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Abstract The grade (purity) filtration of a finitely generated left module M over an Auslan-
der regular ring D is a built-in classification of the elements of M in terms of their grades (or
their (co)dimensions if D is also a Cohen-Macaulay ring). In this paper, we show how grade
filtration can be explicitly characterized by means of elementary methods of homological
algebra. Our approach avoids using sophisticated methods such as bidualizing complexes,
spectral sequences, associated cohomology, or Spencer cohomology used in the literature
of algebraic analysis. Efficient implementations dedicated to the computation of grade fil-
tration can then be easily developed in the standard computer algebra systems. Moreover,
this characterization of grade filtration is shown to induce a new presentation of the left
D-module M which is defined by a block-triangular matrix formed by equidimensional
diagonal blocks. The linear functional system associated with the left D-module M can
then be integrated in cascade by successively solving inhomogeneous linear functional sys-
tems defined by equidimensional homogeneous linear systems of increasing dimension. This
equivalent linear system generally simplifies the computation of closed-form solutions of the
original linear system. In particular, many classes of underdetermined/overdetermined linear
systems of partial differential equations can be explicitly integrated by the Maple package
PURITYFILTRATION and the GAP package homalg, but not by the standard PDE solvers
of computer algebra systems such as Maple.
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1 Introduction

The theory of linear functional systems such as linear systems of partial differential
(PD)/time-delay/difference equations is a rich branch of mathematics which finds its foun-
dation in mathematical physics. Different analytic methods can be used to study determined
linear functional systems (see, e.g., [18]), namely linear functional systems containing as
many unknown functions as functionally independent linear equations. Overdetermined
(resp., underdetermined) linear functional systems, namely linear functional systems con-
taining fewer (resp., more) unknown functions than functionally independent linear equa-
tions, also find important applications in mathematical physics (see, e.g., [13, 37]), in dif-
ferential geometry (see, e.g., [23, 37]), or in mathematical systems theory (see, e.g., [14, 35,
37, 39]). Formal methods for the study of overdetermined linear systems of PD equations
can be traced back to the works of Cartan, Riquier, and Janet [26]. A modern approach was
developed in the sixties by Spencer and his collaborators (see, e.g., [37, 52]). Gröbner bases
and Janet bases [12, 26] over a noncommutative polynomial ring of functional operators are
nowadays two fundamental computational tools used for the formal study of overdetermined
linear functional systems (see, e.g., [14, 30, 48]).

Despite these important computational methods, computer algebra systems still have
many difficulties to find closed-form solutions of overdetermined or undetermined linear
functional systems (when they exist), for instance of linear systems of PD equations. One of
the main reasons is that linear functional systems generally mix together unknown functions
which satisfy linear functional systems of different dimension. For instance, the integration
of the unknown functions of an overdetermined linear systems of PD equations depends
on arbitrary functions of a certain number of the independent variables (due to the Cartan-
Kähler-Janet theorem which generalizes the well-known Cauchy-Kowalevski theorem) (see,
e.g., [26, 37, 52]). The maximal number of independent variables which appear in these ar-
bitrary functions (sometimes plus the number of independent variables) is called the dimen-
sion of the system. Hence, an important issue for the study of overdetermined linear func-
tional systems is to determine the unknown functions or their linear functional combinations
which satisfy a linear functional system of a given dimension. This problem, related to the
equidimensional decomposition of algebraic varieties (see, e.g., [19, 24, 49]), has lengthly
been studied within algebraic analysis and algebraic/analytic D-module theory [9–11, 32]
by Roos [49], Sato and Kashiwara [28, 29], Björk [9, 10], Ginsburg [22], and others. This
problem corresponds to the so-called grade filtration {Mi}i≥0 (also called bidualizing or pu-
rity filtration) of the finitely generated left D-module M which defines the linear system
of PD equations, where D is a noncommutative polynomial ring of PD operators satisfying
certain regularity conditions (e.g., D is an Auslander regular ring). This descending filtra-
tion of M is defined by the left D-submodules Mi ’s of M formed by the elements of M

having a codimension (or a grade) greater or equal to i. The existence of the grade filtration
of a finitely generated left/right module M over an Auslander regular ring D is proved in
[9, 10, 22, 31, 49] (resp., in [28, 29]) using bidualizing complexes and spectral sequence ar-
guments (resp., derived categories, derived functors, and associated cohomology [24]), i.e.,
by means of sophisticated homological algebra techniques (resp., modern developments of
category theory). See also [37, 38] (resp., [36]) for a recent study of grade filtration based
on Spencer cohomology and Spencer sequences (resp., Gabriel localization for commuta-
tive polynomial rings). Despite the difficulties to compute the spectral sequences defining
the grade filtration, these were recently made constructive in [2, 3] thanks to the new concept
of generalized morphisms, and they were implemented in the homalg package [8] of the
system GAP [21] (homalg is a package dedicated to homological algebra oriented com-
putations). To our knowledge, it is the first implementation of the computation of the grade
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filtration in a computer algebra system. We refer the reader to [19, 24, 49] (resp., [9, 10,
22, 28]) for applications of grade filtration to algebraic geometry (resp., algebraic analysis).
Finally, techniques based on grade filtration have recently been introduced in mathematical
systems theory (see [4, 36–42, 44]).

The purpose of this paper is to develop a new algorithm which computes the grade fil-
tration of a finitely generated left module M over a regular domain D satisfying a slightly
weaker condition (see (38)) than the standard Auslander condition (see, e.g., [9, 10]). In par-
ticular, many important classes of noncommutative polynomial rings of functional systems
satisfy these conditions. The first benefit of this new algorithm is that it is an extension of
the methods developed in [1, 14, 29, 37, 39] for the classification of modules (torsion mod-
ules, modules with torsion submodules, torsion-free/reflexive/projective modules). These
methods have recently been applied to solve the problem of parametrizing underdetermined
linear functional systems by means of arbitrary functions (potentials) studied in mathemat-
ical physics and in control theory (see [14, 15, 20, 37, 39, 54]). The second benefit of this
algorithm is that it is conceptually much simpler than the algorithms based on bidualizing
complexes, spectral sequences, and associated cohomology. In particular, it can be easily
implemented in any computer algebra system in which Gröbner basis techniques are avail-
able (e.g., Maple, Mathematica, Singular, Macaulay2, Magma). The corresponding algo-
rithm was implemented by the author in the Maple package PURITYFILTRATION [45] built
upon OREMODULES [15]. Using the PURITYFILTRATION package, classes of overdeter-
mined/underdetermined linear systems of PD equations which cannot be directly integrated
by Maple can be explicitly solved [45] (see also the forthcoming homalg based package
D-modules). Moreover, the algorithm has also been implemented recently in the homalg
project package AbelianSystems [7] developed in collaboration with M. Barakat (Uni-
versity of Kaiserslautern). This implementation is much faster than the original homalg
command based on spectral sequence computation, and thus it can be used to study larger
examples. More recently, the algorithms developed in this paper were implemented in the
Singular package purityfiltration.lib [51]. We hope that the results developed in
this paper and demonstrated by the PURITYFILTRATION, AbelianSystems, and puri-
tyfiltration.lib packages will be used in the future to improve standard computer
algebra systems such as Maple or Mathematica for the symbolic integration of overdeter-
mined/underdetermined linear functional systems. The third benefit of this new approach
is that it gives a filtration-adapted presentation matrix which has a remarkably simple form
(block-diagonal and single off-diagonal). It does not seem that it can easily be obtained
from the classical black-box spectral sequence approach [2, 9, 10, 22, 49]. The last benefit
is that this algorithm holds for computable abelian categories [6], and thus it can be used
in different contexts such as the computation of the grade filtration of coherent sheaves over
projective schemes as shown in the homalg project package Sheaves [5].

Since techniques of module theory, homological algebra, and algebraic analysis are not
largely well-known, they are summarized in Sect. 2. The main results about grade filtration
are developed in Sect. 3. In Sect. 4, we show how the concept of grade filtration can be used
to compute an equivalent block-triangular form of a linear functional system whose diagonal
blocks define equidimensional linear functional systems. The integration of the original sys-
tem is then equivalent to a cascade integration of inhomogeneous linear functional systems,
the corresponding homogeneous linear systems being equidimensional and of increasing
dimension (e.g., we first integrate a 0-dimensional/holonomic homogeneous linear system,
then an inhomogeneous linear systems defined by a 1-dimensional/subholonomic homoge-
neous linear system, . . . ). Finally, in Sect. 5, we briefly give a few extensions of the results
obtained in Sect. 3.
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The paper was written in a self-contained way so that everyone willing to implement the
computation of the grade filtration in a computer algebra system will find there all the nec-
essary materials. To emphasize the main results, we shortly summarize the main ideas and
results. Within the algebraic analysis approach (see Sect. 2), a linear system defines a finitely
presented left module M over a ring D that we shall suppose to be an Auslander regular of
global dimension n (see Definition 8). To compute the grade filtration {ti (M)}i=0,...,n+1 of M

defined by the left D-submodule ti (M) of M formed by the elements of M of grade greater
than or equal to i (see (21)), we first need to consider a free resolution (see 6 of Defini-
tion 2) of M of the form (24), then dualize it to get the complex (25), and finally consider
the beginning of a free resolution of the cokernel of each homomorphism Rii . defining (25)
(see (27)). The complex (25) then induces a chain complex (32) between the free resolutions
of two consecutive right D-modules Nii = cokerD(Rii .) (the so-called Auslander transpose
D-modules). By truncating (32) to get the commutative diagram (33) and by dualizing it,
we obtain the commutative diagram (47) formed by horizontal complexes. The defect of
exactness of the horizontal complex at D1×p0i is the left D-module Ti defined by (48), and
(47) induces a left D-homomorphism γ(i+1)i : Ti+1 −→ Ti defined by (49) for i = 1, . . . , n,
and γ10 : T1 −→ M defined by (50). The constructions of the left D-modules Ti ’s and of
the left D-homomorphisms γ(i+1)i ’s are summarized in Algorithm 1. The condition (38) of
the Auslander regular ring D implies that the γ(i+1)i ’s are injective for i = 0, . . . , n. We can
then consider the left D-submodule Mi = (γ10 ◦ γ21 ◦ γ32 ◦ · · · ◦ γi(i−1))(Ti) of M = M0 for
i = 1, . . . , n (see (56)). Theorem 11 proves that ti (M) = Mi for i = 0, . . . , n, which gives
a complete characterization of the elements ti (M)’s of the grade filtration (58) of M as
images of injective homomorphisms. The construction of the grade filtration of M is sum-
marized in Algorithm 2. Now, if we want to characterize the Mi ’s by means of finite presen-
tations, we first need to consider the first two syzygy modules of cokerD(.R0i ) of the left D-
homomorphisms .R0i defined in (47) to get the commutative diagram (70) formed by exact
horizontal sequences. Combining (47) and (70), we obtain Fig. 1, which induces a sequence
of left D-modules Li ’s isomorphic to Ti defined by (66), and the left D-homomorphisms
γ(i+1)i : Ti+1 −→ Ti induce the injective left D-homomorphisms γ (i+1)i : Li+1 −→ Li and
γ 10 : L1 −→ M respectively defined by (73) and (77). Finally, using Baer’s extension tech-
niques (see Sect. 2.2) and the presentation of the i-pure left D-module coker γ (i+1)i (see
Definition 7), which is isomorphic to ti (M)/ti+1(M), we obtain a new presentation matrix
R of M defined by (91). The equidimensional decomposition of M clearly appears on this
filtration-adapted presentation (block-diagonal and single off-diagonal) and it is particularly
interesting for the symbolic integration of the linear PD system defined by M when D is a
ring of PD operators.

2 Algebraic Analysis Approach to Linear Functional Systems

In what follows, D will always be a noetherian ring, i.e., a ring D that is both a left and
a right noetherian ring (see, e.g., [50]). Moreover, the set of q × p matrices with entries in
D is denoted by Dq×p , and the unit of the ring Dp×p by Ip . If F is a left D-module (e.g.,
F = D) and R ∈ Dq×p , then .R and R. are respectively the left D-homomorphism (i.e., the
left D-linear map) and the abelian group homomorphism (i.e., Z-homomorphism) defined
by:

.R : D1×q −→ D1×p

λ = (λ1 . . . λq) �−→ λR,

R. : F p −→ F q

η = (η1 . . . ηp)T �−→ Rη.



Grade Filtration of Linear Functional Systems 31

With the above notations, we call linear system an abelian group of the form:

kerF (R.) = {
η ∈ F p | Rη = 0

}
.

The study of kerF (R.) in terms of the finitely presented left D-module

M = D1×p/
(
D1×q R

)

and of the left D-module F was first developed in [33]. This approach is nowadays the cor-
nerstone of the algebraic D-module theory (or algebraic analysis), developed by Bernstein
and Sato’s school (particularly by Kashiwara), in which D stands for a noncommutative ring
of partial differential (PD) operators with coefficients in a differential ring (see, e.g., [9–11,
29, 32]). More precisely, if A is a ring and {δi}i=1,...,n are n commuting derivations of A,
namely, δi : A −→ A satisfies

∀a1, a2 ∈ A,

{
δi(a1 + a2) = δi(a1) + δi(a2),

δi(a1a2) = δi(a1)a2 + a1δi(a2),

for all i = 1, . . . , n, and δi ◦ δj = δj ◦ δi for all i, j = 1, . . . , n, then the ring D =
A〈∂1, . . . , ∂n〉 of PD operators with coefficients in A is the noncommutative polynomial
ring in ∂1, . . . , ∂n with coefficients in A which satisfies the relations:

∀i = 1, . . . , n, ∀a ∈ A, ∂ia = a∂i + δi(a), ∀i, j = 1, . . . , n, ∂i∂j = ∂j ∂i .

Prototypical examples of a ring D of PD operators are the so-called Weyl algebras An(k)

and Bn(k) of PD operators with respectively coefficients in A = k[x1, . . . , xn] and in A =
k(x1, . . . , xn), where k is a field (that we shall suppose to be of characteristic 0), D̂n(k),
or Dn(k

′) the rings of PD operators with coefficients in the ring of formal power series
A = k�x1, . . . , xn� or in the ring of locally convergent power series A = k′{x1, . . . , xn},
where k′ = R or C. These rings are noetherian domains (see, e.g., [9, 11, 32]). If D is a ring
of PD operators and F a left D-module (e.g., F = A), then R ∈ Dq×p is a matrix of PD
operators and the linear system kerF (R.) is the k-vector space formed by the F -solutions of
the linear system of PD equations Rη = 0. Within algebraic analysis, more general classes
of noncommutative polynomial rings of functional operators can be considered such as Ore
algebras as explained in [14], which allows one to consider a more general class of linear
functional systems.

Let us now explain basic ideas of algebraic analysis. Let π : D1×p −→ M be the left
D-homomorphism which maps λ ∈ D1×p to its residue class π(λ) ∈ M , and {fj }j=1,...,p the
standard basis of D1×p , namely, fj is the row vector of length p with 1 at the j th position
and 0 elsewhere. Then, {yj = π(fj )}j=1,...,p is a family of generators of M since for every
m ∈ M , there exists λ = (λ1 . . . λp) ∈ D1×p such that m = π(λ), which yields:

m = π(λ) = π

(
p∑

j=1

λjfj

)

=
p∑

j=1

λjπ(fj ) =
p∑

j=1

λjyj .

The family of generators {yj }j=1,...,p of M satisfies D-linear relations: if Ri• denotes the ith
row of R, then Ri• ∈ D1×qR, which yields π(Ri•) = 0, and thus:

∀i = 1, . . . , q, π(Ri•) = π

(
p∑

j=1

Rijfj

)

=
p∑

j=1

Rijπ(fj ) =
p∑

j=1

Rijyj = 0.
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If y = (y1 . . . yp)T ∈ Mp , then the above relations can be rewritten as Ry = 0.
If F is a left D-module, homD(M, F ) the abelian group of left D-homomorphisms from

M to F , and φ ∈ homD(M, F ), then η = (φ(y1) . . . φ(yp))T ∈ F p and

∀i = 1, . . . , q,

p∑

j=1

Rijηj =
p∑

j=1

Rijφ(yj ) = φ

(
p∑

j=1

Rijyj

)

= φ(0) = 0,

i.e., η ∈ kerF (R.). Conversely, if η ∈ kerF (R.), then we can define the map φη : M −→ F
by φη(π(λ)) = λη for all λ ∈ D1×p . Indeed, φη is well-defined: if π(λ) = π(λ′), then λ =
λ′ + μR for a certain μ ∈ D1×q , which yields:

φη

(
π(λ)

) = λη = λ′η + μRη = λ′η.

The map φη is clearly left D-linear and φη(0) = 0 since φη(π(μR)) = μ(Rη) = 0 for all
μ ∈ D1×q , and thus φη ∈ homD(M, F ). If we introduce the following abelian group homo-
morphisms

σ : kerF (R.) −→ homD(M, F )

η �−→ φη,

χ : homD(M, F ) −→ kerF (R.)

φ �−→ (
φ(y1) . . . φ(yp)

)T
,

then χ ◦σ = idkerF (R.) since φη(yj ) = ηj for all j = 1, . . . , p, and σ ◦χ = idhomD(M,F ) since
(σ ◦ χ)(φ) = φ(φ(y1)...φ(yp))T = φ, which shows that χ−1 = σ , and proves that kerF (R.)

and homD(M, F ) are isomorphic as abelian groups, which is denoted by kerF (R.) ∼=
homD(M, F ).

Theorem 1 ([33]) With the previous notations, we have:

kerF (R.) ∼= homD(M, F ).

Theorem 1 shows that the linear system kerF (R.) can be intrinsically studied by means
of the two left D-modules M = D1×p/(D1×q R) and F . The matrix R is a particular finite
presentation of the left D-module M defined up to isomorphism (see, e.g., [50]). Hence,
we can study the solution space homD(M, F ) independently of the particular embedding of
kerF (R.) into F p . A second benefit of Theorem 1 is that the linear system kerF (R.) can be
studied by means of the properties of the left D-modules M and F .

Definition 1 ([50]) Let D be a noetherian ring and M a finitely generated left D-module.

1. M is free if there exists r ∈ N = {0,1,2, . . .} such that M ∼= D1×r . Then, r is then called
the rank of M .

2. M is projective if there exist r ∈ N and a left D-module N such that

M ⊕ N ∼= D1×r ,

where ⊕ denotes the direct sum of left D-modules.
3. M is reflexive if the left D-homomorphism ε : M −→ homD(homD(M,D),D), defined

by ε(m)(f ) = f (m) for all m ∈ M and for all f ∈ homD(M,D), is an isomorphism.
4. If D is a domain, then M is torsion-free if the torsion left D-submodule of M defined by

t (M) = {
m ∈ M | ∃d ∈ D \ {0} : dm = 0

}

is reduced to 0, i.e., if t (M) = 0.
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5. If D is a domain, then M is torsion if t (M) = M , i.e., if every element of M is a torsion
element.

Theorem 2 ([50]) A free module is projective, a projective module is reflexive, and a reflex-
ive module is torsion-free.

In the next sections, we summarize basic homological techniques which will be used to
algorithmically test whether or not M admits torsion elements or is torsion-free, reflexive, or
projective (see Theorem 5 thereafter). These techniques will then be generalized in Sect. 3
to obtain an explicit characterization of the so-called grade filtration of M .

2.1 Basic Homological Algebra

Let us shortly recall a few definitions of homological algebra (see, e.g., [50]).

