists g ∈ S − such that g

(
s∗) = H

}
,

H ∗
+ := inf

{
H ∈ (0,∞) | there exists g ∈ S + such that g

(
s∗) = H

}
.

It follows that k∗ ≤ H ∗− ≤ H ∗+ ≤ f −1(s∗) and we claim that H ∗− = H ∗+. Suppose this was
false and choose H1,H2 such that H ∗− < H1 < H2 < H ∗+. Denote by g1 the solution to (19)
such that g1(s

∗) = H1 and by g2 the solutions of (19) such that g(s∗) = H2. Both these
solutions must lie between the 0-isocline and the horizontal line H = k∗. In particular, it
holds that Ig1 = Ig2 = (log(K),∞) and

lim
s→∞g1(s) = lim

s→∞g2(s) = k∗. (33)

Furthermore, set F(s,H) := 1− esZ(q)(H)

(es−K)qW(q)(H)
for (s,H) ∈ U and observe that, from earlier

remarks, for fixed s, it is an increasing function in H . Using this and the fact that g1(s) <

g2(s) for all s > log(K) we may write (using the equivalent integral formulation of (19))

g2(s) − g1(s) = H2 − H1 +
∫ s

s∗
F

(
u,g2(u)

) − F
(
u,g1(u)

)
du ≥ H2 − H1 > 0

for s > log(K). This contradicts (33) and hence H ∗− = H ∗+. Denote by g∞ be the solution
to (19) such that g∞(s∗) = H ∗−. By construction, g∞ lies above all the solutions in S − and
below all the solutions in S +. In particular, Ig∞ = (log(K),∞) and lims→∞ g∞(s) = k∗.

So far we have found that there are (at least) three types of solutions of (19) and, in fact,
there are no more, i.e., any solution to (19) either lies in S − ∪ S + or coincides with g∞. To
see this, note that the graph of g∞ splits U into two disjoint sets. If (s,H) ∈ U lies above
the graph of g∞, then the specific form of the field implies that the solution, g say, through
(s,H) must intersect the vertical line s = s∗ and g(s∗) > H ∗+; thus g ∈ S +. Similarly, one
may deduce that the solution through a point lying below the graph of g∞ must intersect the
horizontal line H = k∗ and therefore lies in S −.

Finally, we claim that given ε > log(K), there exists a unique solution gε of (19) such
that Igε = (log(K), ε) and lims↑ε gε(s) = 0. Indeed, define the sets

s+
ε := sup

{
s ∈ (

log(K),∞) ∣∣ ∃g ∈ S − s.t. Ig �
(
log(K), ε

)
and g(s) = k∗},

s−
ε := inf

{
s ∈ (

log(K),∞) ∣
∣ ∃g ∈ S − s.t.

(
log(K), ε

)
� Ig and g(s) = k∗}.

One can then show by a similar argument as above that s−
ε = s+

ε . The solution through s∗+,
denoted gε , is then the desired one.

This whole discussion is summarised pictorially in Fig. 2.

The Case W(q)(0+) ≥ q−1 Similarly to the first case, one sees that under the current as-
sumptions it is still true that f is strictly decreasing on (0,∞) and η := limH↑∞ f (H) =
log(K(1 − Φ(q)−1)−1). Moreover, recalling that W(q)(0+) = d−1, one deduces that
limH↓0 f (H) = β , where

β := log
(
K(1 − d/q)−1

) ∈ (0,∞].
Analogously to the first case, one may use this information to qualitatively draw the direction
field which is shown in Fig. 8.
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Fig. 8 A qualitative picture of
the direction field when
W(q)(0+) ≥ q−1. The constants
η and β are given by
η = log(K(1 − 1/Φ(q))−1) and
β = log(K(1 − d/q)−1)

As in the first case, one may show that there are again three types of solutions; the ones
that intersect the 0-isocline (H �→ f (H)) and never hit zero, the ones that hit zero be-
fore β and the one which lies in between the other two types. One may also show that for
a given ε ∈ (log(K),∞) there exists a unique solution gε such that Igε = (log(K), ε ∧ β)

and lims→ε∧β gε(s) = 0. This is pictorially displayed in Fig. 3.