Definition 2

1. A complex, denoted by

M• · · · di+2−−→ Mi+1
di+1−−→ Mi

di−→ Mi−1
di−1−−→ · · · , (1)

is a sequence of left (resp., right) D-modules Mi and of left (resp., right) D-homomor-
phisms di : Mi −→ Mi−1 that satisfy imdi+1 ⊆ kerdi , i.e.:

∀i ∈ Z, di ◦ di+1 = 0.

2. The defect of exactness of (1) at Mi is the left/right D-module defined by:

Hi(M•) � kerdi/ imdi+1.

3. The complex (1) is exact at Mi if Hi(M•) = 0, i.e., if kerdi = imdi+1, and exact if
kerdi = imdi+1 for all i ∈ Z. An exact complex is called an exact sequence.

4. An exact sequence of the form

0 −→ M ′ f−→ M
g−→ M ′′ −→ 0, (2)

i.e., f is injective, kerg = imf and g is surjective, is called a short exact sequence.
5. A projective resolution of a left D-module M is an exact sequence of the form

· · · d4−→ P3
d3−→ P2

d2−→ P1
d1−→ P0

d0−→ M −→ 0,

where the Pi ’s are projective left D-modules, and di ∈ homD(Pi,Pi−1) for i ≥ 1, and
homD(P0,M). The smallest n ∈ N such that Pm = 0 for all m > n is called the length of
the projective resolution of M . Similarly for right D-modules.

6. A free resolution of a finitely generated left D-module M is an exact sequence of the
form

· · · .R3−→ D1×p2
.R2−→ D1×p1

.R1−→ D1×p0
π−→ M −→ 0, (3)

where Ri ∈ Dpi×pi−1 and .Ri : D1×pi −→ D1×pi−1 is defined by (.Ri)(λ) = λRi .
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7. A free resolution of a finitely generated right D-module N is an exact sequence of the
form

0 ←− N
κ←− Dq0

S1.←− Dq1
S2.←− Dq2

S3.←− · · · , (4)

where Si ∈ Dqi−1×qi and Si. : Dqi −→ Dqi−1 is defined by (Si .)(η) = Siη.

Example 1 If D is a noetherian domain and M a finitely generated left D-module, then we
have the following short exact sequence of left D-modules:

0 −→ t (M)
j−→ M

ρ−→ M/t(M) −→ 0. (5)

Remark 1 A module M is not defined by a unique projective/free resolution: if

0 −→ kerπ −→ P
π−→ M −→ 0, 0 −→ kerπ ′ −→ P ′ π ′−→ M −→ 0

are two exact sequences, where P and P ′ are projective modules, then Fitting’s lemma
asserts that kerπ ⊕ P ′ ∼= kerπ ′ ⊕ P (see, e.g., [50]). This isomorphism does not generally
imply that kerπ ∼= kerπ ′. We say that kerπ depends on M up to a projective equivalence
(see, e.g., [50]). Similarly, if we consider two finite presentations of M ,

D1×p1
.R1−→ D1×p0

π−→ M −→ 0, D1×p′
1

.R′
1−→ D1×p′

0
π ′−→ M −→ 0,

then kerD(.R1) ⊕ D1×(p′
1+p0) ∼= kerD(.R′

1) ⊕ D1×(p1+p′
0). See, e.g., [50], and [17] for a con-

structive proof. Similar results hold for the syzygy modules kerD(.Ri)’s of M .

Since D is a noetherian ring, one can easily prove that every finitely generated left (resp.
right) D-module M admits a free resolution (see, e.g., [50]). Now, if F is a left D-module,
then using a free resolution (3) of a finitely generated left D-module M , we can define the
extension abelian groups extiD(M, F )’s for i ≥ 0 as follows. Up to abelian group isomor-
phism, they are defined by the defects of exactness of the following complex of abelian
groups

· · · Ri+1.←−− F pi
Ri .←− F pi−1

Ri−1.←−− · · · R3.←− F p2
R2.←− F p1

R1.←− F p0 ←− 0, (6)

where Ri. : F pi−1 −→ F pi is defined by (Ri.)(η) = Riη for all η ∈ F pi−1 , namely:

{
ext0

D(M, F ) ∼= kerF (R1.),

extiD(M, F ) ∼= kerF (Ri+1.)/ imF (Ri.), i ≥ 1.
(7)

Theorem 1 shows that ext0
D(M, F ) = homD(M, F ). See also, e.g., [50].

We say that the complex (6) is obtained by application of the contravariant left exact
functor homD( · , F ) to the reduced (truncated) free resolution of M , namely, to the complex
obtained by removing M from the finite free resolution (3) as follows:

· · · .R4−→ D1×p3
.R3−→ D1×p2

.R2−→ D1×p1
.R1−→ D1×p0 −→ 0. (8)

A fundamental theorem of homological algebra asserts that the abelian groups
extiD(M, F )’s depend only on the left D-modules M and F (up to abelian group isomor-
phism), i.e., they do not depend on the choice of the free resolution (3) of M (see, e.g., [50]).
The extiD(M, F )’s can also be defined using projective resolutions of M (see, e.g., [50]). But
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this approach is less constructive than the one based on free resolutions. In what follows, we
shall only consider free resolutions and we let the reader reformulate the different results
based on projective resolutions.

The idea of replacing a rather complicated left D-module M by the complex (8) formed
by the left D-modules D1×pi ’s (free modules) and trivial left D-homomorphisms .Ri ’s (de-
fined by matrices) is of paramount importance in the theory of derived category developed
by Grothendieck and Verdier (see, e.g., [24]). In this paper, we shall show how the grade
filtration of M , which is difficult to compute directly on M , can be explicitly characterized
by many but simple (matrix) computations related to the computation of extiD(M,D) and
extjD(extiD(M,D),D).

Similarly, if N a finitely generated right D-module and G a right D-module, then using
a free resolution (4) of N , we can define the following abelian groups:

{
ext0

D(N, G) = homD(N, G) ∼= kerG (.S1),

extiD(N, G) ∼= kerG (.Si+1)/ imG (.Si), i ≥ 1.

We note that if M is a left (resp., right) D-module, then extiD(M,D) is a right (resp., left)
D-module due to the D − D-bimodule structure of D (see, e.g., [50]).

Definition 3 ([50]) A left D-module F is called injective if extiD(M, F ) = 0 for all left
D-modules M and for all i ≥ 1.

Example 2 If Ω is an open convex subset of R
n and k = R or C, then the space C∞(Ω)

(resp., D′(Ω), S ′(Ω), A(Ω), O(Ω)) of smooth functions (resp., distributions/temperate
distributions, real analytic/holomorphic functions) on Ω is an injective D = k[∂1, . . . , ∂n]-
module [33, 35, 54].

If M is a finitely generated left D-module and F an injective left D-module, then ap-
plying the contravariant left exact functor homD( · , F ) to (3), using Theorem 1, and the fact
that extiD( · , F ) = 0 for all i ≥ 1, we obtain the following exact sequence of abelian groups:

· · · R3.←− F p2
R2.←− F p1

R1.←− F p0 ←− homD(M, F ) ←− 0.

The contravariant functor homD( · , F ) is then said to be exact. Within mathematical systems
theory, the linear system kerF (Ri+1.) is parametrized by Ri (called a parametrization) since
kerF (Ri+1.) = Ri F pi−1 for all i ≥ 1.

Let us now state two results which will be used in Sect. 3.

Theorem 3 ([50]) Let (2) be a short exact sequence of left (resp., right) D-modules and N

a left (resp., right) D-module. Then, the following long exact sequence holds

0 −→ ext0
D

(
M ′′,N

) g�−→ ext0
D(M,N)

f �−→ ext0
D

(
M ′,N

)

−→ ext1
D

(
M ′′,N

) −→ ext1
D(M,N) −→ ext1

D

(
M ′,N

)

−→ ext2
D

(
M ′′,N

) −→ ext2
D(M,N) −→ · · · ,

where f � and g� are respectively defined by:

∀φ ∈ homD(M,N), f �(φ) = φ ◦ f, ∀ψ ∈ homD

(
M ′′,N

)
, g�(ψ) = ψ ◦ g.
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Remark 2 One can prove that a left D-module M is projective iff extiD(M,N) = 0 for all
left D-module N and for all i ≥ 1 (see, e.g., [50]). If P and P ′ are the two projective left
D-modules considered in Remark 1, the additivity of the functor extiD( · ,N) (see, e.g., [50])
then yields

∀i ≥ 1,

{
extiD

(
kerπ ⊕ P ′,N

) ∼= extiD(kerπ,N) ⊕ extiD
(
P ′,N

) = extiD(kerπ,N),

extiD
(
kerπ ′ ⊕ P,N

) ∼= extiD
(
kerπ ′,N

) ⊕ extiD(P,N) = extiD
(
kerπ ′,N

)
,

and thus extiD(kerπ,N) ∼= extiD(kerπ ′,N) for i ≥ 1, which shows that extiD(kerπ,N) de-
pends only on M and N (up to isomorphism) for i ≥ 1.

Combining Remark 2 with Theorem 3, we obtain the following result.

Proposition 1 ([50]) Let (2) be a short exact sequence of left (resp., right) D-modules and
M a projective left (resp., right) D-module. Then, for every left (resp., right) D-module N ,
we have exti+1

D (M ′′,N) ∼= extiD(M ′,N) for i ≥ 1.

Let us introduce important invariants of modules and rings.

Definition 4 ([50])

1. The left projective dimension of a left D-module M , denoted by lpdD(M), is the min-
imum of the lengths of projective resolutions of M . If no such integer exists, then
we set lpdD(M) = ∞. Similarly for the right projective dimension rpdD(N) of a right
D-module N .

2. The left global dimension (resp., right global dimension) of a ring D, denoted by lgd(D)

(resp., rgd(D)), is the supremum of lpdD(M) (resp., rpdD(N)) for all left D-modules M

(resp., all right D-modules N ).
3. If the left and the right global dimension of D coincide, then the common value is called

the global dimension of D and is denoted by gld(D).

Proposition 2 ([10]) Let D be a noetherian ring and M a finitely generated left D-module.
Then, we have:

lpdD(M) = sup
{
i ∈ N | extiD(M,D) �= 0

}
.

Similarly for the right projective dimension rpdD(N) of a right D-module N .

Proposition 3 ([50]) lgd(D) ≤ n iff extiD(M,N) = 0 for all left D-modules M and N , and
for all i > n.

Theorem 4 ([50]) If D is a noetherian ring, then lgld(D) = rgld(D).

Example 3 If k is a field, then gld(k[x1, . . . , xn]) = n (see, e.g., [50]). If k is a field of
characteristic 0, k′ = R or C, and D = An(k), Bn(k), D̂n(k), or Dn(k

′), then gld(D) = n

(see, e.g., [9, 10, 29]).

We are now in a position to recall how the properties stated in Definition 1 can be checked
by means of homological techniques for a regular domain D, namely a noetherian domain
D of finite global dimension gld(D).
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Theorem 5 ([1, 14, 29, 37, 39]) Let D be a noetherian domain with a finite global di-
mension gld(D) = n, M = D1×p/(D1×qR) a finitely presented left D-module, and N =
Dq/(RDp) the so-called Auslander transpose right D-module of M .

1. The following left D-isomorphism holds:

t (M) ∼= ext1
D(N,D). (9)

2. M is torsion-free iff ext1
D(N,D) = 0.

3. The following long exact sequence holds

0 −→ ext1
D(N,D) −→ M

ε−→ homD

(
homD(M,D),D

) −→ ext2
D(N,D) −→ 0, (10)

where ε is defined in 3 of Definition 1.
4. M is reflexive iff extiD(N,D) = 0 for i = 1,2.
5. M is projective iff extiD(N,D) = 0 for i = 1, . . . , n.

Remark 3 The Auslander transpose right D-module N = Dq/(RDp) depends on the left
D-module M = D1×p/(D1×qR) up to a projective equivalence. Indeed, if M ∼= M ′ =
D1×p′

/(D1×q ′
R′), then we get N ⊕ D(p+q ′) ∼= N ′ ⊕ D(p′+q), where N ′ = Dq ′

/(R′Dp′
) is

the Auslander transpose of M ′ [1]. See [17] for a constructive proof. Using Remark 2, the
additivity of the functor extiD( · , F ) (see, e.g., [50]) then yields extiD(N, F ) ∼= extiD(N ′, F )

for all left D-modules F and for i ≥ 1. Therefore, the results stated in Theorem 5 do not
depend on the chosen presentation of M .

The results of Theorem 5 were implemented in the OREMODULES package [15] for
the class of Ore algebras of functional operators implemented in the Maple package
Ore_algebra (e.g., PD, shift, difference, time-delay operators) for which Buchberger’s
algorithm terminates for any admissible term order and which computes a Gröbner basis
[14]. Using the OREMODULES package, we can effectively check whether or not the left
D-module M = D1×p/(D1×qR) admits torsion elements, or is torsion-free, reflexive or pro-
jective. For applications of Theorem 5 to mathematical systems theory and mathematical
physics, see [15].

Let us now explain how to compute the torsion left D-submodule t (M) of the M =
D1×p/(D1×q R). We first consider Q ∈ Dp×m such that kerD(R.) = QDm. We get the exact

sequence 0 ←− N ←− Dq R.←− Dp Q.←− Dm. Then, 1 of Theorem 5 shows that the defect

of exactness of the complex D1×q .R−→ D1×p .Q−→ D1×m at D1×p is defined by

t (M) ∼= ext1
D(N,D) ∼= kerD(.Q)/ imD(.R) = (

D1×q ′
R′)/

(
D1×qR

)
, (11)

where R′ ∈ Dq ′×p is any matrix such that kerD(.Q) = D1×q ′
R′. Moreover, the standard third

isomorphism theorem (see, e.g., [50]) then yields:

M/t(M) ∼= [
D1×p/

(
D1×qR

)]
/
[(

D1×q ′
R′)/

(
D1×qR

)] ∼= D1×p/
(
D1×q ′

R′). (12)

We note that an analogous to Theorem 1 for right D-modules asserts that homD(M,D) ∼=
kerD(R.). Hence, if homD(M,D) = 0, then we get the following exact sequence

0 ←− N ←− Dq R.←− Dp ←− 0,
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and thus the defect of exactness of the complex D1×q .R−→ D1×p −→ 0 at D1×p is t (M) ∼=
ext1

D(N,D) ∼= D1×p/(D1×qR) = M by (9), i.e., M is a torsion left D-module. Conversely,
if M is a torsion left D-module and f ∈ homD(M,D), then for every m ∈ M , there exists
d ∈ D \ {0} such that dm = 0, which yields df (m) = f (dm) = 0, and thus f (m) = 0 since
D is a domain and f (m) ∈ D. Thus, f = 0, i.e., homD(M,D) = 0.

Corollary 1 ([14]) Let M be a finitely generated left module over a noetherian domain D.
Then, M is a torsion left D-module iff homD(M,D) = 0.

The next proposition gives a finite presentation of a factor module.

Proposition 4 ([16]) Let R ∈ Dq×p and R′ ∈ Dq ′×p satisfy D1×qR ⊆ D1×q ′
R′, i.e., are such

that R = R′′R′ for a certain R′′ ∈ Dq×q ′
. Moreover, let R′

2 ∈ Dr ′×q ′
be a matrix such that

kerD(.R′) = D1×r ′
R′

2, and let π and π ′ be respectively the following canonical projections:

π : D1×q ′
R′ −→ (

D1×q ′
R′)/

(
D1×qR

)
,

π ′ : D1×q ′ −→ D1×q ′
/
(
D1×qR′′ + D1×r ′

R′
2

)
.

Then, the left D-homomorphism ι defined by

D1×q ′
/
(
D1×qR′′ + D1×r ′

R′
2

) ι−→ (
D1×q ′

R′)/
(
D1×qR

)

π ′(λ) �−→ π
(
λR′),

(13)

is an isomorphism and its inverse ι−1 is defined by:

(
D1×q ′

R′)/
(
D1×qR

) ι−1−→ D1×q ′
/
(
D1×qR′′ + D1×r ′

R′
2

)

π
(
λR′) �−→ π ′(λ).

Applying Proposition 4 to t (M) ∼= (D1×q ′
R′)/(D1×qR), we obtain

t (M) ∼= D1×q ′
/
(
D1×qR′′ + D1×r ′

R′
2

) = D1×q ′
/
(
D1×(q+r ′)(R′′T R′T

2

)T )
, (14)

where R′′ ∈ Dq×q ′
and R′

2 ∈ Dr ′×q ′
are respectively defined by R = R′′R′ and kerD(.R′) =

D1×r ′
R′

2.

If t (M) = 0, then using (11), the complex D1×q .R−→ D1×p .Q−→ D1×m is exact at
D1×p , and thus it defines the beginning of a free resolution of the left D-module L =
D1×m/(D1×qQ). Up to isomorphism, a finitely generated torsion-free left D-module M can
then be embedded into a finitely generated free left D-module since M = D1×p/(D1×qR) ∼=
imD(.Q) ⊆ D1×m. If F is an injective left D-module, then applying the exact functor
homD( · , F ) to the above beginning of a free resolution of L, we obtain the exact sequence

F q R.←− F p Q.←− F m, i.e., kerF (R.) = QF m, and thus Q is a parametrization of kerF (R.). The
computation of parametrizations is implemented in the OREMODULES package [15]. This
package allows one to explicitly parametrize underdetermined linear functional systems ap-
pearing in mathematical physics and in control theory (see [15]).

The above techniques will be generalized in Sect. 3 to determine the so-called grade
filtration of a finitely generated left D-module M .

To finish with this section, we shortly recall a few classical results on homomorphisms
of finitely presented modules that will be used in the next sections.
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Proposition 5 ([16, 17]) Let M = D1×p/(D1×qR) (resp., M ′ = D1×p′
/(D1×q ′

R′)) be a
left D-module finitely presented by R ∈ Dq×p (resp., by R′ ∈ Dq ′×p′

) and π : D1×p −→ M

(resp., π ′ : D1×p′ −→ M ′) the canonical projection onto M (resp., M ′). Then, f ∈
homD(M,M ′) is defined by f (π(λ)) = π ′(λP ) for all λ ∈ D1×p , where P ∈ Dp×p′

sat-
isfies RP = QR′ for a certain Q ∈ Dq×q ′

. Moreover, we have:

1. kerf = (D1×rS)/(D1×qR), where the matrix S ∈ Dr×p is defined by:

kerD
(
.
(
P T R′T )T ) = D1×r (S − T ), T ∈ Dr×q ′

.

In particular, f is injective iff there exists a matrix F ∈ Dr×q such that S = FR.
2. imf = (D1×pP + D1×q ′

R′)/(D1×q ′
R′) ∼= coimf = D1×p/(D1×rS).

3. cokerf = D1×p′
/(D1×pP +D1×q ′

R′). Thus, f is surjective iff (P T R′T )T admits a left
inverse, i.e., X ∈ Dp′×p and Y ∈ Dp′×q ′

exist such that XP + YR′ = Ip′ .
4. f is an isomorphism, i.e., M ∼= M ′, iff there exists F ∈ Dr×q such that S = FR and

the matrix (P T R′T )T admits a left inverse. If X ∈ Dp′×p is defined as in 3, then f −1 ∈
homD(M ′,M) is defined by f −1(π ′(λ′)) = π(λ′X) for all λ′ ∈ D1×p′

.

2.2 Baer’s Extensions

In this section, we give another interpretation of the abelian group ext1
D(M,N) which will

be used in Sect. 4. To do that, let us introduce a few more definitions.

Definition 5 ([50])

1. Let M and N be two left D-modules. An extension of M by N is a short exact sequence
of left D-modules of the form:

e : 0 −→ N
α−→ E

β−→ M −→ 0. (15)

2. Two extensions ei : 0 −→ N
αi−→ Ei

βi−→ M −→ 0 of M by N for i = 1,2 are said
to be equivalent, which is denoted by e1 ∼ e2, if there exists a left D-isomorphism
φ : E1 −→ E2 such that α2 = φ ◦ α1 and β1 = β2 ◦ φ, or equivalently, such that the fol-
lowing commutative exact diagram holds:

0 N E1 M 0

0 N E2 M 0.

α1

φ

β1

α2 β2

3. Let [e] be the equivalence class of the extension e for the above equivalence relation ∼.
The set of all equivalence classes of extensions of M by N is denoted by eD(M,N).

The next theorem, which can be traced back to Baer’s work, plays an important role in ho-
mological algebra. In particular, it explains the terminology extension used for ext1

D(M,N).
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Theorem 6 ([50]) Let M and N be two left D-modules. Then, we have:

ext1
D(M,N) ∼= eD(M,N).

The next theorem gives an explicit description of the isomorphism stated in Theorem 6
in the case where M and N are two finitely presented left D-modules.

Theorem 7 ([46, 47]) Let M = D1×p/(D1×qR) and N = D1×s/(D1×t S) be two finitely pre-
sented left D-modules, π : D1×p −→ M (resp., δ : D1×s −→ N ) the canonical projection
onto M (resp., N ), R2 ∈ Dr×q such that kerD(.R) = D1×rR2, and:

Ω = {
X ∈ Dq×s | ∃Y ∈ Dr×t : R2X = YS

}
.

Then, every equivalence class of extensions of M by N is defined by the following short
exact sequence

e : 0 −→ N
α−→ E

β−→ M −→ 0, (16)

where the left D-module E = D1×(p+s)/(D1×(q+t)L) is finitely presented by

L =
(

R −A

0 S

)
∈ D(q+t)×(p+s),

for a certain A ∈ Ω , α ∈ homD(N,E) and β ∈ homD(E,M) are defined by

N
α−→ E

δ(μ) �−→ �
(
μ(0 Is)

)
,

E
β−→ M

�(ν) �−→ π
(
ν(Ip 0)T

)
,

and � : D1×(p+s) −→ E is the canonical projection onto E. Finally, the equivalence class
[e] depends only on the residue class ε(A) of A in the following abelian group:

Ω/
(
RDp×s + Dq×t S

) ∼= ext1
D(M,N). (17)

Remark 4 The extension e of Theorem 7 is trivial, i.e., E ∼= N ⊕M , iff there exist U ∈ Dp×s

and V ∈ Dq×t such that A = RU +V S, i.e., iff ε(A) = 0. If D is a commutative polynomial
ring over a computable field k, then using Kronecker product and Gröbner/Janet bases, we
can check whether or not this identity holds and if so, compute solutions U and V . See, e.g.,
[47, 55].

The next corollary shows how to determine ε(A) for a given extension e.

Corollary 2 ([47]) With the notations of Theorem 7, let

e′ : 0 −→ N
u−→ F

v−→ M −→ 0

be an extension of the finitely presented left D-module M = D1×p/(D1×qR) by the finitely
presented left D-module N = D1×s/(D1×t S), {fj }j=1,...,p (resp., {ei}i=1,...,q ) the standard
basis of D1×p (resp., D1×q ), yj = π(fj ), and zj ∈ F a pre-image of yj under v for all
j = 1, . . . , p. Then, we have

∑p

j=1 Rij zj ∈ imu for all i = 1, . . . , q , and, since u is injective,
there exists a unique ni ∈ N satisfying u(ni) = ∑p

j=1 Rij zj . If we consider a pre-image
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ai ∈ D1×s of ni under δ, i.e., ni = δ(ai) for all i = 1, . . . , q , then the extensions e′ and (16)
are equivalent, where E = D1×(p+s)/(D1×(q+t)L) and:

L =
(

R −A

0 S

)
∈ D(q+t)×(p+s), A =

⎛

⎜
⎝

a1
...

aq

⎞

⎟
⎠ ∈ Dq×s .

Equivalently, the following commutative exact diagram holds

D1×q D1×p M 0

0 N F M 0,

.R

φ ψ

π

u v

where ψ and φ are respectively defined by:

ψ : D1×p −→ F

fj �−→ zj , j = 1, . . . , p,

φ : D1×q −→ N

ei �−→ ni = δ(ai), i = 1, . . . , q.

Theorem 7 and Corollary 2 will be abundantly used in Sect. 4. For more results
on Baer’s extensions, examples, and applications to mathematical systems theory, see
[4, 46, 47, 50, 55].

The next proposition shows how the presentation of the left D-module E defining the
extension of M by N (see Theorem 7) changes with the presentations of M and N .

Proposition 6 With the notations of Theorem 7, let

M = D1×p/
(
D1×qR

)
, N = D1×s/

(
D1×t S

)
, E = D1×(p+s)/

(
D1×(q+t)L

)

be three left D-modules defining the extension e of M by N (16). Moreover, let f and g be
two left D-isomorphisms defined by

f : M = D1×p/
(
D1×qR

) −→ M ′ = D1×p′
/
(
D1×q ′

R′)

π(λ) �−→ π ′(λP ),

g : N = D1×s/
(
D1×t S

) −→ N ′ = D1×s′
/
(
D1×t ′S ′)

δ(μ) �−→ δ′(μX),

where π ′ (resp., δ′) is the canonical projection onto M ′ (resp., N ′), i.e., P ∈ Dp×p′
,

X ∈ Ds×s′
are such that there exist Q ∈ Dq×q ′

, P ′ ∈ Dp′×p , Q′ ∈ Dq ′×q , Y ∈ Dt×t ′ ,
X′ ∈ Ds′×s , Y ′ ∈ Dt ′×t , T ∈ Dp×q , T ′ ∈ Dp′×q ′

, Z ∈ Ds×t , and Z′ ∈ Ds′×t ′ satisfying the
following identities:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

RP = QR′,
R′P ′ = Q′R,

Ip = PP ′ + T R,

Ip′ = P ′P + T ′R′,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

SX = YS ′,
S ′X′ = Y ′S,

Is = XX′ + ZS,

Is′ = X′X + Z′S ′.

(18)
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Then, the extension e yields the following extension of M ′ by N ′

e′ : 0 −→ N ′ α◦g−1−−−→ E
f ◦β−−→ M ′ −→ 0, (19)

which implies that the left D-module E admits the following presentation

L′ =
(

R′ −Q′AX

0 S ′

)

∈ D(q ′+t ′)×(p′+s′),

i.e., E ∼= E′ = D1×(p′+s′)/(D1×(q ′+t ′)L′), where this left D-isomorphism is defined by

ϕ : E −→ E′

�(ν) �−→ �′(νU),

ϕ−1 : E′ −→ E

�′(ν ′) �−→ �
(
ν ′U ′),

U =
(

P T AX

0 X

)

∈ D(p+s)×(p′+s′), U ′ =
(

P ′ 0

0 X′

)

∈ D(p′+s′)×(p+s),

and �′ : D1×(p′+s′) −→ E′ is the canonical projection onto E′.

Proof With the notations (18), 4 of Proposition 5 yields:

f −1 : M ′ = D1×p′
/
(
D1×q ′

R′) −→ M = D1×p/
(
D1×qR

)

π ′(λ′) �−→ π
(
λ′P ′),

g−1 : N ′ = D1×s′
/
(
D1×t ′S ′) −→ N = D1×s/

(
D1×t S

)

δ′(μ′) �−→ δ
(
μ′X′).

Using (18), we get (Iq − QQ′ − RT )R = R − QQ′R − RT R = R − RPP ′ − RT R = 0.
Thus, if kerD(.R) = D1×rR2, then there exists T2 ∈ Dq×r such that:

Iq = QQ′ + RT + T2R2. (20)

Now, (16) yields (19). Moreover, since A ∈ Ω (see Theorem 7), there exists B ∈ Dr×t

such that R2A = BS. Hence, using this identity, (18), and (20), we get

LU =
(

R −A

0 S

)(
P T AX

0 X

)
=

(
RP (RT − Iq)AX

0 SX

)

=
(

QR′ −(QQ′A + T2(R2A))X

0 YS ′

)

=
(

QR′ −(QQ′A + T2BS)X

0 YS ′

)

=
(

QR′ −QQ′AX − T2BYS ′

0 YS ′

)

=
(

Q −T2BY

0 Y

)(
R′ −Q′AX

0 S ′

)

= V L′,
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where V is the first matrix appearing in the last but one equality, which shows that ϕ is
well-defined by Proposition 5. Similarly, using (18), we get

L′U ′ =
(

R′ −Q′AX

0 S ′

)(
P ′ 0

0 X′

)

=
(

R′P ′ −Q′AXX′

0 S ′X′

)

=
(

Q′R −Q′A(Is − ZS)

0 Y ′S

)

=
(

Q′ Q′AZ

0 Y ′

)(
R −A

0 S

)
= V ′L,

where V ′ is the first matrix appearing in the last but one equality, which yields φ ∈
homD(E′,E) defined by φ(�′(ν ′)) = �(ν ′U ′) for all ν ′ ∈ D1×(p′+s′) by Proposition 5. Using
(18), we also have

UU ′ =
(

P T AX

0 X

)(
P ′ 0

0 X′

)

=
(

PP ′ T AXX′

0 XX′

)

=
(

Ip − T R T A(Is − ZS)

0 Is − ZS

)

= Ip+s −
(

T T AZ

0 Z

)(
R −A

0 S

)
,

which shows that φ ◦ ϕ = idE . Moreover, using (18), we obtain

(
P ′T − T ′Q′)R = P ′T R − T ′Q′R = P ′T R − T ′R′P ′

= P ′(Ip − PP ′) − (
Ip′ − P ′P

)
P ′ = 0,

which shows that there exists W ∈ Dp′×r such that P ′T − T ′Q′ = WR2. Using R2A = BS

and SX = YS ′ (see (18)), (P ′T − T ′Q′)AX = W(R2A)X = WBSX = WBYS ′, and thus
P ′T AX = T ′Q′AX + WBYS ′, and then

UU ′ =
(

P ′ 0

0 X′

)(
P T AX

0 X

)

=
(

P ′P P ′T AX

0 X′X

)

=
(

Ip′ − T ′R′ P ′T AX

0 Is′ − Z′S ′

)

= Ip′+s′ −
(

T ′ −WBY

0 Z′

)(
R′ −Q′AX

0 S ′

)

,

which shows that ϕ ◦ φ = idE′ , and proves that ϕ is a left D-isomorphism, φ = ϕ−1. �

2.3 Pure Modules and Grade Filtration

Let us introduce the concept of grade number.

Definition 6 ([9, 10]) The grade number of a nonzero finitely generated left D-module M

is defined by jD(M) = inf{i ∈ N | extiD(M,D) �= 0}. If M = 0, then we set jD(M) = ∞.
A similar definition holds for right D-modules.

If M �= 0, then jD(M) is then the smallest nonnegative integer such that:

extjD(M)

D (M,D) �= 0.
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Remark 5 If gld(D) is finite and M is a nonzero left D-module, then using Proposition 3,
extiD(M,D) = 0 for all i > gld(D), which yield 0 ≤ jD(M) ≤ gld(D).

Let us introduce the concept of pure module that will play an important role.

Definition 7 ([10]) A finitely generated left D-module M is said to be pure or jD(M)-pure
if jD(N) = jD(M) for all nonzero left D-submodules N of M .

Remark 6 If M is a pure left D-module, then the cyclic left D-module Dm generated by
m ∈ M \ {0} satisfies jD(Dm) = jD(M). More generally, if N is a left D-submodule of a
jD(M)-pure left D-module M , then N is also jD(M)-pure since every left D-submodule of
N is a left D-submodule of M and jD(N) = jD(M).

In what follows, we shall mainly focus on the class of Auslander regular rings.

Definition 8 ([10]) We have:

1. A ring D is called an regular ring if D is a noetherian ring of finite global dimension
gld(D).

2. A ring D is called an Auslander regular ring if D is a regular ring which satisfies the
Auslander condition, namely, for every i ∈ N, for every finitely generated left (resp.,
right) D-module M , and for every right (resp., left) D-submodule N of extiD(M,D),
then jD(N) ≥ i.

Remark 7 If D is an Auslander regular ring, then for a nonzero finitely generated
left D-module M , taking N = extiD(M,D) in Definition 8, jD(extiD(M,D)) ≥ i, i.e.,
extjD(extiD(M,D),D) = 0 for 0 ≤ j < i. Considering extiD(M,D) instead of M in Defi-
nition 8, then we get that N ⊆ extiD(extiD(M,D),D) yields jD(N) ≥ i.

Theorem 8 ([10]) Let D be an Auslander regular ring and M a nonzero finitely generated
left D-module. Then, we have:

1. M is pure iff M is a left D-submodule of extjD(M)

D (extjD(M)

D (M,D),D).
2. M is pure iff extiD(extiD(M,D),D) = 0 for i �= jD(M).
3. If extiD(extiD(M,D),D) �= 0, then extiD(extiD(M,D),D) is a pure left D-module with

grade number i, i.e., jD(extiD(extiD(M,D),D)) = i.

Example 4 By 1 of Theorem 8, M is 0-pure iff M is a left D-submodule of
homD(homD(M,D),D). If D is a domain, then using 3 of Theorem 5, we deduce that
M is 0-pure iff M is a torsion-free left D-module. In particular, the left D-module M/t(M)

is either zero or 0-pure.

Let us now show that pure modules naturally appear in the study of a finitely generated
left module M over an Auslander regular ring D. Let us consider:

ti (M) = {
m ∈ M | jD(Dm) ≥ i

}
, i = 0, . . . , n = gld(D), tn+1(M) = 0. (21)

To prove that the ti (M)’s are left D-modules, we need the following result.
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Proposition 7 ([10]) If 0 −→ M ′ −→ M −→ M ′′ −→ 0 is a short exact sequence of left
modules over an Auslander regular ring D, then:

jD(M) = inf
{
jD

(
M ′), jD

(
M ′′)}.

Remark 8 If extiD(M ′,D) = 0 and extiD(M ′′,D) = 0 for 0 ≤ i ≤ j , then Theorem 3 yields
extiD(M,D) = 0 for 0 ≤ i ≤ j , and thus jD(M) ≥ inf{jD(M ′), jD(M ′′)}. Thus, the Auslan-
der regularity condition is only used to prove the other inequality.

Let us now explain why ti (M) is a left D-module. Firstly, if m ∈ ti (M) and d ∈ D, then
dm ∈ Dm, i.e., D(dm) ⊆ Dm. Then, applying Proposition 7 to the short exact sequence
0 −→ D(dm) −→ Dm −→ Dm/D(dm) −→ 0, we get jD(D(dm)) ≥ jD(Dm) ≥ i, i.e.,
dm ∈ ti (M). Secondly, let m1 and m2 ∈ ti (M). Then, we have m1 + m2 ∈ Dm1 + Dm2.
Since D(m1 +m2) ⊆ Dm1 +Dm2, similarly as previously, Proposition 7 yields jD(D(m1 +
m2)) ≥ jD(Dm1 + Dm2). Now, applying again Proposition 7 to the following two standard
short exact sequences

0 −→ Dm1 ∩ Dm2 −→ Dm1 ⊕ Dm2 −→ Dm1 + Dm2 −→ 0,

0 −→ Dm1 −→ Dm1 ⊕ Dm2 −→ Dm2 −→ 0,

(see, e.g., [50]), we then obtain the following inequality and equality

{
jD(Dm1 + Dm2) ≥ jD(Dm1 ⊕ Dm2),

jD(Dm1 ⊕ Dm2) = inf{jD(Dm1), jD(Dm2)} = i,

which yields jD(D(m1 + m2)) ≥ i, i.e., m1 + m2 ∈ ti (M).
If M ′ is a left D-submodule of M such that jD(M ′) ≥ i and if m′ ∈ M ′ \ {0}, then apply-

ing Proposition 7 to the short exact sequence

0 −→ Dm′ −→ M ′ −→ M ′/
(
Dm′) −→ 0,

we get jD(Dm′) ≥ jD(M ′) ≥ i, i.e., m′ ∈ ti (M), and thus M ′ ⊆ ti (M), which proves
that ti (M) is the largest left D-submodule of M (D is a noetherian ring) which satisfies
jD(ti(M)) ≥ i.

Note that t0(M) = {m ∈ M | jD(Dm) ≥ 0} = M . Thus, the following descending filtra-
tion of M holds:

0 = tn+1(M) ⊆ tn(M) ⊆ tn−1(M) ⊆ · · · ⊆ t1(M) ⊆ t0(M) = M. (22)

If D is a domain, then using Corollary 1, we get t1(M) = t (M) since:

m ∈ t (M) ⇔ ext0
D(Dm,D) = 0 ⇔ jD(Dm) ≥ 1 ⇔ m ∈ t1(M).

It can been seen that a module M is i-pure iff ti (M) = M and ti+1(M) = 0.

Lemma 1 The left D-module ti (M)/ti+1(M) is either zero or is i-pure.

Proof Let us suppose that P = ti (M)/ti+1(M) is nonzero. Applying Proposition 7 to
the short exact sequence 0 −→ ti+1(M) −→ ti (M) −→ P −→ 0, we get jD(P ) ≥
jD(ti(M)) ≥ i, and thus P ⊆ ti (P ) ⊆ P , i.e., ti (P ) = P . Let us now check that ti+1(P ) = 0,
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which will prove the result. Composing the two canonical projections α : ti (M) −→ P =
ti (M)/ti+1(M) and β : P −→ P/ti+1(P ), we get the following commutative exact diagram:

0 0

ti+1(M) ker(β ◦ α)

0 ti (M) ti(M) 0

0 ti+1(P ) P P/ti+1(P ) 0.

0 0

α β ◦ α

β

The snake lemma (see, e.g., [50]) then yields the following short exact sequence:

0 −→ ti+1(M) −→ ker(β ◦ α) −→ ti+1(P ) −→ 0.

Using Proposition 7, jD(ker(β ◦ α)) = inf{jD(ti+1(M)), jD(ti+1(P ))} ≥ i + 1. Since
ti+1(M) ⊆ ker(β ◦ α) ⊆ ti (M) ⊆ M , we obtain ker(β ◦ α) = ti+1(M), and thus ti+1(P ) = 0
by the above short exact sequence. �

According to Lemma 1, (22) is called the grade (purity) filtration of M (see [10]).

Theorem 9 ([9–11]) Let D be a ring equipped with a filtration {Dr}r≥−1, where D−1 = 0,
such that the associated graded ring gr(D) = ⊕

r∈N
Dr/Dr−1 satisfies the following three

properties:

1. gr(D) is a commutative ring.
2. gr(D) is a noetherian ring.
3. gr(D) is a regular ring of pure dimension d ∈ N, namely, gld(gr(D)m) is equal to d for

all localizations gr(D)m of gr(D) at maximal ideals m of gr(D).

Then, the following results hold:

1. gld(gr(D)m) is equal to the Krull dimension Kdim(gr(D)m) of the noetherian local
ring gr(D)m, which also equal to the dimension dimgr(D)m/m(m/m2) of m/m2 as a
gr(D)m/m-vector space. This common value d for all maximal ideals m of gr(D) is
denoted by dim(D).