The Case ψ(1) ≥ q Under this assumption it holds that Φ(q) ≤ 1 which together with
Eq. (8.6) of [13] implies that

Z(q)(H) − qW(q)(H) ≥ Z(q)(H) − q

Φ(q)
W(q)(H) > 0

for H > 0. This in turn means that Z(q)(H)/qW(q)(H) > 1 for H > 0. One may again
draw the direction field and argue along the same line as above to deduce that all solu-
tions of (19) are strictly decreasing, escape to infinity and hit zero (with infinite gradient if
W(q)(0+) = 0 and with finite gradient if W(q)(0+) ∈ (0, q−1)). Again, an argument as in
the first case shows that for a given ε > log(K) there exists a unique solution gε such that
Igε = (log(K), ε) and lims→ε gε(s) = 0. This was already pictorially displayed in Fig. 4. �

Proof of Theorem 6.2 The proof consists five of steps (i)–(v) which will imply the result.
Before we go through these steps, recall that

lim sup
t→∞

e−qt
(
eXt∧ε − K

) = 0 Px,s-a.s. (34)

for (x, s) ∈ E and let τ ∗
ε be given as in (21). Moreover, define the function

Vε(x, s) := (
es∧ε − K

)
Z(q)

(
x − s + gε(s)

)
(35)

for (x, s) ∈ E1 = {(x, s) ∈ E : s > log(K)}. We claim that

(i) Ex,s[e−qtVε(Xt ,Xt )] ≤ Vε(x, s) for (x, s) ∈ E1,

(ii) Vε(x, s) = Ex,s[e−qτ∗
ε (e

Xτ∗
ε

∧ε − K)] for (x, s) ∈ E1.

Verification of (i) We first prove (i) under the assumption that X is of unbounded varia-
tion, that is, W(q)(0+) = 0. To this end, let Γ be the infinitesimal generator of X defined
in (28). Although the function Z(q) is only in C1(R) ∩ C2(R \ {0}) and it is a-priori
not clear whether Γ applied to Z(q) is well-defined, one may, at least formally, define
Γ Z(q) : R \ {0} → R by
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Γ Z(q)(x) := −γZ(q)′(x) + σ 2

2
Z(q)′′(x)

+
∫

(−∞,0)

(
Z(q)(x + y) − Z(q)(x) − yZ(q)′(x)1{y≥−1}

)
Π(dy).

For x < 0 the quantity Γ Z(q)(x) is well-defined and Γ Z(q)(x) = 0. On the other hand, for
x > 0 one needs to check whether the integral part in Γ Z(q)(x) is well-defined. This is done
in Lemma A.1 in the Appendix of [18] which shows that this is indeed the case. Moreover,
as shown in Sect. 3.2 of [23], it holds that

Γ Z(q)(x) = qZ(q)(x), x ∈ (0,∞).

Now fix (x, s) ∈ E1 and define the semimartingale Yt := Xt − Xt + gε(Xt ). Applying an
appropriate version of the Itô-Meyer formula (cf. Theorem 71, Chap. VI of [24]) to Z(q)(Yt )

yields Px,s -a.s.

Z(q)(Yt ) = Z(q)
(
x − s + gε(s)

) + mt +
∫ t

0
Γ Z(q)(Yu) du

+
∫ t

0
Z(q)′(Yu)

(
g′

ε(Xu) − 1
)
dXu,

where

mt =
∫ t

0+
σZ(q)′(Yu−) dBu +

∫ t

0+
Z(q)′(Yu−) dX(2)

u

+
∑

0<u≤t

�Z(q)(Yu) − �XuZ
(q)′(Yu−)1{�Xu≥−1}

−
∫ t

0

∫

(−∞,0)

Z(q)(Yu− + y) − Z(q)(Yu−) − yZ(q)′(Yu−)1{y≥−1} Π(dy)du

and �Xu = Xu − Xu−, �Z(q)(Yu) = Z(q)(Yu) − Z(q)(Yu−). The fact that Γ Z(q) is not de-
fined at zero is not a problem as the time Y spends at zero has zero Lebesgue measure
anyway. By the boundedness of Z(q)′ on (−∞, gε(s)] the first two stochastic integrals in the
expression for mt are zero-mean martingales and by the compensation formula (cf. Corol-
lary 4.6 of [13]) the third and fourth term constitute a zero-mean martingale. Next, use
stochastic integration by parts for semimartingales (cf. Corollary 2 of Theorem 22, Chap. II
of [24]) to deduce that Px,s -a.s.