2. If M �= 0 is a left D-module M , then the characteristic ideal J (M) of gr(D), defined by

J (M) =
√

anngr(D)

(
gr(M)

) = {
a ∈ gr(D) | ∃ k ∈ N : akgr(M) = 0

}
,

does not depend on any good filtration of M (e.g., if M = ∑p

i=j Dyj then {Mr}r∈N

defined by Mr = ∑p

j=1 Dryj for all r ∈ N is a good filtration of M and we have
gr(M) = ∑p

j=1 gr(D)yj ).
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3. If the dimension of M is defined by dimD(M) = Kdim(gr(D)/J (M)) and the codimen-
sion of M by codimD(M) = dim(D) − dimD(M), then we have:

jD(M) = codimD(M). (23)

A ring D satisfying (23) for all modules M is called a Cohen-Macaulay ring. A nat-
ural substitute for dimD(·) for more general k-algebras is the so-called Gel’fand-Kirillov
dimension GKdim (see, e.g., [34]).

If D satisfies the hypotheses of Theorem 9, then dim(D) = gld(gr(D)) since
gld(gr(D)) = supm∈Max(gr(D)) gld(gr(D)m), where Max(gr(D)) is the set of the maximal
ideals of gr(D) (see, e.g., [50]).

Example 5 If k is a field of characteristic 0 and A a differential field (namely, a field with
a differential ring structure) of characteristic 0 (e.g., k, k(x1, . . . , xn)), or k[x1, . . . , xn],
k�x1, . . . , xn�, k′{x1, . . . , xn} where k′ = R or C, then the ring D = A〈∂1, . . . , ∂n〉 of PD
operators with coefficients in A is Auslander regular and Cohen-Macaulay (see [9–11]).
In particular, if {Di}i≥−1 is the order filtration of D, namely Di is the A-submodule of D

formed by the PD operators of order less than or equal to i, and χi is the class of ∂i in D1/D0,
then gr(D) = A[χ1, . . . , χn]. Thus, if A is a differential field of characteristic 0 (e.g., k,
k(x1, . . . , xn)), then dim(D) = n, and if A = k[x1, . . . , xn], k�x1, . . . , xn�, or k′{x1, . . . , xn},
then dim(A) = n and dim(D) = 2n.

Corollary 3 ([9–11]) Let D be an Auslander regular ring and a Cohen-Macaulay ring, and
M a nonzero finitely generated left D-module. Then, we have:

1. dimD(extiD(M,D)) ≤ dim(D) − i.
2. dimD(extjD(M)

D (M,D)) = dim(D) − jD(M).
3. If extiD(extiD(M,D),D) �= 0, then dimD(extiD(extiD(M,D),D)) = dim(D) − i.
4. If M is an i-pure left D-module, then dimD(M) = dim(D) − i.

If D is an Auslander regular ring with gld(D) = n, then a nonzero finitely gener-
ated left D-module M is called holonomic (resp., subholonomic) if jD(M) = n (resp.,
jD(M) ≥ n − 1). It is convenient to assume that M = 0 is also holonomic so that M is
holonomic if jD(M) ≥ n. If D is also a Cohen-Macaulay ring, then M �= 0 is holonomic
(resp., subholonomic) iff dimD(M) = dim(D) − n (resp., dimD(M) ≤ dim(D) − n + 1).
In particular, if D is one of the rings of PD operators defined in Example 5, then we find
again the classical definitions of holonomic and subholonomic modules over a ring of PD
operators (see, e.g., [9–11, 32]).

Let us state a few remarks on holonomic modules. If

0 −→ M ′ −→ M −→ M ′′ −→ 0

is a short exact sequence and jD(M ′) = jD(M ′′) = i, then jD(M) = i by Proposition 7. In
particular, if M ′ and M ′′ are two holonomic left D-modules, so is M . The converse result
also holds since Proposition 7 and jD(M) ≥ n yield jD(M ′) ≥ n and jD(M ′′) ≥ n. Thus, M

is a holonomic left D-module iff M ′ and M ′′ are two holonomic left D-modules. Finally,
a simple module (i.e., a module containing no nontrivial submodules) left An(k)-module is
not necessarily holonomic as shown in [53]. But a simple module over an Auslander regular
ring D is pure.
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3 Grade Filtration

The goal of the section is to show how the grade filtration (22) of a finitely generated left
module M over an Auslander regular ring D can be explicitly computed. Since we are
motivated by developing an effective algorithm which can be implemented in computer
algebra systems, in what follows, we shall only use free resolutions of modules and not the
more general projective resolutions. This extension can easily be done and it is left to the
interested reader.

Let D be a regular ring, i.e., a noetherian domain D with a finite global dimension
gld(D) = n, and M a finitely generated left D-module. Let us consider a free resolution
of M :

0 ←− M
π←− D1×p0

.R1←− D1×p1
.R2←− · · · .Ri−1←−− D1×pi−1

.Ri←− D1×pi
.Ri+1←−− · · · (24)

Using (7) and Proposition 3, the defects of exactness of the following complex

0 −→ Dp0
R1.−→ Dp1

R2.−→ · · · Ri−1.−−→ Dpi−1
Ri .−→ Dpi

Ri+1.−−→ Dpi+1
Ri+2.−−→ · · · (25)

are the right D-modules defined by:
⎧
⎪⎨

⎪⎩

ext0
D(M,D) ∼= kerD(R1.),

extiD(M,D) ∼= kerD(Ri+1.)/(RiD
pi−1), 1 ≤ i ≤ n,

extiD(M,D) = 0, i > n.

(26)

To characterize the extiD(M,D)’s for all 0 ≤ i ≤ n, we need to study kerD(Ri+1.). For
1 ≤ k ≤ n + 1, considering the beginning of a free resolution of the finitely generated right
D-module kerD(Rk.), we obtain the following long exact sequence of right D-modules

Dp(−1)k
R0k .−−→ Dp0k

R1k .−−→ Dp1k
R2k .−−→ · · · R(k−1)k .−−−−→ Dp(k−1)k

Rkk .−−→ Dpkk
κkk−→ Nkk −→ 0, (27)

where for k from 1 to n + 1, we have set Rkk = Rk , pkk = pk , p(k−1)k = pk−1 = p(k−1)(k−1)

and:

Nkk = cokerD(Rkk.) = Dpkk /
(
RkkD

p(k−1)k
)
.

Let us explain why this choice of the notations is natural. If we consider a squared-line
paper sheet where each square has coordinates (j, k) ∈ N

2, and if the long exact sequence
(27) is placed at kth level with Dpjk at position (j, k), then the horizontal arrow of the right
D-homomorphism Rjk. arrives at Dpjk with j ≤ k (a good mnemonic device). For instance,
the first three horizontal exact sequences can be arranged as follows:

Dp−13
R03.−−→ Dp03

R13.−−→ Dp13
R23.−−→ Dp23

R33.−−→ Dp33
κ33−→ N33 −→ 0,

Dp−12
R02.−−→ Dp02

R12.−−→ Dp12
R22.−−→ Dp22

κ22−→ N22 −→ 0,

Dp−11
R01.−−→ Dp01

R11.−−→ Dp11
κ11−→ N11 −→ 0.

Since (25) is a complex, RkkR(k−1)(k−1) = RkRk−1 = 0 for all k = 2, . . . , n + 1, and thus
R(k−1)(k−1)D

p(k−2)(k−1) ⊆ kerD(Rkk.) = R(k−1)kD
p(k−2)k , which shows the existence of a ma-

trix F(k−2)k ∈ Dp(k−2)k×p(k−2)(k−1) such that:

∀k = 2, . . . , n + 1, R(k−1)(k−1) = R(k−1)kF(k−2)k. (28)
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Using (28), R(k−1)kF(k−2)kR(k−2)(k−1) = R(k−1)(k−1)R(k−2)(k−1) = 0, i.e.,

F(k−2)kR(k−2)(k−1)D
p(k−3)(k−1) ⊆ kerD(R(k−1)k.) = R(k−2)kD

p(k−3)k ,

and thus there exists a matrix F(k−3)k ∈ Dp(k−3)k×p(k−3)(k−1) such that:

∀k = 2, . . . , n + 1, F(k−2)kR(k−2)(k−1) = R(k−2)kF(k−3)k. (29)

For k = 3, . . . , n + 1, we can similarly show that matrices F(k−j)k ∈ Dp(k−j)k×p(k−j)(k−1) exist
with j = 3, . . . , k such that:

F(k−j)kR(k−j)(k−1) = R(k−j)kF(k−j−1)k. (30)

Let us denote by:

R00 = 0, N00 = Dp00/0 ∼= Dp00 , p01 = p00, F01 = Ip01 , p−10 = 0. (31)

Using (27), (28), (29), (30), and (31), we get the following commutative diagram formed by
n+2 horizontal exact sequences (where to reduce the size of the diagram, we set m = n+1):

Dp−1m Dp0m Dp1m Dp2m Dp3m Dp4m . . .

Dp−1n Dp0n Dp1n Dp2n Dp3n Dp4n . . .

Dp−13 Dp03 Dp13 Dp23 Dp33 N33 0

Dp−12 Dp02 Dp12 Dp22 N22 0

Dp−11 Dp01 Dp11 N11 0

0 Dp00 N00 0.

R0m. R1m. R2m. R3m. R4m. R5m.

R0n.

F−1m.

R1n.

F0m.

R2n.

F1m.

R3n.

F2m.

R4n.

F3m.

R5n.

F4m.

F−1n. F0n. F1n. F2n. F3n. F4n.

R03.

F−14.

R13.

F04.

R23.

F14.

R33.

F24.

κ33

R02.

F−13.

R12.

F03.

R22.

F13.

κ22

R01.

F−12.

R11.

F02.

κ11

κ00

(32)

Now, if we denote by N(k−j)k the finitely presented right D-module defined by

N(k−j)k = cokerD(R(k−j)k.) = Dp(k−j)k /
(
R(k−j)kD

p(k−j−1)k
)
,
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then (32) can be truncated to get the following commutative diagram formed by horizontal
exact sequences:

Dp−1(n+1) Dp0(n+1) Dp1(n+1) N1(n+1) 0

Dp−1n Dp0n Dp1n N1n 0

Dp−13 Dp03 Dp13 N13 0

Dp−12 Dp02 Dp12 N12 0

Dp−11 Dp01 Dp11 N11 0

0 Dp00 N00 0.

R0(n+1). R1(n+1). κ1(n+1)

R0n.

F−1(n+1).

R1n.

F0(n+1).

κ1n

F1(n+1).

F−1n. F0n. F1n.

R03.

F−14.

R13.

F04.

κ13

F14.

R02.

F−13.

R12.

F03.

κ12

F13.

R01.

F−12.

R11.

F02.

κ11

κ00

(33)

For k = 1, . . . , n + 1 and j = 0, . . . , k − 1, using the exactness of the complex

Dp(k−j−2)k
R(k−j−1)k .−−−−−→ Dp(k−j−1)k

R(k−j)k .−−−−→ Dp(k−j)k

at Dp(k−j−1)k , we get N(k−j−1)k = cokerD(R(k−j−1)k.) ∼= imD(R(k−j)k.) which, when com-
bined with the short exact sequence

0 −→ imD(R(k−j)k.) −→ Dp(k−j)k
κ(k−j)k−−−→ N(k−j)k −→ 0,

yields the following short exact sequence of right D-modules:

0 −→ N(k−j−1)k −→ Dp(k−j)k −→ N(k−j)k −→ 0. (34)

Using (26), we obtain the following characterization of the right D-modules
extiD(M,D)’s:

⎧
⎪⎨

⎪⎩

extiD(M,D) ∼= kerD(R(i+1)(i+1).)/ imD(Rii .) = (
Ri(i+1)D

p(i−1)(i+1)
)
/
(
RiiD

p(i−1)i
)
,

0 ≤ i ≤ n,

extiD(M,D) = 0, i > n.

(35)
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Since Nii = Dpii /(RiiD
p(i−1)i ), Ni(i+1) = Dpi(i+1) /(Ri(i+1)D

p(i−1)(i+1) ), pi(i+1) = pii , and
N00 = Dp00 , (35) and the third isomorphism theorem of module theory (see, e.g., [50]) yield
the following short exact sequence of right D-modules:

0 −→ extiD(M,D) −→ Nii −→ Ni(i+1) −→ 0, i = 0, . . . , n. (36)

Applying the contravariant left exact functor homD( · ,D) to the short exact sequence of (36)
and using Theorem 3, we obtain the following long exact sequences:

0 −→ ext0
D(N01,D) −→ ext0

D(N00,D) −→ ext0
D

(
ext0

D(M,D),D
)

−→ ext1
D(N01,D) −→ ext1

D(N00,D),

· · · −→ exti−1
D (Ni(i+1),D) −→ exti−1

D (Nii,D) −→ exti−1
D

(
extiD(M,D),D

)

−→ extiD(Ni(i+1),D) −→ extiD(Nii,D) −→ extiD
(
extiD(M,D),D

)

τi+1−−→ exti+1
D (Ni(i+1),D) −→ exti+1

D (Nii,D) −→ · · · , i = 1, . . . , n.

(37)

In what follows, we shall assume that D satisfies the following property

∀i ≥ 1, exti−1
D

(
extiD(M,D),D

) = 0, (38)

for all finitely generated left D-modules M . In particular, by Remark 7, this condition holds
if D is an Auslander regular ring (see Definition 8). The importance of (38) was already
noticed in Sect. 9.1.4 of [2].

We note that ext1
D(N00,D) is reduced to 0 since N00 = Dp00 is a free, and thus a projective

right D-module (see Remark 2). Using (38), the above long exact sequences then yield the
following long exact sequences of left D-modules:

0 −→ ext0
D

(N01,D) −→ ext0
D

(N00,D) −→ ext0
D

(
ext0

D
(M,D),D

) −→ ext1
D

(N01,D) −→ 0,

0 −→ exti
D

(Ni(i+1),D) −→ exti
D

(Nii ,D) −→ exti
D

(
exti

D
(M,D),D

)
, i = 1, . . . , n.

(39)
Applying Proposition 1 to (34) for k = i + 1 and j = 0, . . . , i − 1, i.e., to the short exact

sequence 0 −→ N(i−j)(i+1) −→ Dp(i−j+1)(i+1) −→ N(i−j+1)(i+1) −→ 0, we obtain:

∀i = 1, . . . , n, exti+1
D (N(i+1)(i+1),D) ∼= extiD(Ni(i+1),D) ∼= · · · ∼= ext1

D(N1(i+1),D).

(40)
Similarly, applying Proposition 1 to (34) for k = i + 1 and j = 0 gives:

exti+2
D (N(i+1)(i+1),D) ∼= exti+1

D (Ni(i+1),D). (41)

Applying Proposition 1 to the above short exact sequence with i = 0 and j = 0, we get:

ext2
D(N11,D) ∼= ext1

D(N01,D).

Thus, the first long exact sequence of (39) yields the following one

0 −→ ext0
D(N01,D)

γ10−→ ext0
D(N00,D)

γ00−→ ext0
D

(
ext0

D(M,D),D
)

−→ ext2
D(N11,D) −→ 0, (42)

and (39) and (40) yield the following exact sequence of left D-modules

0 −→ exti+1
D (N(i+1)(i+1),D)

γ(i+1)i−−−→ extiD(Nii,D)
γii−→ extiD

(
extiD(M,D),D

)

−→ cokerγii −→ 0, (43)
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where, using (41), we have:

∀i = 1, . . . , n, cokerγii
∼= im τi+1 ⊆ exti+1

D (Ni(i+1),D) ∼= exti+2
D (N(i+1)(i+1),D). (44)

Hence, if we introduce the following finitely generated left D-modules

∀i = 0, . . . , n + 1, Ti � extiD(Nii,D), (45)

then (43) can be rewritten as the following exact sequences:

0 −→ Ti+1
γ(i+1)i−−−→ Ti

γii−→ extiD
(
extiD(M,D),D

) −→ cokerγii −→ 0, i = 1, . . . , n. (46)

Remark 9 If D is an Auslander regular ring, then using (45) and Remark 7, Ti is either
zero or jD(Ti) ≥ i. Moreover, by 3 of Theorem 8, extiD(extiD(M,D),D) is either zero or
is i-pure. In particular, cokerγ(i+1)i = Ti/γ(i+1)i (Ti+1) is isomorphic to a left D-submodule
imγii of extiD(extiD(M,D),D), and thus it is either zero or is i-pure by Remark 7. Finally,
using Definition 8 and (44), we find that cokerγii is either zero or jD(cokerγii) ≥ i + 2.

Using (40), up to isomorphism, the left D-modules Ti ’s are the defects of exactness at
D1×p0i (marked in red (color version online)) of the horizontal complexes of the following
commutative diagram

(47)

i.e., we have:

T0 = D1×p00 , Ti = kerD(.R0i )/ imD(.R1i ), i = 1, . . . , n + 1. (48)
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If ρi : kerD(.R0i ) −→ Ti = kerD(.R0i )/(D
1×p1i R1i ) is the canonical projection onto the

D-module Ti for i = 1, . . . , n + 1, then γ(i+1)i ∈ homD(Ti+1, Ti) (see (46)) is defined by:

∀λ ∈ kerD(.R0(i+1)), γ(i+1)i

(
ρi+1(λ)

) = ρi(λF0(i+1)), i = 1, . . . , n. (49)

The inclusion kerD(.R01) ⊆ D1×p01 yields the commutative exact diagram

0 0

0 D1×p11R11 kerD(.R01) T1 0

0 D1×p11R11 D1×p01 M 0,

0

ρ1

π

γ10

where γ10 ∈ homD(T1,M) is defined by

∀λ ∈ kerD(.R01), γ10
(
ρ1(λ)

) = π(λ), (50)

and π is the canonical projection onto M = D1×p01/(D1×p11R11), i.e., γ10 = idT1 . In partic-
ular, γ10 is injective. Moreover, using the following inclusion

T1 = kerD(.R01)/
(
D1×p11R11

) ⊆ M = D1×p01/
(
D1×p11R11

)
,

the third isomorphism theorem of module theory (see, e.g., [50]) gives:

M/T1
∼= D1×p01/kerD(.R01). (51)

If D is a domain, then 1 of Theorem 5 shows that T1 = t (M) and M/T1 = M/t(M).
Let us now study the long exact sequences (42) and (46) for i = n − 1, n.
A right D-module analogous of Theorem 1 shows that ext0

D(N01,D) ∼= kerD(.R01). Us-
ing (31), T0 = ext0

D(N00,D) = homD(Dp00 ,D) ∼= D1×p00 = D1×p01 (see (48)). The long
exact sequence (42) then becomes the following one:

0 −→ kerD(.R01)
γ10−→ D1×p01

γ00−→ ext0
D

(
ext0

D(M,D),D
) −→ ext2

D(N11,D) −→ 0.

Proposition 3, gld(D) = n, and (44) yield

cokerγ(n−1)(n−1) ⊆ extn+1
D (Nnn,D) = 0,

i.e., cokerγ(n−1)(n−1) = 0. Thus, setting i = n − 1 in (46), we get the following short exact
sequence

0 −→ Tn

γn(n−1)−−−→ Tn−1
γ(n−1)(n−1)−−−−−−→ extn−1

D

(
extn−1

D (M,D),D
) −→ 0,

which shows that:

cokerγn(n−1) = Tn−1/
(
γn(n−1)(Tn)

) ∼= extn−1
D

(
extn−1

D (M,D),D
)
. (52)
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Proposition 3, gld(D) = n, and (44) imply that

cokerγnn ⊆ extn+2
D (N(n+1)(n+1),D) = 0,

i.e., cokerγnn = 0. By Proposition 3, we also have:

Tn+1 = extn+1
D

(
N(n+1)(n+1),D

) = 0.

Thus, setting i = n in (46), we obtain the following short exact sequence

0 −→ Tn

γnn−→ extnD
(
extnD(M,D),D

) −→ 0,

which shows that:

Tn
∼= extnD

(
extnD(M,D),D

)
. (53)

Therefore, the following exact sequences of left D-modules hold

0 −→ Tn

γnn−→ extnD
(
extnD(M,D),D

) −→ 0,

0 −→ Tn

γn(n−1)−−−→ Tn−1 −→ cokerγn(n−1) −→ 0,

...
...

...

0 −→ Ti

γi(i−1)−−−→ Ti−1 −→ cokerγi(i−1) −→ 0,

...
...

...

0 −→ T2
γ21−→ T1 −→ cokerγ21 −→ 0,

0 −→ T1
γ10−→ M

ρ−→ M/T1 −→ 0,

0 −→ kerD(.R01) −→ D1×p01
π ′−→ M/T1 −→ 0,

0 −→ M/T1 −→ ext0
D

(
ext0

D(M,D),D
) −→ ext2

D(N11,D) −→ 0,

(54)

where:

∀i = 2, . . . , n, cokerγi(i−1) ⊆ extiD
(
extiD(M,D),D

)
. (55)

Since the γi(i−1)’s are injective left D-homomorphisms and γ10 = idT1 , we can define the
following sequence {Mi}i=0,...,n of left D-submodules of M as follows:

⎧
⎪⎨

⎪⎩

M0 = M,

M1 = γ10(T1) = T1,

Mi = (γ10 ◦ · · · ◦ γi(i−1))(Ti) ∼= Ti, i = 2, . . . , n.

(56)

Using (49) and (50), the left D-module Mi can be explicitly characterized by:
{

M1 = π
(
kerD(.R01)

)
,

Mi = π
(
kerD(.R0i )(F0i . . . F01)

)
, i = 2, . . . , n.

(57)

The inclusion γi(i−1)(Ti) ⊆ Ti−1 yields Mi ⊆ Mi−1, and we get the following descending
filtration of M :

0 = Mn+1 ⊆ Mn ⊆ Mn−1 ⊆ · · · ⊆ M2 ⊆ M1 ⊆ M0 = M. (58)
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Remark 10 Let us explain why the left D-modules Mi ’s depend only on M and not on
the free resolution (24) of M . Using Remark 3, the Auslander transpose right D-module
Nii = Dpii /(RiiD

p(i−1)i ) of the left D-module cokerD(.Rii) = D1×pii /(D1×p(i−1)i Rii) de-
pends only on cokerD(.Rii) up to projective equivalence. Using Remark 1 and the exactness
of the free resolution (24) of M , we find that the right D-modules

⎧
⎪⎨

⎪⎩

cokerD(.Rii) = cokerD(.Ri) ∼= D1×pi−1Ri−1 = kerD(.Ri−2), i ≥ 3,

cokerD(.R22) = cokerD(.R2) = D1×p1R1 = kerπ,

cokerD(.R11) = cokerD(.R1) = M,

depend on M up to projective equivalence. Thus, the right D-module Nii depends only on
M up to a projective equivalence for i ≥ 1. Finally, using Remark 2, Mi

∼= Ti = extiD(Nii,D)

depends only on M for i ≥ 1.

We obtain the following results.

Theorem 10 Let D be a regular ring of global dimension gld(D) = n which satisfies

∀i ≥ 1, exti−1
D

(
extiD(M,D),D

) = 0,

for all finitely generated left D-modules M . Then, with the above notations, the following
results hold:

1. The following long exact sequences of left D-modules hold

0 −→ Mi+1
ιi+1−−→ Mi

εi−→ extiD
(
extiD(M,D),D

) −→ Ci −→ 0, i = 0, . . . , n, (59)

where Ci = coker εi is isomorphic to a left D-submodule of exti+2
D (N(i+1)(i+1),D) for all

i = 0, . . . , n − 2 (with equality for i = 0), Cn−1 = 0, and Cn = 0. In particular:

Mn
∼= extnD

(
extnD(M,D),D

)
, Mn−1/Mn

∼= extn−1
D

(
extn−1

D (M,D),D
)
.

2. The following descending filtration {Mi}i=0,...,n+1 of M holds:

0 = Mn+1 ⊆ Mn ⊆ Mn−1 ⊆ · · · ⊆ M2 ⊆ M1 ⊆ M0 = M.

In particular, if Mi = 0, then Mi = Mi+1 = · · · = Mn = 0.
3. M = MjD(M).

Proof 1. Using the last short exact sequence of (54), M = M0, and M1 = T1, we obtain
(59) for i = 0, where C0 = ext2

D(N11,D). Let us now suppose that i = 1, . . . , n and let
αi = γ10 ◦γ21 ◦γ32 ◦· · ·◦γi(i−1) be the left D-isomorphism from Ti to Mi (see (56)). Then, the
long exact sequence (46) yields (59) where ιi+1 = αi ◦ γ(i+1)i ◦α−1

i+1 = idMi+1 , εi = γii ◦α−1
i ,

and Ci = coker εi
∼= cokerγii ⊆ exti+2

D (N(i+1)(i+1),D) by (44). Since gld(D) = n, we get
Cn−1 = Cn = 0. Finally, (59) for i = n, Mn+1 = 0 and Cn yield Mn

∼= extnD(extnD(M,D),D),
and (59) for i = n − 1 and Cn−1 = 0 implies that Mn−1/Mn

∼= extn−1
D (extn−1

D (M,D),D).
2. The equality is a direct consequence of (58).
3. If jD(M) = 0, then the result holds since M = M0. Let us suppose that jD(M) ≥ 1.

Then, we have extiD(extiD(M,D),D) = 0 for i = 0, . . . , jD(M) − 1 since extiD(M,D) = 0
for i = 0, . . . , jD(M) − 1. Using (59), we get Mi+1 = Mi for i = 0, . . . , jD(M) − 1. �

Let us give consequences of the above results for an Auslander regular ring D.
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Proposition 8 If D is an Auslander regular ring and gld(D) = n, then we have:

1. If Mi is nonzero, then jD(Mi) ≥ i for i = 0, . . . , n.
2. If Mi/Mi+1 is nonzero, then Mi/Mi+1 is an i-pure left D-module for i = 0, . . . , n. More-

over, if Mi+1 = 0, then Mi is either zero or an i-pure left D-submodule of M . In particu-
lar, Mn is either zero or a n-pure left D-module.

3. If Ci is nonzero, then jD(Ci) ≥ i + 2 for i = 0, . . . , n − 2.
4. Mi = Mi+1 iff extiD(extiD(M,D),D) = 0.

Proof 1. Since Mi
∼= Ti = extiD(Nii,D) for i = 1, . . . , n, Remark 7 then shows that

jD(Mi) ≥ i. Moreover, M0 = M , and thus jD(M0) ≥ 0.
2. By 3 of Theorem 8, extiD(extiD(M,D),D) is either zero or i-pure, and so is the

left D-module Mi/Mi+1
∼= im εi ⊆ extiD(extiD(M,D),D) (see Remark 6). In particular,

if Mi+1 = 0, then Mi is either zero or an i-pure left D-submodule of M . Finally, Mn
∼=

extnD(extnD(M,D),D) (see 1 of Theorem 10) implies that Mn is either zero or n-pure.
3. Ci = coker εi is isomorphic to a left D-submodule of exti+2

D (N(i+1)(i+1),D) for i =
0, . . . , n− 2 (see 1 of Theorem 10). Then, using 2 of Definition 8, we get jD(Ci) ≥ i + 2 for
i = 0, . . . , n − 2.

4. If Mi = Mi+1, then (59) gives Ci
∼= extiD(extiD(M,D),D). On the one hand, by 3 of

Theorem 8, Ci is either zero or i-pure, and thus we either have Ci = 0 or jD(Ci) = i. On the
other hand, using 3, if Ci �= 0, then jD(Ci) ≥ i + 2, which shows that Ci = 0. Conversely, if
extiD(extiD(M,D),D) = 0, then (59) yields Mi = Mi+1. �

If D is also a Cohen-Macaulay ring, then Corollary 3 yields:

∀i = 0, . . . , n, dimD(Mi) ≤ dim(D) − i,

Mi/Mi+1 �= 0 ⇒ dimD(Mi/Mi+1) = dim(D) − i.
(60)

If D is an Auslander regular ring, then let us now show that the filtration {Mi}i=0,...,n of
M defined by (56) is exactly the grade filtration {ti (M)}i=0,...,n of M defined in (21).

Theorem 11 Let D be an Auslander regular ring and M a finitely generated left D-module.
Then, we have ti (M) = Mi for all i = 0, . . . , n = gld(D), i.e., the grade filtration (22) of M

and the filtration (58) of M coincide.

Proof 1. Let us first prove that 0 �= Mi ⊆ ti (M). By 1 of Proposition 8, jD(Mi) ≥ i. If
m ∈ Mi , then applying Proposition 7 to the following short exact sequence

0 −→ Dm −→ Mi −→ Mi/(Dm) −→ 0,

we obtain jD(Dm) ≥ jD(Mi) = i, and thus m ∈ ti (M), i.e., Mi ⊆ ti (M).
2. Following [9], let us prove ti (M) ⊆ Mi by induction on i, i.e., ti (M) = Mi . We first

note that t0(M) = M = M0, which proves the result for i = 0. Let us now assume that
ti (M) = Mi and let us show that it yields ti+1(M) = Mi+1. Since Mi+1 ⊆ ti+1(M) ⊆ ti (M)

by 1, we get ti+1(M)/Mi+1 ⊆ ti (M)/Mi+1 = Mi/Mi+1. Using 2 of Proposition 8, Mi/Mi+1

is either zero or an i-pure left D-module. If Mi/Mi+1 = 0, then ti+1(M)/Mi+1 = 0, i.e.,
ti+1(M) = Mi+1, which proves the result. Hence, let us assume that Mi/Mi+1 is an i-pure
left D-module. Then, by definition of a pure module, its left D-submodule ti+1(M)/Mi+1
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is also either zero or i-pure. If ti+1(M)/Mi+1 is i-pure, then jD(ti+1(M)/Mi+1) = i. But
applying Proposition 7 to the following short exact sequence

0 −→ Mi+1 −→ ti+1(M) −→ ti+1(M)/Mi+1 −→ 0

gives jD(ti+1(M)/Mi+1) ≥ jD(ti+1(M)) ≥ i + 1, which yields a contradiction. Thus, we
obtain ti+1(M)/Mi+1 = 0, i.e., ti+1(M) = Mi+1, which proves the result by induction. �

Remark 11 We can combine Theorem 11 and Proposition 8 to find again 2 of Theorem 8.
Indeed, using Theorem 11 and the fact that M is i-pure iff ti (M) = M and ti+1(M) = 0,
we get that M �= 0 is i-pure iff M = M1 = · · · = Mi �= 0 and Mi+1 = Mi+2 = · · · =
Mn+1 = 0. By 4 of Proposition 8, the equalities are equivalent to extkD(extkD(M,D),D) =
0 for k = 0, . . . , i − 1 and k = i + 1, . . . , n. Now, combining Mi �= 0, Mi+1 = 0, and
(59), extiD(extiD(M,D),D) contains the nonzero left D-submodule Mi , which shows
that extiD(extiD(M,D),D) �= 0. Conversely, if extkD(extkD(M,D),D) = 0 for k �= i and
extiD(extiD(M,D),D) �= 0, then M = M1 = · · · = Mi and Mi+1 = Mi+2 = · · · = Mn+1 = 0
by 4 of Proposition 8. Finally, since extiD(extiD(M,D),D) �= 0 yields M �= 0, M �= 0 is
i-pure, which proves the result.

The existence of the filtration (58) only requires that D is a regular ring which satisfies
(38). If D is an Auslander regular ring, then Theorem 11 proves that (58) is exactly the grade
filtration (22) of M . If D is also a Cohen-Macaulay ring, then using (60), the descending
filtration {Mi}i=0,...,n of M gives a built-in classification of the elements of M by means of
their (co)dimensions, i.e.:

i = 0, . . . , n, Mi = ti (M) = {
m ∈ M | codimD(Dm) ≥ i

}

= {
m ∈ M | dimD(Dm) ≤ dim(D) − i

}
.

This filtration is sometimes called the codimension filtration of M (or equidimensional de-
composition in algebraic geometry).

Remark 12 If D satisfies the hypotheses of Theorem 9, then Theorem 9 shows that the
characteristic ideal J (M) of gr(D) does not depend on the choice of a good filtration of M .
The characteristic variety of M is then defined by

char(M) = {
p ∈ Spec

(
gr(D)

) | J (M) ⊆ p
}
,

where Spec(gr(D)) is the set of prime ideals of gr(D) endowed with the Zariski topology.
A well-known result in algebraic analysis states that a short exact sequence of left D-modu-
les 0 −→ M ′ −→ M −→ M ′′ −→ 0 yields the equality char(M) = char(M ′) ∪ char(M ′′)
(see [29, 32]). Applying this result to the short exact sequences

0 −→ Mi+1 −→ Mi −→ Mi/Mi+1 −→ 0, i = 0, . . . , n,

we get:

char(M) =
⋃

i=0,...,n

char(Mi/Mi+1). (61)

It can be proved that the characteristic variety char(P ) of an i-pure module P is equidimen-
sional in the sense that every irreducible component of char(P ) has dimension dim(D) − i

(see, e.g., [10]). Hence, (61) is an equidimensional decomposition of the affine algebraic
variety char(M).
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Theorem 11 shows that the grade filtration of M can be computed by means of elemen-
tary methods of module theory and homological algebra. In particular, we do not need to
compute a Cartan-Eilenberg resolution P •• (see, e.g., [50]) of the complex (25) (called
Rhom(M,D) in derived categories (see, e.g., [24])), the total complex Tot(homD(P ••,D))

of the double complex homD(P ••,D), and the spectral sequence associated with the first fil-
tration of Tot(homD(P ••,D)). For more details, see [2, 9–11, 22, 24, 31, 50]. Our approach
has then the advantage to be easily implementable in any computer algebra system con-
taining an implementation of Gröbner bases for (noncommutative) polynomial rings (e.g.,
Maple, Singular, Macaulay2, Magma, Mathematica).

The filtration (58) is a particular case of the more general bidualizing filtration
{Mi}i=0,...,n of a finitely generated module M over a regular ring D [9, 10], of which the
existence can be proved by means of a spectral sequence argument. In this case, Mi/Mi+1 is
then a left D-subquotient (i.e., a quotient of a left D-submodule) of extiD(extiD(M,D),D),
and not simply a left D-submodule as shown above for a regular ring D satisfying (38) (e.g.,
an Auslander regular ring). Finally, the results developed in [9, 49] were extended in [31] for
an Auslander-Gorenstein ring D, namely a noetherian ring of finite injective dimension m as
a left/right D-module (i.e., extiD(M,D) = 0 for i > m and for all left/right D-modules M)
[50] which satisfies the Auslander condition (see 2 of Definition 8).

Let us sum up the above results in the following algorithm.

Algorithm 1

Input: A regular ring D satisfying (38), gld(D) = n, and a matrix R ∈ Dq×p .
Output: A sequence {Ti}i=1,...,n of finitely generated left D-modules defined by
(45) and a sequence {γ10 ∈ homD(T1,M)} ∪ {γ(i+1)i ∈ homD(Ti+1, Ti)}i=1,...,n of left
D-homomorphisms defined by (50) and (49) such that

{
M1 = γ10(T1), Mi = (γ10 ◦ · · · ◦ γi(i−1))(Ti), i = 2, . . . , n

}

is a descending filtration of M (which is the grade filtration when D is an Auslander
regular ring).

1. Set R1 = R, p1 = p, p2 = q , and M = D1×p1/(D1×p2R1).
2. Compute matrices Rk ∈ Dpk×pk−1 for k = 2, . . . , n such that (24) is an exact sequence.
3. Set pkk = pk , p(k−1)k = pk−1 = p(k−1)(k−1), Rkk = Rk , and:

Nkk = Dpkk /
(
RkkD

p(k−1)k
)
.

4. For k = 1, . . . , n and for j = 1, . . . , k, compute R(k−j)k ∈ Dp(k−j)k×p(k−j−1)k such that (27)
is an exact sequence.

5. For k = 2, . . . , n, compute matrices F(k−2)k ∈ Dp(k−2)k×p(k−2)(k−1) such that:

R(k−1)(k−1) = R(k−1)kF(k−2)k.

6. For k = 2, . . . , n and for j = 2, . . . , k, compute F(k−j)k ∈ Dp(k−j)k×p(k−j)(k−1) satisfying:

F(k−j)kR(k−j)(k−1) = R(k−j)kF(k−j−1)k.

7. Return the matrices R0i , R1i , and F0i defining the left D-modules

∀i = 1, . . . , n, Ti = kerD(.R0i )/ imD(.R1i ),
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γ10 = idT1 : T1 = kerD(.R01)/ imD(.R11) −→ M = D1×p01/ imD(.R11), and γi(i−1) ∈
homD(Ti, Ti−1) by (49) for i = 2, . . . , n.

Remark 13 Using 3 of Theorem 10, i.e., M = MjD(M), let us explain how Algorithm 1 can
then be speeded up when jD(M) ≥ 1 by avoiding the computation of the left D-modules Ti ’s
for i = 1, . . . , jD(M). Since extiD(M,D) = 0 for i = 0, . . . , jD(M) − 1, then (25) yields the
following free resolution of NjD(M)jD(M):

Dp0
R1.−→ Dp1

R2.−→ · · · RjD(M).−−−−→ DpjD(M)
κjD(M)jD(M)−−−−−−−→ NjD(M)jD(M) −→ 0. (62)

Applying Proposition 1 to (62), extjD(M)

D (NjD(M)jD(M),D) ∼= ext1
D(N11,D) = M1, where

N11 = Dp1/(R1D
p0). Since jD(M) ≥ 1, using Theorem 1, kerD(R1.) ∼= ext0

D(M,D) = 0,
and thus M = M1

∼= ext1
D(N11,D). Hence, we do not need to compute the beginning of a

free resolution of Nkk for k = 1, . . . , jD(M), i.e., in 4 of Algorithm 1, we can only consider
k = jD(M) + 1, . . . , n.

If D admits an involution θ , namely, θ : D −→ D satisfies θ2 = idD and

∀d1, d2 ∈ D, θ(d1 + d2) = θ(d1) + θ(d2), θ(d1d2) = θ(d2)θ(d1),

then we can compute the matrices R(k−j)k defined in 4 of Algorithm 1 by left Gröbner basis
techniques. For more details, see [14].

Algorithm 1 and its improvement given in Remark 13 are implemented in the PURITY-
FILTRATION package [45] built upon the Maple package OREMODULES [15]. For more
details, see [43]. The PURITYFILTRATION package can be used to compute the grade filtra-
tion of a finitely generated left D-module M , where D is one of the Ore algebras supported
by the OREMODULES package. Algorithm 1 has also been implemented in the homalg
based package AbelianSystems [7] by M. Barakat (University of Kaiserslautern) and
the author, and more recently by C. Schilli (University of Aachen) in the Singular package
purityfiltration.lib [51].