e−qtVε(Xt ,Xt ) = Vε(x, s) + Mt +
∫ t

0
e−qu

(
eXu∧ε − K

)
(Γ − q)Z(q)(Yu) du

+
∫ t

0
e−qu

(
eXu∧ε − K

)
Z(q)′(Yu)

(
g′

ε(Xu) − 1
)
dXu

+
∫ t

0
e−qu+XuZ(q)(Yu)1{Xu≤ε} dXu (36)

where Mt = ∫ t

0+ e−qu(eXu∧ε − K)dmu is a zero-mean martingale. The first integral is non-
positive since (Γ − q)Z(q)(y) ≤ 0 for all y ∈ R. The last two integrals vanish since the
process Xu only increments when Xu = Xu and by definition of gε . Thus, taking expecta-
tions on both sides of (36) gives (i) if X is of unbounded variation.
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If W(q)(0+) ∈ (0, q−1) or W(q)(0+) ≥ q−1 (X has bounded variation), then the Itô-
Meyer formula is nothing more than an appropriate version of the change of variable for-
mula for Stieltjes integrals and one may obtain (i) in the same way as above. The only
change worth mentioning is that the generator of X takes a different form. Specifically, for
h ∈ C∞

0 (R) and z ∈ R it is given by

Γ h(z) = dh′(z) +
∫

(−∞,0)

(
h(z + y) − h(z)

)
Π(dy).

As above, we want to apply Γ to Z(q) which is only in C1(R \ {0}). However, at least
formally, we may define Γ Z(q) : R \ {0} → R by

Γ Z(q)(x) = dZ(q)′(x) +
∫

(−∞,0)

(
Z(q)(x + y) − Z(q)(x)

)
Π(dy).

This expression is well-defined and Γ Z(q) satisfies all the required properties in the proof
by the results in the Appendix of [18]. This completes the proof of (i).

Verification of (ii) Recalling that (Γ − q)Z(q)(y) = 0 for y > 0, we see from (36) that
Ex,s[e−q(t∧τ∗

ε )V (Xt∧τ∗
ε
,Xt∧τ∗

ε
)] = Vε(x, s) and hence (ii) follows by dominated convergence.

Next, recall Aε := Elog(K),log(K)[e−qτ∗
ε (e

Xτ∗
ε

∧ε − K)] and note that

Aε = lim
s↓log(K)

Es,s

[
e−qτ∗

ε
(
e

Xτ∗
ε

∧ε − K
)] = lim

s↓log(K)

(
es − K

)
Z(q)(gε(s)),

where in the second equality we have used (35). Now extend the definition of the function Vε

to

Vε(x, s) =
{

(es∧ε − K)Z(q)(x − s + gε(s)), (x, s) ∈ E1,

e−Φ(q)(log(K)−x)Aε, (x, s) ∈ C∗
II .

(37)

We claim that

(iii) Vε(x, s) ≥ (es∧ε − K)+ for (x, s) ∈ E,
(iv) Ex,s[e−qtVε(Xt ,Xt )] ≤ Vε(x, s) for (x, s) ∈ E,

(v) Vε(x, s) = Ex,s[e−qτ∗
ε (e

Xτ∗
ε

∧ε − K)] for (x, s) ∈ E.

Condition (iii) is clear from the definition of Z(q) and Vε .

Verification of Condition (iv) In view of (i), it is enough to show (iv) for (x, s) ∈ C∗
II .

In order to prove this, set Yt = e−qtVε(Xt ,Xt ) and observe that

Elog(K),log(K)[Yt ] = lim
s↓log(K)

Es,s[Yt ] ≤ lim
s↓log(K)

Vε(s, s),

where in the inequality we have used (i). Combining this with the strong Markov property,
we obtain on {τ+

log(K) < ∞} for (x, s) ∈ C∗
II ,

Ex,s[Yt |Fτ+
log(K)

] = Yt1{t≤τ+
log(K)

}

+ e
−qτ+

log(K)Elog(K),log(K)[Yt−u]|u=τ+
log(K)

1{t>τ+
log(K)

}
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≤ Yt1{t≤τ+
log(K)

} + Yτ+
log(K)

1{t>τ+
log(K)

}

= Yt∧τ+
log(K)

.

Hence, taking expectations on both sides and using (34) shows that, for (x, s) ∈ C∗
II , we

have Ex,s[Yt ] ≤ Ex,s[Yt∧τ+
log(K)

]. Since Yt∧τ+
log(K)

is a Px,s -martingale for (x, s) ∈ C∗
II (see (9))

the inequality in (iv) follows.

Verification of Condition (v) By the strong Markov property, Theorem 3.12 of [13] and
the definition of Aε and Vε we have

Ex,s

[
e−qτ∗

ε
(
e

Xτ∗
ε

∧ε − K
)+] = e−Φ(q)(log(K)−x)Aε = Vε(x, s)

for (x, s) ∈ C∗
II . This together with (iii) gives assertion (v).

We are now in a position to prove Theorem 6.2. Inequality (iv) and the Markov property
of (X,X) imply that the process e−qtVε(Xt ,Xt ) is a Px,s -supermartingale for (x, s) ∈ E.
Using (34), (iii), Fatou’s Lemma in the second inequality and the supermartingale property
of e−qtVε(Xt ,Xt ) and Doob’s stopping theorem in the third inequality shows that for τ ∈ M,

Ex,s

[
e−qτ

(
eXτ ∧ε − K

)] = Ex,s

[
e−qτ

(
eXτ ∧ε − K

)
1{τ<∞}

]

≤ Ex,s

[
e−qτVε(Xτ ,Xτ )1{τ<∞}

]

≤ lim inf
t→∞ Ex,s

[
e−q(t∧τ)Vε(Xt∧τ ,Xt∧τ )

]

≤ Vε(x, s).

This together with (v) shows that V ∗
ε = Vε and that τ ∗

ε is optimal. �

Proof of Theorem 6.5 Recall that under the current assumptions Lemma A.1 in Appendix A
implies that

lim sup
t→∞

e−qt
(
eXt − K

)+ = 0 Px,s-a.s. (38)

Ex,s

[
sup

0≤t<∞
e−qt+Xt

]
< ∞ (39)

for (x, s) ∈ E, from which it follows that

sup
τ∈M

Ex,s

[
e−qτ

(
eXτ − K

)+]
< ∞

for (x, s) ∈ E. Also, for ε ∈ (log(K),∞), let V ∗
ε ,Aε , τ ∗

ε and gε be as in Theorem 6.2
and g∞, τ ∗∞ as stated in Theorem 6.5. An inspection of the proof of Lemma 6.1 and
Theorem 3.2 of [11] show that g∞(s) = limε↑∞ gε(s) for s > log(K) which in turn
implies that limε↑∞ τ ∗

ε = τ ∗∞ Px,s -a.s. for all (x, s) ∈ E. Furthermore, recall A∞ :=
Elog(K),log(K)[e−qτ∗∞(e

Xτ∗∞ − K)] and define

V∞(x, s) :=
{

(es − K)Z(q)(x − s + g∞(s)), (x, s) ∈ E1,

e−Φ(q)(log(K)−x)A∞, (x, s) ∈ C∗
II .
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Now, using (38), (39) and dominated convergence, we see that

lim
ε→∞Aε = lim

ε→∞ Elog(K),log(K)

[
e−qτ∗

ε
(
e

Xτ∗
ε

∧ε − K
)] = A∞

and

A∞ = lim
s↓log(K)

Es,s

[
e−qτ∗∞

(
e

Xτ∗∞ − K
)]

= lim
s↓log(K)

lim
ε→∞ Es,s

[
e−qτ∗

ε
(
e

Xτ∗
ε − K

)]

= lim
s↓log(K)

(
es − K

)
Z(q)

(
g∞(s)

)
.