Let us now determine a finite presentation of the left D-modules Ti ’s defined by
(45). To do that, we first consider the beginning of a finite free resolution of Pi =
D1×p−1i /(D1×p0i R0i ), namely, matrices R′

1i ∈ Dp′
1i

×p0i and R′
2i ∈ Dp′

2i
×p′

1i such that
kerD(.R0i ) = D1×p′

1i R′
1i and kerD(.R′

1i ) = D1×p′
2i R′

2i for i = 1, . . . , n. We obtain the com-
mutative diagram (69) formed by horizontal exact sequences.

Remark 14 If R0k = 0, i.e., kerD(R1k.) = 0, then applying the functor homD( · ,D) to the

short exact sequence 0 −→ Dp0k
R1k .−−→ Dp1k

κ1k−→ N1k −→ 0, we get the following complex

0 ←− D1×p0k
.R1k←−− D1×p1k .

Hence, we have kerD(.R0k) = D1×p0k , i.e., R′
1k = Ip0k

, p′
1k = p0k , and R′

2k = 0.

Combining (57) with kerD(.R0i ) = D1×p′
1i R′

1i , we obtain the following characterization
of the Mi ’s, i.e., of the ti (M)’s when D is an Auslander regular ring:

{
M1 = (

D1×p′
11R′

11

)
/
(
D1×p11R11

)
,

Mi = (
D1×p′

1i

(
R′

1iF0i . . . F01

))
/
(
D1×p11R11

)
, i = 2, . . . , n.

(63)
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Hence (63) shows that the residue classes of the rows of the matrix R′
1iF0i . . . F01 in the left

D-module M = D1×p01/(D1×p11R11) generate the left D-module Mi .

Algorithm 2

Input: A regular ring D satisfying (38), gld(D) = n, and a matrix R ∈ Dq×p .
Output: A sequence {Mi}i=1,...,n of left D-submodules of M defined by (63), i.e., the
grade filtration (58) of M when D is an Auslander regular ring.

1. Apply Algorithm 1 to D and R ∈ Dq×p to get R0i ∈ Dp0i×p−1i for i = 1, . . . , n, and
F0i ∈ Dp0i×p0(i−1) for i = 2, . . . , n.

2. Compute R′
1i ∈ Dp′

1i
×p0i such that kerD(.R0i ) = D1×p′

1i R′
1i for i = 1, . . . , n.

3. Return the matrices R′
1iF0i . . . F01 (or their reductions with respect to the left D-module

D1×p11R11) for i = 1, . . . , n, where F01 = Ip01 .

Algorithm 2 is implemented in the PURITYFILTRATION package [45].
Let us now compute a finite presentation of the left D-module Mi ’s. The identity

R1iR0i = 0 yields D1×p1i R1i ⊆ kerD(.R0i ) = D1×p′
1i R′

1i , and thus there exists R′′
1i ∈ Dp1i×p′

1i

such that:

∀i = 1, . . . , n, R1i = R′′
1iR

′
1i . (64)

Applying Proposition 4 to the left D-module Ti , we obtain

∀i = 1, . . . , n, Ti = kerD(.R0i )/ imD(.R1i ) = (
D1×p′

1i R′
1i

)
/
(
D1×p1i R1i

)

∼= Li � D1×p′
1i /

(
D1×p1i R′′

1i + D1×p′
2i R′

2i

)
,

(65)

where the above left D-isomorphism χi is defined by

Li = D1×p′
1i /

(
D1×p1i R′′

1i + D1×p′
2i R′

2i

) χi−→ Ti = (
D1×p′

1i R′
1i

)
/
(
D1×p1i R1i

)

ρ ′
i (λ) �−→ ρi

(
λR′

1i

)
,

(66)

and ρ ′
i : D1×p′

1i −→ Li is the canonical projection onto the left D-module Li . The inverse
χ−1

i ∈ homD(Ti,Li) is defined by χ−1
i (ρi(λR′

1i )) = ρ ′
i (λ) for all λ ∈ D1×p′

1i .
Let us now complete the commutative diagram (69) to determine the left D-homomor-

phism γ (i+1)i induced by the left D-homomorphism γ(i+1)i and the left D-isomorphisms χi

and χi+1. Using (30) with k = j = i and i = 2, . . . , n, we obtain F0iR0(i−1) = R0iF−1i .
Pre-multiplying this identity by R′

1i , we get R′
1iF0iR0(i−1) = R′

1iR0iF−1i = 0, and thus

D1×p′
1i (R′

1iF0i ) ⊆ kerD(.R0(i−1)) = D
1×p′

1(i−1)R′
1(i−1), which proves the existence of a ma-

trix F ′
1i ∈ D

p′
1i

×p′
1(i−1) such that:

∀i = 2, . . . , n, R′
1iF0i = F ′

1iR
′
1(i−1). (67)

Similarly, we can prove the existence of a matrix F ′
2i ∈ D

p′
2i

×p′
2(i−1) such that:

∀i = 2, . . . , n, R′
2iF

′
1i = F ′

2iR
′
2(i−1). (68)
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Thus, the commutative diagram (70) formed by horizontal exact sequences holds.

D1×p−1n D1×p0n D1×p′
1n D1×p′

2n

D1×p−1(n−1) D1×p0(n−1) D
1×p′

1(n−1) D
1×p′

2(n−1)

D1×p−13 D1×p03 D1×p′
13 D1×p′

23

D1×p−12 D1×p02 D1×p′
12 D1×p′

22

D1×p−11 D1×p01 D1×p′
11 D1×p′

21 .

.R0n
.R′

1n
.R′

2n

.R0(n−1)

.F−1n

.R′
1(n−1)

.F0n

.R′
2(n−1)

.F−1(n−1) .F0(n−1)

.R03

.F−14

.R′
13

.F04

.R′
23

.R02

.F−13

.R′
12

.F03

.R′
22

.R01

.F−12

.R′
11 .R′

21

.F02

(69)

(70)
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Fig. 1 Bottom part of the main diagram defining the grade filtration of M

Let us now deduce identities which will be used in what follows. Combining (28), (29),
(30), (64), and (67), for i = 1, . . . , n, we get

F1(i+1)

(
R′′

1iR
′
1i

) = F1(i+1)R1i = R1(i+1)F0(i+1) = (
R′′

1(i+1)R
′
1(i+1)

)
F0(i+1)

= R′′
1(i+1)F

′
1(i+1)R

′
1i ,

and thus (F1(i+1)R
′′
1i − R′′

1(i+1)F
′
1(i+1))R

′
1i = 0, i.e.,

D1×p1(i+1)
(
F1(i+1)R

′′
1i − R′′

1(i+1)F
′
1(i+1)

) ⊆ kerD
(
.R′

1i

) = D1×p′
2i R′

2i ,

which proves the existence of a matrix Xi2 ∈ Dp1(i+1)×p′
2i such that:

∀i = 1, . . . , n − 1, F1(i+1)R
′′
1i − R′′

1(i+1)F
′
1(i+1) = Xi2R

′
2i . (71)

Now, γ(i+1)i ∈ homD(Ti+1, Ti) then yields γ (i+1)i ∈ homD(Li+1,Li) defined by

∀i = 1, . . . , n − 1, γ (i+1)i = χ−1
i ◦ γ(i+1)i ◦ χi+1, (72)

where the χi ’s are defined by (66) and γ(i+1)i by (49). Using (67), we get

γ (i+1)i

(
ρ ′

(i+1)(λ)
) = (

χ−1
i ◦ γ(i+1)i

)(
ρi+1

(
λR′

1(i+1)

)) = χ−1
i

(
ρi

(
λR′

1(i+1)F0(i+1)

))

= χ−1
i

(
ρi

(
λF ′

1(i+1)R
′
1i

)) = ρ ′
i

(
λF ′

1(i+1)

)
, (73)

for all λ ∈ D
1×p′

1(i+1) . Moreover, using (68) and (71), for i = 1, . . . , n − 1, we obtain

(
R′′

1(i+1)

R′
2(i+1)

)

F ′
1(i+1) =

(
F1(i+1)R

′′
1i − Xi2R

′
2i

F ′
2(i+1)R

′
2i

)

=
(

F1(i+1) −Xi2

0 F ′
2(i+1)

)(
R′′

1i

R′
2i

)

, (74)
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which yields the following commutative exact diagram

D
1×(p1(i+1)+p′

2(i+1)
)

D
1×p′

1(i+1) Li+1 0

D1×(p1i+p′
2i

) D1×p′
1i Li 0,

.(R′′T
1(i+1)

R′T
2(i+1)

)T

.G′
1(i+1)

.F ′
1(i+1)

ρ′
i+1

γ (i+1)i

.(R′′T
1i

R′T
2i

)T ρ′
i

(75)
where G′

1(i+1) ∈ D
(p1(i+1)+p′

2(i+1)
)×(p1i+p′

2i
) is the first matrix appearing in the last equality of

(74).
The identities R11 = R′′

11R
′
11 (see (64)) and R′

21R
′
11 = 0 yield the following commutative

exact diagram

D1×(p11+p′
21) D1×p′

11 L1 0

D1×p11 D1×p01 M 0,

.
(
R′′T

11 R′T
21

)T

.

(
Ip11

0

)
.R′

11

ρ′
1

γ 10 = γ10 ◦ χ1

.R11 π

(76)
where γ 10 = γ10 ◦ χ1 ∈ homD(L1,M) is defined by:

∀λ ∈ D1×p′
11 , γ 10

(
ρ ′

1(λ)
) = π

(
λR′

11

)
. (77)

The matrices previously introduced can be rearranged into the three dimensional di-
agram whose bottom part is shown in Fig. 1. Each two dimensional diagram of Fig. 1
commutes except for the two diagrams marked in green (“faces in the depth direc-
tion”) (see (71)). The horizontal sequences are in the foreground complexes and are ex-
act in the background sequences. The vertical sequences are not complexes. The defect
of exactness Ti = extiD(Nii,D) of the ith horizontal complex at (marked in red
(color version online)) is isomorphic to the cokernel Li of the left D-homomorphism
D1×(p1i+p′

2i
) −→ D1×p′

1i defined by the two left D-homomorphisms .R′′
1i : D1×p1i −→

D1×p′
1i and .R′

2i : D1×p′
2i −→ D1×p′

1i arriving at (marked in green (color ver-
sion online)), i.e., Li = D1×p′

1i /(D1×(p1i+p′
2i

)(R′′T
1i R′T

2i )
T ). The left D-homomorphism

γi(i−1) : Ti −→ Ti−1 defined by (49), i.e., by means of the left D-homomorphism
(marked in red (color version online)), then induces γ i(i−1) ∈ homD(Li,Li−1) defined by
(73), i.e., by means of the left D-homomorphism (marked in green (color version on-
line)).

Algorithm 3

Input: A regular ring D satisfying (38), gld(D) = n, and a matrix R ∈ Dq×p .
Output: A sequence {Li}i=1,...,n of finitely presented left D-modules and a sequence
{γ 10 ∈ homD(L1,M)} ∪ {γ (i+1)i ∈ homD(Li+1,Li)}i=1,...,n−1 of left D-homomorphisms
defined by (66).

1. Apply Algorithm 2 to D and R ∈ Dq×p to get matrices R0i ∈ Dp0i×p−1i for i = 1, . . . , n,
F0i ∈ Dp0i×p0(i−1) for i = 2, . . . , n, and R′

1i ∈ Dp′
1i

×p0i such that kerD(.R0i ) = D1×p′
1i R′

1i

for i = 1, . . . , n.
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2. Compute R′
2i ∈ Dp′

2i
×p′

1i such that kerD(.R′
1i ) = D1×p′

2i R′
2i for i = 1, . . . , n.

3. Left factorize R1i by R′
1i to get R′′

1i ∈ Dp1i×p′
1i such that R1i = R′′

1iR
′
1i for i = 1, . . . , n.

4. Compute F ′
1i ∈ D

p′
1i

×p′
1(i−1) such that R′

1iF0i = F ′
1iR

′
1(i−1) for i = 2, . . . , n.

5. Return Li = D1×p′
1i /(D1×(p1i+p′

2i
)(R′′T

1i R′T
2i )

T ) for i = 1, . . . , n, the matrix R′
11 which

defines γ 10 ∈ homD(L1,M) defined by (77), and the matrices F ′
1(i+1) which define

γ (i+1)i ∈ homD(Li+1,Li) by (73) for i = 1, . . . , n − 1.

Algorithm 3 is implemented in the PURITYFILTRATION package [45].
Using 3 of Proposition 5, we get the following finite presentation of cokerγ (i+1)i :

cokerγ (i+1)i = D1×p′
1i /

(
D1×p′

1i F ′
1i + D1×p1i R′′

1i + D1×p′
2i R′

2i

)
, i = 1, . . . , n − 1. (78)

We denote by σi : D1×p′
1i −→ cokerγ (i+1)i the canonical projection onto cokerγ (i+1)i .

Up to isomorphism, the short exact sequences

0 −→ Ti+1
γ(i+1)i−−−→ Ti −→ cokerγ(i+1)i −→ 0, i = 1, . . . , n − 1,

defined in (54) (see also (46)) give rise to the following exact sequences:

0 −→ Li+1
γ (i+1)i−−−→ Li

θi−→ cokerγ (i+1)i −→ 0, i = 1, . . . , n − 1. (79)

Since both γ10 and χ1 are injective so is γ 10, and (76) yields the following short exact
sequence

0 −→ L1
γ 10−→ M

ρ−→ M/M1 −→ 0, (80)

where M/M1
∼= D1×p01/kerD(.R01) = D1×p01/(D1×p′

11R′
11) (see (51)).

We recall that cokerγ (i+1)i
∼= cokerγ(i+1)i ⊆ extiD(extiD(M,D),D) (see (55)), and thus

cokerγ (i+1)i is either zero or an i-pure left D-module when D is an Auslander regular ring
(see 3 of Theorem 8 and Remark 6).

Exact sequences (79) and (80) will be used in Sect. 4.

Remark 15 Let us point out that the left D-modules Mi ’s can also be characterized by means
of the left D-homomorphisms γ i(i−1)’s. Combining (75) with (76), we obtain the following
commutative exact diagram:

D1×(p1i+p′
2i

) D1×p′
1i Li 0

D1×p11 D1×p01 M 0.

.(R′′T
1i

R′T
2i

)T

.
(
G′

1i
. . .G′

12

( Ip11
0

))
.(F ′

1i
. . . F ′

12R′
11)

ρ′
i

γ 10 ◦ · · · ◦ γ i(i−1)

.R11 π

By construction (see (67)), the identity R′
1iF1i . . . F12 = F ′

1i . . . F
′
12R

′
11 holds. Hence, using

(63) and 2 of Proposition 5, we obtain:

Mi = im(γ 10 ◦ · · · ◦ γ i(i−1)) = (
D1×p′

1i

(
F ′

1i . . . F
′
12R

′
11

) + D1×p11R11

)
/
(
D1×p11R11

)
.

The residue classes of the rows of the matrix R′
1iF1i . . . F12 = F ′

1i . . . F
′
12R

′
11 in the left

D-module M = D1×p01/(D1×p11R11) generate the left D-module Mi for i = 1, . . . , n.
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Finally, we explain an efficient way to obtain the grade filtration of a nontrivial
extiD(N,D) for i ≥ 1. We consider the case of a right D-module N (the case of a left
D-module is similar). Let us first study the case of ext1

D(N,D), where N = Dq/(RDp).
If we introduce the Auslander transpose M = D1×p/(D1×qR) of N , then the above results
shows that t1(M) = ext1

D(N,D), and thus the grade filtration of ext1
D(N,D) can be obtained

by computing the grade filtration of M . Let us now study the case i ≥ 2. Considering a free
resolution (4) of N and introducing the right D-module P = Dqi−1/(SiD

qi ) ∼= imD(Si−1.),
then applying Proposition 1 to the following long exact sequence

0 ←− N
κ←− Dq0

S1.←− Dq1
S2.←− · · · Si−2.←−− Dqi−2 ←− P ←− 0,

we get extiD(N,D) ∼= ext1
D(P,D) = t1(L), where L = D1×qi /(D1×pi−1Si) is the Auslan-

der transpose of P , which shows that the grade filtration of L gives the grade filtration
of extiD(N,D). The corresponding algorithm is implemented in the PURITYFILTRATION

package [45].

4 Equidimensional Triangularization of Linear Systems

The purpose of this section is to apply Theorem 7 on Baer’s extensions to the short exact se-
quences (79) and (80) to get a block-triangular matrix which presents the left D-module M ,
and whose block-diagonal matrices are presentation matrices of the pure left D-modules
Mi/Mi+1, where {Mi}i=0,...,n is the filtration (58) of M .

To simplify the exposition, we shall only consider the first three terms of the filtration
(58) of M , i.e., M3 ⊆ M2 ⊆ M1 ⊆ M , to obtain a presentation matrix P of M based on
the presentation matrices of the left D-modules M3, M2/M3, M1/M2, and M/M1. If D is
an Auslander regular ring, then M/M1 (resp., M1/M2, M2/M3) is 0-pure (resp., 1-pure, 2-
pure). The left D-module M3 satisfies jD(M3) ≥ 3 but it is generally not 3-pure (it is the
case if gld(D) = 3). From the clear pattern of the presentation matrix P , we can then easily
obtain the result for the general case.

The approach we use here also emphasizes another advantage of our approach over the
ones based on more sophisticated techniques of homological algebra. If we do no want to
separate the elements of M of grade number greater than or equal to j , then we only need
to compute the first j terms of the filtration (58) of M .

By (79) and (80), the following short exact sequences hold

0 −→ L3
γ 32−→ L2

θ2−→ cokerγ 32 −→ 0,

0 −→ L2
γ 21−→ L1

θ1−→ cokerγ 21 −→ 0,

0 −→ L1
γ 10−→ M

ρ−→ M/M1 −→ 0,

(81)

where Li (resp., cokerγ (i+1)i ) is defined by (65) (resp., (78)) and:

M/M1
∼= D1×p01/

(
D1×p′

11R′
11

)
.
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Using the definitions of L2, L3, and cokerγ 32 (see (66) and (78)), the following commu-
tative exact diagram holds

0

D1×p12R′′
12 + D1×p′

22R′
22

D1×(p′
13+p12+p′

22) D1×p′
12 cokerγ 32 0

0 L3 L2 cokerγ 32 0,

0

.(F ′T
13 R′′T

12 R′T
22)T

ψ2 ρ′
2

σ2

γ 32 θ2

where ψ2 : D1×(p′
13+p12+p′

22) −→ L3 is the left D-homomorphism defined by:

ψ2(ei) =
{

ρ ′
3(ei), i = 1, . . . , p′

13,

0, i = p′
13 + 1, . . . , p′

13 + p12 + p′
22.

Applying Theorem 7 to the first short exact sequence of (81) with the matrix

A = (
I T
p′

13
0T 0T

)T ∈ D(p′
13+p12+p′

22)×p′
13

(see Corollary 2), we obtain the following characterization of the left D-module L2 in terms
of the presentations of the left D-modules L3 and cokerγ 32.

Proposition 9 With the previous notations, let us consider

P2 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

F ′
13 −Ip′

13

R′′
12 0

R′
22 0

0 R′′
13

0 R′
23

⎞

⎟⎟⎟⎟⎟⎟
⎠

∈ D(p′
13+p12+p′

22+p13+p′
23)×(p′

12+p′
13),

Q2 =
(

R′′
12

R′
22

)

∈ D(p12+p′
22)×p′

12 ,

and the following two finitely presented left D-modules:

{
L2 = D1×p′

12/
(
D1×(p12+p′

22)Q2

)
,

E2 = D1×(p′
12+p′

13)/
(
D1×(p′

13+p12+p′
22+p13+p′

23)P2

)
.
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If �2 : D1×(p′
12+p′

13) −→ E2 is the canonical projection onto E2, then we have E2
∼= L2,

where the left D-isomorphism is defined by:

φ2 : L2 −→ E2

ρ ′
2(μ) �−→ �2

(
μ(Ip′

12
0)

)
,

φ−1
2 : E2 −→ L2

�2(ν) �−→ ρ ′
2

(
ν
(
I T
p′

12
F ′T

13

)T )
.

(82)

Proof Let us consider the following matrices:

V2 = (Ip′
12

0) ∈ Dp′
12×(p′

12+p′
13),

W2 =
(

0 Ip12 0 0 0

0 0 Ip′
22

0 0

)

∈ D(p12+p′
22)×(p′

13+p12+p′
22+p13+p′

23),

X2 =
(

Ip′
12

F ′
13

)

∈ D(p′
12+p′

13)×p′
12 ,

Y2 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 0

Ip12 0

0 Ip′
22

F13 −X22

0 F ′
23

⎞

⎟⎟⎟⎟⎟⎟
⎠

∈ D(p′
13+p12+p′

22+p13+p′
23)×(p12+p′

22).

Using (68) and (71) (see also Fig. 1), we can check that Q2V2 = W2P2 (resp., P2X2 =
Y2Q2), which by Proposition 5 induces φ2 ∈ homD(L2,E2) (resp., ψ2 ∈ homD(E2,L2))
defined by (82). Since V2X2 = Ip′

12
, we get ψ2 ◦ φ2 = idL2 , which shows that φ2 is injec-

tive. Using 3 of Proposition 5, cokerφ2 is finitely presented by the matrix (V T
2 P T

2 )T ∈
D(p′

12+p′
13+p12+p′

22+p13+p′
23)×(p′

12+p′
13), which admits the following left inverse

(
Ip′

12
0 0 0 0

F ′
13 −Ip′

13
0 0 0

)

,

which yields cokerφ2 = 0, i.e., φ2 is surjective, and finally shows that φ2 is an isomorphism,
E2

∼= L2, and φ−1
2 = ψ2. �

Using the left D-isomorphism φ−1
2 : E2 −→ L2 defined by (82), the second short exact

sequence of (81) yields the following short exact sequence

0 −→ E2
γ 21◦φ−1

2−−−−→ L1
θ1−→ cokerγ 21 −→ 0, (83)

where using (73), the left D-homomorphism γ 21 ◦ φ−1
2 : E2 −→ L1 is defined by

(
γ 21 ◦ φ−1

2

)(
�2(ν)

) = γ 21

(

ρ ′
2

(

ν

(
Ip′

12

F ′
13

)))

= ρ ′
1

(

ν

(
F ′

12

F ′
13F

′
12

))

,
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for all ν ∈ D1×(p′
12+p′

13). Using the definitions of L1, E2, and cokerγ 21 (see (66), Proposi-
tion 9 and (78)), we get the commutative exact diagram

0

D1×p11R′′
11 + D1×p′

21R′
21

D1×(p′
12+p11+p′

21) D1×p′
11 cokerγ 21 0

0 E2 L1 cokerγ 21 0,

0

.(F ′T
12 R′′T

11 R′T
21)T

ψ1 ρ′
1

σ1

γ 21 ◦ φ−1
2 θ1

where ψ1 : D1×(p′
12+p11+p′

21) −→ E2 is the left D-homomorphism defined by

ψ1(fj ) =
{

�2(fjF ), j = 1, . . . , p′
12,

0, j = p′
12 + 1, . . . , p′

12 + p11 + p′
21,

{fj }j=1,...,p′
12+p11+p′

21
is the standard basis of D1×(p′

12+p11+p′
21) and:

F =
⎛

⎜
⎝

Ip′
12

0

0 0

0 0

⎞

⎟
⎠ ∈ D(p′

12+p11+p′
21)×(p′

12+p′
13).

Applying Theorem 7 to the short exact sequence (83) with the matrix A = F (see Corol-
lary 2), we obtain the following proposition.

Proposition 10 With the previous notations, let us consider the following matrices

P1 =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

F ′
12 −Ip′

12
0

R′′
11 0 0

R′
21 0 0

0 F ′
13 −Ip′

13

0 R′′
12 0

0 R′
22 0

0 0 R′′
13

0 0 R′
23

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ D(p′
12+p11+p′

21+p′
13+p12+p′

22+p13+p′
23)×(p′

11+p′
12+p′

13),

Q1 =
(

R′′
11

R′
21

)

∈ D(p11+p′
21)×p′

11 ,



Grade Filtration of Linear Functional Systems 69

and the following two finitely presented left D-modules:

{
L1 = D1×p′

11/(D1×(p11+p′
21)Q1),

E1 = D1×(p′
11+p′

12+p′
13)/(D1×(p′

12+p11+p′
21+p′

13+p12+p′
22+p13+p′

23)P1).

If �1 : D1×(p′
11+p′

12+p′
13) −→ E1 is the canonical projection onto E1, then we have E1

∼= L1,
where the left D-isomorphism is defined by:

φ1 : L1 −→ E1

ρ ′
1(ν) �−→ �1

(
ν(Ip′

11
0 0)

)
,

φ−1
1 : E1 −→ L1

�1(λ) �−→ ρ ′
1

⎛

⎜
⎝λ

⎛

⎜
⎝

Ip′
11

F ′
12

F ′
13F

′
12

⎞

⎟
⎠

⎞

⎟
⎠ .

(84)

Finally, we have L1
∼= M1, with the following left D-isomorphisms:

χ1 : L1 −→ M1

ρ ′
1(ν) �−→ π

(
νR′

11

)
,

χ−1
1 : M1 −→ L1

π
(
νR′

11

) �−→ ρ ′
1(ν).

Proof Let us consider the following matrices:

V1 = (Ip′
11

0 0) ∈ Dp′
11×(p′

11+p′
12+p′

13),

X1 = (
I T
p′

11
F ′T

12 (F ′
13F

′
12)

T
)T ∈ D(p′

11+p′
12+p′

13)×p′
11 ,

W1 =
(

0 Ip11 0 0 0 0 0 0

0 0 Ip′
21

0 0 0 0 0

)

∈ D(p11+p′
21)×(p′

12+p11+p′
21+p′

13+p12+p′
22+p13+p′

23),

Y1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0

Ip11 0

0 Ip′
21

0 0

Ip11 −X12

0 F ′
22

F13 −F13X12 − X22F
′
22

0 F ′
23F

′
22

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ D(p′
12+p11+p′

21+p′
13+p12+p′

22+p13+p′
23)×(p11+p′

21).

Using the identities (68) and (71) (see also Fig. 1), and F12 = Ip11 , we can check that Q1V1 =
W1P1 (resp., P1X1 = Y1Q1), which by Proposition 5 induces φ1 ∈ homD(L1,E1) (resp.,
ψ1 ∈ homD(E1,L1)) defined by (84). Since V1X1 = Ip′

11
, we get ψ1 ◦ φ1 = idL1 , which

shows that φ1 is injective. Using 3 of Proposition 5, the left D-module cokerφ1 is finitely
presented by the following matrix

(
V T

1 P T
1

)T ∈ D(p′
11+p′

12+p11+p′
21+p′

13+p12+p′
22+p13+p′

23)×(p′
11+p′

12+p′
13),
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which admits the following left inverse:

⎛

⎜
⎝

Ip′
11

0 0 0 0 0 0 0 0

F ′
12 −Ip′

12
0 0 0 0 0 0 0

F ′
13F

′
12 −F ′

13 0 0 −Ip′
13

0 0 0 0

⎞

⎟
⎠ .

Hence, cokerφ1 = 0, i.e., φ1 is surjective, and thus φ1 is an isomorphism, E1
∼= L1, and

φ−1
1 = ψ1. Finally, the last result of Proposition 10 was proved in Remark 15. �

Using Proposition 10 and Remark 15, γ 10 ◦ φ−1
1 : E1 −→ M1 is then defined by:

(
χ1 ◦ φ−1

1

)(
�1(λ)

) = π

⎛

⎜
⎝λ

⎛

⎜
⎝

R′
11

F ′
12R

′
11

F ′
13F

′
12R

′
11

⎞

⎟
⎠

⎞

⎟
⎠ .

Then, the third short exact sequence (81) yields the following one:

0 −→ E1
γ 10◦φ−1

1−−−−→ M
ρ−→ M/M1 −→ 0. (85)

Now, we can easily check that the following commutative exact diagram holds

D1×p′
11 D1×p01 M/M1 0

0 E1 M M/M1 0,

.R′
11

ψ π

π ′

γ 10 ◦ φ−1
1 ρ

where ψ : D1×p′
11 −→ E1 is defined by ψ(gk) = �1(gk(Ip′

11
0 0)), and {gk}k=1,...,p′

11
is the

standard basis of D1×p′
11 . Then, we can apply Theorem 7 to the short exact sequence (85)

with A = (Ip′
11

0 0) ∈ Dp′
11×(p′

11+p′
12+p′

13) (see Corollary 2) to get the following theorem.

Theorem 12 Let D be a regular ring which satisfies (38). With the previous notations, let
P ∈ D(p′

11+p′
12+p11+p′

21+p′
13+p12+p′

22+p13+p′
23)×(p01+p′

11+p′
12+p′

13) be defined by

P =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

R′
11 −Ip′

11
0 0

0 F ′
12 −Ip′

12
0

0 R′′
11 0 0

0 R′
21 0 0

0 0 F ′
13 −Ip′

13

0 0 R′′
12 0

0 0 R′
22 0

0 0 0 R′′
13

0 0 0 R′
23

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
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and the following two finitely presented left D-modules:

{
M = D1×p01/

(
D1×p11R11

)
,

E = D1×(p01+p′
11+p′

12+p′
13)/

(
D1×(p′

11+p′
12+p11+p′

21+p′
13+p12+p′

22+p13+p′
23)P

)
.

If � : D1×(p01+p′
11+p′

12+p′
13) −→ E is the canonical projection onto E, then we have E ∼= M ,

where the left D-isomorphism is defined by:

φ : M −→ E

π(λ) �−→ �
(
λ(Ip01 0 0 0)

)
,

φ−1 : E −→ M

�(ε) �−→ π

⎛

⎜⎜⎜
⎝

ε

⎛

⎜⎜⎜
⎝

Ip01

R′
11

F ′
12R

′
11

F ′
13F

′
12R

′
11

⎞

⎟⎟⎟
⎠

⎞

⎟⎟⎟
⎠

.

(86)

Proof Let us consider the following matrices:

V = (Ip01 0 0 0) ∈ Dp01×(p01+p′
11+p′

12+p′
13),

W = (
R′′

11 0 Ip′
11

0 0 0 0 0 0
) ∈ Dp11×(p′

11+p′
12+p11+p′

21+p′
13+p12+p′

22+p13+p′
23),

X =

⎛

⎜⎜⎜
⎝

Ip01

R′
11

F ′
12R

′
11

F ′
13F

′
12R

′
11

⎞

⎟⎟⎟
⎠

∈ D(p01+p′
11+p′

12+p′
13)×p01 ,

Y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

Ip11

0

0

Ip11

0

F13

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ D(p′
11+p′

12+p11+p′
21+p′

13+p12+p′
22+p13+p′

23)×p11 .

Now, using (68) and (71) (see also Fig. 1), we can check that R11V = WP (resp., PX =
YR11), which by Proposition 5 induces φ ∈ homD(M,E) (resp., ψ ∈ homD(E,M)) defined
by (86). Moreover, since V X = Ip01 , we get ψ ◦ φ = idM , which shows that φ is injective.
Using 3 of Proposition 5, the left D-module cokerφ is finitely presented by the matrix

(
V T P T

)T ∈ D(p01+p′
11+p′

12+p′
13)×(p01+p′

11+p′
12+p11+p′

21+p′
13+p12+p′

22+p13+p′
23),



72 A. Quadrat

which admits the following left inverse

⎛

⎜
⎜⎜
⎝

Ip01 0 0 0 0 0 0 0 0 0

R′
11 −Ip′

11
0 0 0 0 0 0 0 0

F ′
12R

′
11 −F ′

12 −Ip′
12

0 0 0 0 0 0 0

F ′
13F

′
12R

′
11 −F ′

13F
′
12 −F ′

13 0 0 −Ip′
13

0 0 0 0

⎞

⎟
⎟⎟
⎠

,

which yields cokerφ = 0, i.e., φ is surjective, and finally shows that φ is an isomorphism,
E ∼= M , and φ−1 = ψ . �

We note that (71) for i = 1 and F12 = Ip11 yield the following identity:

R′′
11 = R′′

12F
′
12 + X12R

′
21. (87)

Hence, we can check that

(
0 R′′

11 0 0
) = R′′

12

(
0 F ′

12 − Ip′
12

0
) + X12

(
0 R′

21 0 0
) + (

0 0 R′′
12 0

)
,

which shows that the third row of P containing the matrix R′′
11 is just a left D-linear combi-

nation of the others. We obtain the following corollary of Theorem 12.

Corollary 4 With the hypotheses and the notations of Theorem 12, if

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

R′
11 −Ip′

11
0 0

0 F ′
12 −Ip′

12
0

0 R′
21 0 0

0 0 F ′
13 −Ip′

13

0 0 R′′
12 0

0 0 R′
22 0

0 0 0 R′′
13

0 0 0 R′
23

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ D(p′
11+p′

12+p′
21+p′

13+p12+p′
22+p13+p′

23)×(p01+p′
11+p′

12+p′
13),

then we have

M = D1×p01/
(
D1×p11R11

)

∼= E = D1×(p01+p′
11+p′

12+p′
13)/

(
D1×(p′

11+p′
12+p′

21+p′
13+p12+p′

22+p13+p′
23)Q

)
,

where the isomorphism is defined by (86).

If F is a left D-module, then M ∼= E yields kerF (R11.) ∼= kerF (P .) = kerF (Q.) (see
Theorem 1). Applying the contravariant homD(·, F ) to the diagram defined in Fig. 1, we
obtain the diagram defined in Fig. 2 formed by horizontal complexes of abelian groups.
Using (86) and R = R11, we get the following corollary.
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Fig. 2 Dual of Fig. 1

Corollary 5 If D is a regular ring which satisfies (38), R ∈ Dq×p , and F a left D-module,
then kerF (R.) ∼= kerF (Q.), i.e., the following system equivalence holds

Rη = 0 ⇔

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R′
11ζ − τ1 = 0,

F ′
12τ1 − τ2 = 0,

R′
21τ1 = 0,

F ′
13τ2 − τ3 = 0,

R′′
12τ2 = 0,

R′
22τ2 = 0,

R′′
13τ3 = 0,

R′
23τ3 = 0,

(88)

under the following invertible transformations:

γ : kerF (Q.) −→ kerF (R.)
⎛

⎜
⎜⎜
⎝

ζ

τ1

τ2

τ3

⎞

⎟⎟⎟
⎠

�−→ η = ζ,

γ −1 : kerF (R.) −→ kerF (Q.)

η �−→

⎛

⎜
⎜⎜
⎝

ζ

τ1

τ2

τ3

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

Ip01

R′
11

F ′
12R

′
11

F ′
13F

′
12R

′
11

⎞

⎟⎟⎟
⎠

η.
(89)

Remark 16 If D is an Auslander regular ring and a Cohen-Macaulay ring and

S0 = R′
11, S1 =

⎛

⎜
⎝

F ′
12

R′′
11

R′
21

⎞

⎟
⎠ , S ′

1 =
(

F ′
12

R′
21

)

,
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S2 =
⎛

⎜
⎝

F ′
13

R′′
12

R′
22

⎞

⎟
⎠ , S3 =

(
R′′

13

R′
23

)

,

then, within mathematical systems theory, we have:

1. kerF (S3.) ∼= homD(L3, F ) ∼= homD(ext3
D(N33,D), F ) is either 0 or has dimension less

than or equal to dim(D) − 3,
2. kerF (S2.) ∼= homD(cokerγ 32, F ) ∼= homD(cokerγ32, F ) is either 0 or has dimension

dim(D) − 2,
3. kerF (S1.) = kerF (S ′

1.)
∼= homD(cokerγ 21, F ) ∼= homD(cokerγ21, F ) is either 0 or has

dimension dim(D) − 1,
4. kerF (S0.) ∼= homD(M/M1, F ) has dimension dim(D) when it is nonzero.

If R3 has full row rank, i.e., kerD(.R3) = 0, then N33
∼= ext3

D(M,D), and thus
ext3

D(N33,D) ∼= ext3
D(ext3

D(M,D),D) is either zero or a 3-pure left D-module, which shows
that kerF (S3.) has dim(D) − 3 when it is nonzero.

Hence, the linear system kerF (R.) can be obtained by integrating the linear system
kerF (Q.), i.e., by integrating in cascade the linear system kerF (S3.) of dimension less
than or equal to dim(D) − 3, then the inhomogeneous linear systems of dimension re-
spectively dim(D) − 2, dim(D) − 1, and dim(D). Finally, if F is an injective left D-
module, then the linear system kerF (R′

11.) of dimension dim(D) is parametrized by R01,
i.e., kerF (R′

11.) = R01 F p−11 .

Example 6 Let us consider an example, first studied by Janet (see [26] and the refer-
ences therein) and considered again in [37], defined by the D = Q[∂1, ∂2, ∂3]-module
M = D1×4/(D1×6R) finitely presented by the following matrix:

R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −2∂1 ∂3 − 2∂2 − ∂1 −1

0 ∂3 − 2∂1 2∂2 − 3∂1 1

∂3 −6∂1 −2∂2 − 5∂1 −1

0 ∂2 − ∂1 ∂2 − ∂1 0

∂2 −∂1 −∂2 − ∂1 0

∂1 −∂1 −2∂1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The D-module M admits the following finite free resolution:

0 ←− M
π←− D1×4 .R←− D1×6 .R2←− D1×4 .R3←− D ←− 0,

R2 =

⎛

⎜⎜⎜
⎝

2∂2 ∂2 −∂2 −∂3 ∂3 0

2∂1 ∂2 −2∂1 + ∂2 −∂3 8∂1 − ∂3 −8∂2 + 2∂3

0 ∂1 − ∂2 ∂1 − ∂2 ∂3 −8∂1 + ∂3 8∂2 − ∂3

0 0 0 ∂1 −∂1 ∂2

⎞

⎟⎟⎟
⎠

,

R3 = (∂1 ∂2 − ∂2 ∂3).
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Using the notations R11 = R, R22 = R2, and R33 = R3, the commutative diagram (32) be-

comes the following commutative diagram

0 D D4 D4 D N33 0

0 D3 D6 D4 N22 0

0 D D4 D6 N11 0

0 D4 N00 0,

R13. R23. R33. κ33

F03.

R12. R22.

F13.

κ22

R01.

F02.