It follows in particular that V∞(x, s) = limε↑∞ V ∗
ε (x, s) for (x, s) ∈ E. Next, we claim that

(i) V∞(x, s) ≥ (es − K)+ for (x, s) ∈ E,
(ii) Ex,s[e−qtV∞(Xt ,Xt )] ≤ V∞(x, s) for (x, s) ∈ E,

(iii) V∞(x, s) = Ex,s[e−qτ∗∞(e
Xτ∗∞ − K)] for (x, s) ∈ E.

Condition (i) is clear from the definition of Z(q) and V∞. To prove (ii), use Fatou’s
Lemma and (i) of the proof of Theorem 6.2 to show that

Ex,s

[
e−qtV∞(Xt ,Xt )

] ≤ lim inf
ε→∞ Ex,s

[
e−qtV ∗

ε (Xt ,Xt )
]

≤ lim inf
ε→∞ V ∗

ε (x, s)

= V∞(x, s)

for (x, s) ∈ E. As for (iii), using (38), (39) and dominated convergence we deduce that

V∞(x, s) = lim
ε→∞V ∗

ε (x, s)

= lim
ε→∞ Ex,s

[
e−qτ∗

ε
(
e

Xτ∗
ε

∧ε − K
)]

= Ex,s

[
e−qτ∗∞

(
e

Xτ∗∞ − K
)]

for (x, s) ∈ E. The proof of the theorem is now completed by using (i)–(iii) in the same way
as in the proof of Theorem 6.2 to show that V ∗∞ = V∞ and that τ ∗∞ is optimal. �

Remark 9.1 Instead of proving Theorem 6.5 via a limiting procedure, it would be possible
to prove it analogously to Theorem 6.2 by going through the Itô-Meyer formula. We chose
to present the prove above as it emphasises that the capped version of (1) (ε ∈ (log(K),∞)),
is a building block for the uncapped version of (1) (ε = ∞) rather than an isolated problem
in itself.

Proof of Lemma 6.7 First assume that ψ ′(0+) < 0 and fix (x, s) ∈ E such that log(K) ≤
s ≤ ε. Since the supremum process X is increasing and there is no discounting, it follows
that

V ∗
∞(x, s) = Ex,s

[
e

X
τ
+
ε

] − K = Ex,s

[
eX∞∧ε

] − K = ex
E0,s−x

[
eX∞∧(ε−x)

] − K.
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The fact that ψ ′(0+) < 0 implies that sup0≤u<∞ Xu is exponentially distributed with param-
eter Φ(0) > 0 under P0 (see Eq. (8.2) in [13]). Thus, if Φ(0) �= 1, one calculates

V ∗
∞(x, s) = es + exΦ(0)

Φ(0) − 1

(
es(1−Φ(0)) − eε(1−Φ(0))

) − K.

Similarly, if Φ(0) = 1, we have V ∗
ε (x, s) = es − K + ex(ε − s).

On the other hand, if (x, s) ∈ E such that s < log(K) then an application of the strong
Markov property at τ+

log(K) and Theorem 3.12 of [13] gives

V ∗
∞(x, s) = Ex,s

[(
e

X
τ
+
ε − K

)+]

= e−Φ(0)(log(K)−x)
Elog(K),log(K)

[
e

X
τ
+
ε − K

]
.

The last expression on the right-hand side is known from the computations above and hence
the first part of the proof follows.

As for the second part, it is well-known that ψ ′(0+) ≥ 0 implies that Px,s[τ+
ε < ∞] = 1

for (x, s) ∈ E and since there is no discounting the claim follows. �

Proof of Lemma 6.8 The first part follows by taking limits in Lemma 6.7, since by monotone
convergence we have

V ∗
∞(x, s) = Ex,s

[(
eX∞ − K

)+] = lim
ε↑∞ Ex,s

[(
e

X
τ
+
ε

∧ε − K
)+] = lim

ε↑∞V ∗
ε (x, s).

As for the second part, note that V ∗∞(x, s) ≥ limε↑∞ V ∗
ε (x, s) and hence it is enough to show

that the limit equals infinity. To this end, observe that under the current assumptions we have
limε↑∞ gε(s) = ∞ for s > log(K) (see Lemma 6.1(c)). This in conjunction with the fact that
limz→∞ Z(q)(z) = ∞ shows that, for (x, s) ∈ E such that s > log(K),

lim
ε→∞V ∗

ε (x, s) = lim
ε→∞

(
es∧ε − K

)
Z(q)

(
x − s + gε(s)

) = ∞.

On the other hand, if (x, s) ∈ E such that s ≤ log(K), the claim follows provided that
limε→∞ Aε = ∞. Indeed, using the strong Markov property and Theorem 3.12 of [13] one
may deduce that

Aε ≥ Elog(K),log(K)

[
e−qτ+

s 1{τ+
s <τ∗

ε }
]
V ∗

ε (s, s).

The second factor on the right-hand side increases to +∞ as ε ↑ ∞ by the first part of the
proof and thus the proof is complete. �

Appendix A: An Auxiliary Result

Lemma A.1 If q > ψ(1) we have for (x, s) ∈ E that

Ex,s

[
sup

0≤t<∞
e−qt+Xt

]
< ∞.

In particular, lim supt→∞ e−qt+Xt = 0 Px,s -a.s. for (x, s) ∈ E.
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Proof of Lemma A.1 We want to show that

∫ ∞

0
Px,s

[
sup

0≤t<∞
e−qt+Xt > y

]
dy < ∞. (40)

First note that it is enough to consider the above integral over the interval (es,∞), since
for y < es the probability inside the integral is equal to one. Next, for y > es define γ =
log(y) − x > 0 and write

Px,s

[
sup

0≤t<∞
e−qt+Xt > y

]

= P

[
sup

0≤t<∞

((
sup

0≤u≤t

Xu ∨ (s − x)
)

− γ − qt
)

> 0
]

≤ P[Xt − qt > γ for some t].

The last expression is the probability that the spectrally negative Lévy process X̃t := Xt −qt ,
with Laplace exponent ψX̃(θ) = ψ(θ) − qθ , reaches level γ . Thus,

Px,s

[
sup

0≤t<∞
e−qt+Xt > y

]
≤ e−Φ

X̃
(0)γ = eΦ

X̃
(0)xy−Φ

X̃
(0),

where ΦX̃ is the right-inverse of ψX̃ . Hence, the integral (40) converges provided ΦX̃(0) > 1.
The latter is indeed satisfied because ψX̃ is convex and ψX̃(1) = ψ(1) − q < 0 by assump-
tion.

As for the second assertion, let δ > 0 such that q − δ > ψ(1). By the first part we may
now, for (x, s) ∈ E, infer that sup0≤t<∞ e−(q−δ)t+Xt < ∞ Px,s -a.s. and hence

lim sup
t→∞

e−qt+Xt = lim sup
t→∞

e−δt e−(q−δ)t+Xt = 0. (41)

This completes the proof. �

Appendix B: An Excursion Theoretic Calculation

Our aim is to compute the value Es,s[e−qτ∗
ε (e

Xτ∗
ε

∧ε − K)] for s ∈ [log(K), ε) with the help
of excursion theory (see Remark 6.3). We shall spend a moment setting up some necessary
notation. In doing so, we closely follow pp. 221–223 in [2] and refer the reader to Chaps. 6
and 7 in [3] for background reading. The process Lt := Xt serves as local time at 0 for
the Markov process X − X under P0,0. Write L−1 := {L−1

t : t ≥ 0} for the right-continuous
inverse of L. The Poisson point process of excursions indexed by local time shall be denoted
by {(t, εt ) : t ≥ 0}, where

εt = {
εt (s) := X

L−1
t

− X
L−1

t− +s
: 0 < s < L−1

t − L−1
t−

}

whenever L−1
t − L−1

t− > 0. Accordingly, we refer to a generic excursion as ε(·) (or just ε

for short as appropriate) belonging to the space E of canonical excursions. The intensity
measure of the process {(t, εt ) : t ≥ 0} is given by dt × dn, where n is a measure on the
space of excursions (the excursion measure). A functional of the canonical excursion that
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will be of interest is ε = sups<ζ ε(s), where ζ(ε) = ζ is the length of an excursion. A useful
formula for this functional that we shall make use of is the following (cf. [13], Eq. (8.18)):

n(ε > x) = W ′(x)

W(x)
(42)

provided that x is not a discontinuity point in the derivative of W (which is only a concern
when X is of bounded variation, but we have assumed that in this case Π is atomless and
hence W is continuously differentiable on (0,∞)). Another functional that we will also use
is ρa := inf{s > 0 : ε(s) > a}, the first passage time above a of the canonical excursion ε.

We now proceed with the promised calculation involving excursion theory. First, assume
that log(K) < ε < ∞ and β = ∞. Note that for log(K) ≤ s < ε,

Es,s

[
e−qτ∗

ε
(
e

Xτ∗
ε

∧ε − K
)] = Es,s

[
e−qτ∗

ε
(
e

Xτ∗
ε

∧ε − K
)
1{τ∗

ε <τ+
ε }

]

+ Es,s

[
e−qτ∗

ε
(
e

Xτ∗
ε

∧ε − K
)
1{τ∗

ε =τ+
ε }

]
. (43)

We compute the two terms on the right-hand side separately. An application of the compen-
sation formula in the second equality and using Fubini’s theorem in the third equality gives
for log(K) ≤ s < ε,

Es,s

[
e−qτ∗

ε
(
e

Xτ∗
ε

∧ε − K
)
1{τ∗

ε <τ+
ε }

]

= E

[ ∑

0<t<ε−s

e−qL−1
t−

(
et+s − K

)
1{εu≤gε (u+s)∀u<t}1{εt>gε (t+s)}e−qρgε (s+t)(εt )

]

= E

[∫ ε−s

0
dt e−qL−1

t
(
es+t − K

)
1{εu≤gε (u+s)∀u<t}

∫

E
1{ε>gε(t+s)}e−qρgε (s+t)(ε)n(dε)

]

=
∫ ε−s

0

(
es+t − K

)
e−Φ(q)t

E
[
e−qL−1

t +Φ(q)t1{εu≤gε (u+s)∀u<t}
]
f̂

(
gε(t + s)

)
dt,

where in the first equality the time index runs over local times and the sum is the usual
shorthand for integration with respect to the Poisson counting measure of excursions, and

f̂ (u) = Z(q)(u)W(q)′(u)

W(q)(u)
− qW(q)(u) is an expression taken from Theorem 1 in [2]. Next, note

that L−1
t is a stopping time and hence a change of measure according to (10) shows that the

expectation inside the integral can be written as

P
Φ(q)

[
εu ≤ gε(u + s) for all u < t

]
.

Using the properties of the Poisson point process of excursions (indexed by local time) and
with the help of (42) and (13) we may deduce

P
Φ(q)

[
εu ≤ gε(u + s) for all u < t

]

= exp

(
−

∫ t

0
nΦ(q)

(
ε > gε(u + s)

)
du

)

= exp

(
Φ(q)t −

∫ t

0

W(q)′(gε(u + s))

W(q)(gε(u + s))
du

)
,



Optimal Stopping for the Maximum Process 173

where nΦ(q) denotes the excursion measure associated with X under P
Φ(q). By a change of

variables we finally get for log(K) ≤ s < ε,

Es,s

[
e−qτ∗

ε
(
e

Xτ∗
ε

∧ε − K
)
1{τ∗

ε <τ+
ε }

]

=
∫ ε

s

(
et − K

)
f̂

(
gε(t)

)
exp

(
−

∫ t

s

W (q)′(gε(u))

W(q)(gε(u))
du

)
dt.

As for the second term in (43), similarly to the computation of the first term, we obtain for
log(K) ≤ s < ε,

Es,s

[
e−qτ∗

ε
(
e

Xτ∗
ε

∧ε − K
)
1{τ∗

ε =τ+
ε }

]

= (
eε − K

)
E

[
e−qL−1

ε−s 1{εt ≤gε(t+s)∀ t<ε−s}
]

= (
eε − K

)
e−Φ(q)(ε−s)

P
Φ(q)

[
εt ≤ gε(t + s)∀ t < ε − s

]

= (
eε − K

)
exp

(
−

∫ ε

s

W (q)′(gε(u))

W(q)(gε(u))
du

)
.

Adding the two terms up gives the expression in Remark 6.3.
In the case that ε = β = ∞ the second term on the right hand side of (43) is not needed.

In the case that β = log(K(1 − d/q)−1) < ε, the cap ε may effectively be replaced by β

in (43).
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