R11. κ11

κ00

which horizontal sequences are exact and with the following notations:

R01 =

⎛

⎜⎜⎜
⎝

1

−1

1

∂1 − 2∂2 + ∂3

⎞

⎟⎟⎟
⎠

, R12 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0

−1 4∂1 − ∂3 0

1 4∂1 − ∂3 ∂3

0 ∂1 − ∂2 0

0 ∂1 − ∂2 0

0 0 ∂1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

R23 =

⎛

⎜⎜⎜
⎝

−∂3 ∂2 0 0

0 0 1 0

0 ∂1 −1 ∂3

∂1 0 0 ∂2

⎞

⎟⎟⎟
⎠

, R13 =

⎛

⎜⎜⎜
⎝

−∂2

−∂3

0

∂1

⎞

⎟⎟⎟
⎠

,

F02 =
⎛

⎜
⎝

0 −2∂1 −∂1 − 2∂2 + ∂3 −1

0 −1 −1 0

1 −1 −2 0

⎞

⎟
⎠ , F03 = (0 0 1),

F13 =

⎛

⎜⎜⎜
⎝

0 0 0 1 −1 0

2 1 −1 0 0 0

2∂1 ∂2 −2∂1 + ∂2 −∂3 8∂1 − ∂3 −8∂2 + 2∂3

0 0 0 0 0 1

⎞

⎟⎟⎟
⎠

,

R03 = 0, and R02 = 0. Using Remark 14 with p03 = 1 and p02 = 3, we get R′
13 = 1, R′

12 = I3,

R′
21 = 0, R′

22 = 0, and R′
23 = 0. Then, (70) becomes the following the commutative diagram
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0 D D 0

0 D1×3 D1×3 0

D D1×4 D1×3 0,

.R′
13

.F ′
13.F03

.R′
12

.F ′
12.F02

.R′
11.R01

with the following notations:

R′
11 =

⎛

⎜
⎝

1 0 −1 0

0 1 1 0

0 0 ∂1 − 2∂2 + ∂3 −1

⎞

⎟
⎠ ,

F ′
13 = F03, F ′

12 =
⎛

⎜
⎝

0 −2∂1 1

0 −1 0

1 −1 0

⎞

⎟
⎠ .

Moreover, using (64), we have R′′
13 = R13, R′′

12 = R12, and:

R′′
11 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −2∂1 1

0 −2∂1 + ∂3 −1

∂3 −6∂1 1

0 −∂1 + ∂2 0

∂2 −∂1 0

∂1 −∂1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Since kerD(.R3) = 0, we have N33
∼= ext3

D(M,D), and thus ext3
D(N33,D) ∼=

ext3
D(ext3

D(M,D),D), which shows that {Mi}i=0,...,3 defined by (58) is the grade filtration

of M .

Using (45) and (65), where N11 = D6/(R11D
4), N22 = D4/(R22D

6), and N33 =
D/(R33D

4), we obtain the following finitely left D-modules:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L1 = D1×3/
(
D1×6R′′

11

) ∼= ext1
D(N11,D) ∼= t (M),

L2 = D1×3/
(
D1×6R12

) ∼= ext2
D(N22,D),

L3 = D/
(
D1×4R13

) ∼= ext3
D(N33,D).
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Corollary 4 yields M ∼= E = D1×11/(D1×17Q), where Q is defined by:

Q =

⎛

⎜
⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 −1 0 −1 0 0 0 0 0 0

0 1 1 0 0 −1 0 0 0 0 0

0 0 ∂1 − 2∂2 + ∂3 −1 0 0 −1 0 0 0 0

0 0 0 0 0 −2∂1 1 −1 0 0 0

0 0 0 0 0 −1 0 0 −1 0 0

0 0 0 0 1 −1 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 −1 4∂1 − ∂3 0 0

0 0 0 0 0 0 0 1 4∂1 − ∂3 ∂3 0

0 0 0 0 0 0 0 0 ∂1 − ∂2 0 0

0 0 0 0 0 0 0 0 ∂1 − ∂2 0 0

0 0 0 0 0 0 0 0 0 ∂1 0

0 0 0 0 0 0 0 0 0 0 −∂2

0 0 0 0 0 0 0 0 0 0 −∂3

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ∂1

⎞

⎟
⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Let us compute kerF (Q.), where F = C∞(R3). We first integrate the last diagonal block of
Q, i.e., the 0-dimensional (holonomic) linear system kerF (R13.):

⎧
⎪⎨

⎪⎩

−∂2τ3 = 0,

−∂3τ3 = 0,

∂1τ3 = 0,

⇔ τ3 = c1 ∈ R.

Then, we integrate the inhomogeneous linear system in τ2 = (τ21 τ22 τ23)
T and τ3 formed by

the third triangular block of Q (which homogeneous part is purely subholonomic), namely:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

τ23 − τ3 = 0,

τ21 = 0,

−τ21 + (4∂1 − ∂3)τ22 = 0,

τ21 + (4∂1 − ∂3)τ22 + ∂3τ23 = 0,

(∂1 − ∂2)τ22 = 0,

⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ23 = τ3 = c1,

τ21 = 0,

(4∂1 − ∂3)τ22 = 0,

(∂1 − ∂2)τ22 = 0.

We obtain τ21 = 0, τ22 = f1(x3 + 1
4 (x1 + x2)), where f1 is an arbitrary smooth function,

and τ23 = c1, where c1 is an arbitrary constant. Then, we integrate the inhomogeneous linear
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system in τ1 = (τ11 τ12 τ13)
T and τ2 formed by the second triangular block of Q, namely:

⎧
⎪⎨

⎪⎩

−2∂1τ12 + τ13 − τ21 = 0,

−τ12 − τ22 = 0,

τ11 − τ12 − τ23 = 0,

⇔

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ12 = −τ22 = −f1

(
x3 + 1

4
(x1 + x2)

)
,

τ11 = −τ22 + τ23 = −f1

(
x3 + 1

4
(x1 + x2)

)
+ c1,

τ13 = −2∂1τ22 + τ21 = −1

2
ḟ1

(
x3 + 1

4
(x1 + x2)

)
.

The entries of τ1 are 1-dimensional and not 2-dimensional. This result comes from the fact
that the matrix S ′

1 defined in Remark 16 admits a left inverse. Thus, we have M1/M2 = 0,
i.e., M1 = M2, which yields kerF (S ′

1.)
∼= homD(cokerγ 21, F ) ∼= homD(cokerγ21, F ) = 0.

Finally, we integrate the inhomogeneous linear system in ζ = (ζ1 . . . ζ4)
T and τ1 formed by

the first triangular block of P , namely:
⎧
⎪⎨

⎪⎩

ζ1 − ζ3 − τ11 = 0,

ζ2 + ζ3 − τ12 = 0,

(∂1 − 2∂2 + ∂3)ζ3 − ζ4 − τ13 = 0,

⇔

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ1 − ζ2 = −f1

(
x3 + 1

4
(x1 + x2)

)
+ c1,

ζ2 + ζ3 = −f1

(
x3 + 1

4
(x1 + x2)

)
,

(∂1 − 2∂2 + ∂3)ζ3 − ζ4 = −1

2
ḟ1

(
x3 + 1

4
(x1 + x2)

)
.

(90)

The torsion-free D-module M/t(M) = D1×4/(D1×3R′
11) can be parametrized by means

of R01, i.e., M/t(M) ∼= D1×4R01. Since F is an injective D-module, the linear system
kerF (R′

11.) is parametrized by R01, i.e., kerF (R′
11.) = R01 F . Moreover, R′

11 admits the fol-
lowing right inverse over D

X =

⎛

⎜⎜⎜
⎝

1 0 0

0 1 0

0 0 0

0 0 −1

⎞

⎟⎟⎟
⎠

,

and the Quillen-Suslin theorem (see, e.g., [20, 50]) implies that M/t(M) is a free D-module
of rank 1. The general F -solution of (90) is then defined by ζ = R01ξ + Xτ1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ1 = ξ − f1

(
x3 + 1

4
(x1 + x2)

)
+ c1,

ζ2 = −ξ − f1

(
x3 + 1

4
(x1 + x2)

)
,

ζ3 = ξ,

ζ4 = (∂1 − 2∂2 + ∂3)ξ + 1

2
ḟ1

(
x3 + 1

4
(x1 + x2)

)
,
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for all ξ ∈ C∞(R3), for all f1 ∈ C∞(R), and for all c1 ∈ R. For more details, see [46]. Using
the D-isomorphism γ defined by (89), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2∂1η2 + ∂3η3 − 2∂2η3 − ∂1η3 − η4 = 0,

∂3η2 − 2∂1η2 + 2∂2η3 − 3∂1η3 + η4 = 0,

∂3η1 − 6∂1η2 − 2∂2η3 − 5∂1η3 − η4 = 0,

∂2η2 − ∂1η2 + ∂2η3 − ∂1η3 = 0,

∂2η1 − ∂1η2 − ∂2η3 − ∂1η3 = 0,

∂1η1 − ∂1η2 − 2∂1η3 = 0,

⇔

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1 = ξ − f1

(
x3 + 1

4
(x1 + x2)

)
+ c1,

η2 = −ξ − f1

(
x3 + 1

4
(x1 + x2)

)
,

η3 = ξ,

η4 = (∂1 − 2∂2 + ∂3)ξ + 1

2
ḟ1

(
x3 + 1

4
(x1 + x2)

)
,

where ξ (resp., f1, c1) is an arbitrary function of C∞(R3) (resp., C∞(R), constant).
We note that the presentation matrix Q of E can be simplied by elementary operations.

In particular, we can check M ∼= E ∼= E = D1×3/(D1×5Q), where

Q =

⎛

⎜⎜⎜⎜⎜⎜
⎝

∂3 − 4∂1 0 0

∂3 − 4∂2 0 0

0 0 ∂1

0 0 ∂2

0 0 ∂3

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

and the isomorphism f : M −→ E is defined by f (π(λ)) = �(λU) for all λ ∈ D1×4, where
� : D1×3 −→ E is the canonical projection onto E and U is defined by:

U =

⎛

⎜⎜⎜
⎝

−1 −1 1

−1 1 0

0 −1 0

2∂1 −∂1 + 2∂2 − ∂3 0

⎞

⎟⎟⎟
⎠

.

Finally, we have M ∼= D ⊕ D/(∂3 − 4∂1, ∂3 − 4∂2) ⊕ D/(∂1, ∂2, ∂3), i.e., M is the direct
sum of the 0-pure D-module D, of the 1-pure D-module D/(∂3 − 4∂1, ∂3 − 4∂2), and of the
3-pure D-module D/(∂1, ∂2, ∂3).

For more examples coming from mathematical physics, mathematical systems theory,
and algebraic geometry, see [43, 45]. For instance, using the PURITYFILTRATION package,
we can show that the torsion submodule of the differential module M defined by the lin-
earized Einstein equations in the vacuum (see, e.g., [14]) is 1-pure (see [45]), and thus every
nontrivial torsion element m of M defines a pure differential module of dimension 3. For
more details, see [43].
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Using the regular patterns of the matrix P and (86), we can easily generalize Theorem 12,
Corollary 5, and Remark 16 as follows.

Theorem 13 Let D be a regular ring D satisfying (38), gld(D) = n, and R ∈ Dq×p . Then,
there exists a matrix R ∈ Dq×p of the form

R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

R′
11 −Ip′

11
0 0 0 0

0 F ′
12 −Ip′

12
0 0 0

0 R′
21 0 0 0 0

0 0
...

... 0 0

0 0
...

... 0 0

0 0 0 0 F ′
1n −Ip′

1n

0 0 0 0 R′′
1(n−1) 0

0 0 0 0 R′
2(n−1) 0

0 0 0 0 0 R′′
1n

0 0 0 0 0 R′
2n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(91)

such that M = D1×p/(D1×qR) ∼= M = D1×p/(D1×qR).
Moreover, if R′

11 ∈ Dp′
11×p01 and π : D1×p −→ M is the canonical projection onto M ,

then there exist matrices F ′
1i for i = 2, . . . , n such that:

ϕ : M −→ M

π(λ) �−→ π
(
λ(Ip01 0 · · · 0)

)
,

ϕ−1 : M −→ M

π(μ) �−→ π

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

μ

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

Ip01

R′
11

F ′
12R

′
11

...

F ′
1n · · ·F ′

12R
′
11

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

.

If F is a left D-module, then kerF (R.) ∼= kerF (R.), where:

γ : kerF (R.) −→ kerF (R.)
⎛

⎜⎜⎜⎜
⎝

ζ

τ1

...

τn

⎞

⎟⎟⎟⎟
⎠

�−→ η = ζ,

γ −1 : kerF (R.) −→ kerF (R.)

η �−→

⎛

⎜⎜⎜⎜
⎝

ζ

τ1

...

τn

⎞

⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎝

Ip01

R′
11

...

F ′
1n · · ·F ′

12R
′
11

⎞

⎟⎟⎟⎟
⎠

η.

Finally, if D is an Auslander regular ring, then the grade filtration {Mi}i=0,...,n of M is de-
fined by the left D-module Mi finitely presented by (R′′T

1i R′T
2i )

T , and Mi/Mi+1 is the i-pure
left D-module finitely presented by R′

11 for i=0, by (F ′T
1(i+1) R′′T

1i R′T
2i )

T for i = 1, . . . , n − 1,
and by (R′′T

1n R′T
2n)

T for i = n.
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We note that the presentation matrix R has a remarkably simple form (block-diagonal
and single off-diagonal). It does not seem that it can easily be obtained from the classical
black-box spectral sequence approach [2, 9, 10, 22, 31, 49].

Remark 17 We note that Mi = Mi+1 iff Si = (F ′T
1(i+1) R′′T

1i R′T
2i )

T admits a left inverse. It

shows that the matrix R can sometimes be simplified especially if Gröbner/Janet bases can
be computed over D. Moreover, elementary operations can also be applied to simplify the
matrix Si (see, e.g., Example 6). Using inductively Proposition 6, we can then obtain a
simple presentation matrix of M with a triangular-block form and whose diagonal blocks
present the nontrivial left D-modules Mi/Mi+1’s. Such a procedure is implemented in the
PURITYFILTRATION package. For related results, see Appendix A of [2]. Finally, if D is
a commutative polynomial ring, then Remark 4 can also be used to check whether or not
Mi

∼= Mi/Mi+1 ⊕ Mi+1, i.e., whether or not the corresponding matrix (I T
p′

i
0T 0T )T can be

replaced by the trivial matrix (0T 0T 0T )T (which generally helps the integration of the
corresponding linear functional system).

Even if the size of the matrix R is larger than the one of R, this presentation matrix is
more tractable than R for a fine study of the module properties of the left D-module M ∼= M ,
for the study of the structural properties of kerF (R.), as well as for computing closed-form
solutions of kerF (R.) (when they exist). For instance, overdetermined/underdetermined lin-
ear PD systems kerF (R.), which cannot be directly integrated by means of standard com-
puter algebra systems such as Maple, can be done using their equivalent forms kerF (R.).
For more details, see [43, 45].

5 An Embedding Theorem

If D is a domain, then a torsion-free left D-module M can be embedded into a free left
D-module (see the comment after Proposition 4), and thus into a projective left D-module.
Using Example 4, a 0-pure left D-module M can then be embedded into a left D-module
of left projective dimension 0. This result is a particular case of the following theorem for
which we give a construct proof.

Theorem 14 ([10]) Let D be an Auslander regular ring and M an i-pure left D-module.
Then, M can be embedded into a left D-module Pi of left projective dimension i, i.e.,
there exist a left D-module Pi with lpdD(Pi) = i and an injective homomorphism εi ∈
homD(M,Pi).

Proof Let us first suppose that M = D1×p/(D1×qR) is 0-pure, i.e., t0(M) = M and
t1(M) = 0. Since jD(M) = 0, kerD(R.) ∼= homD(M,D) �= 0 (see Theorem 1), which shows
that the Auslander transpose N11 = Dp11/(R11D

p01) of M = D1×p01/(D1×p11R11) (R11 = R,
p01 = p, p11 = q) admits a free resolution of the form

· · · R−11.−−−→ Dp−11
R01.−−→ Dp01

R11.−−→ Dp11
κ11−→ N11 −→ 0,

where R01 �= 0. Since T1 = ext1
D(N11,D) ∼= M1 = t1(M) = 0 (see Theorem 11), then we get

the exact sequence D1×p−11
.R01←−− D1×p01

.R11←−− D1×p11 , which yields M = cokerD(.R11) ∼=
imD(.R01) ⊆ D1×p−11 and lpd(D1×p−11) = 0.
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Let us now suppose that i ≥ 1. Since M is i-pure and jD(M) = i. If (24) is a free
resolution of M , then Nii = Dpii /(RiiD

p(i−1)i ) admits the free resolution (62), where
Rii = Ri , pii = pi , and pi(i+1) = pii (see the notations of Sect. 3). Now, extiD(M,D) ∼=
kerD(R(i+1)(i+1).)/ imD(Rii .) = (Ri(i+1)D

p(i−1)(i+1) )/(RiiD
p(i−1)i ) is a left D-submodule

of Nii . Using Proposition 4 for right D-modules, we get

extiD(M,D) ∼= Dp(i−1)(i+1) /
(
(F(i−1)(i+1) R(i−1)(i+1))D

p(i−1)i+p(i−2)(i+1)
)

and the following commutative exact diagram holds

Dp(i−1)i+p(i−2)(i+1) Dp(i−1)(i+1) extiD(M,D) 0

Dp(i−1)i Dpii Nii 0.

(F(i−1)(i+1) R(i−1)(i+1)).

(Ip(i−1)i
0). Ri(i+1). u

Rii . κii

where u is an injective right D-homomorphism.
Let q0 = p(i−1)(i+1), q1 = p(i−1)i + p(i−2)(i+1), Q1 = (F(i−1)(i+1) R(i−1)(i+1)), L0 =

Ri(i+1), and L1 = (Ip(i−1)i
0). Extending the presentation of extiD(M,D) to get a free res-

olution of extiD(M,D) and using Remark 13, u ∈ homD(extiD(M,D),Nii) induces the fol-
lowing commutative exact diagram:

Dqi+1 Dqi . . . Dq1 Dq0 extiD(M,D) 0

Dp−11 Dp01 . . . Dp(i−1)(i−1) Dpii Nii 0.

Li+1.

Qi+1.

Li .

Qi . Q2.

L1.

Q1.

L0. u

R01. R11. R(i−1)(i−1). Rii . κii

(92)

Since jD(M) = i ≥ 1, Theorem 1 shows that kerD(R11.) ∼= homD(M,D) = 0, i.e.,
R01 = 0. Dualizing (92), we get the following commutative diagram:

D1×qi+1 D1×qi . . . D1×q1 D1×q0 0

0 D1×p01 . . . D1×p(i−1)(i−1) D1×pii 0.

.Qi+1 .Qi .Q2 .Q1

.Li .L1 .L0

.R11 .R(i−1)(i−1) .Rii

(93)

Since D is Auslander regular, Remark 7 shows that extjD(extiD(M,D),D) = 0 for
j = 1, . . . , i − 1, which shows that the top horizontal complex of (93) is exact at D1×qj

for j = 0, . . . , i − 1. The defect of exactness of the top horizontal complex at D1×qi is
extiD(extiD(M,D),D) ∼= kerD(.Qi+1)/ imD(.Qi), and the defect of exactness of the bottom
horizontal complex at D1×p01 is extiD(Nii,D) ∼= D1×p01/(D1×p11R11) = M . Hence, .Li in-
duces the following left D-homomorphism

εi : M −→ kerD(.Qi+1)/ imD(.Qi)

π(λ) �−→ o(λLi),
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where o : kerD(.Qi+1) −→ kerD(.Qi+1)/ imD(.Qi) is the projection and λ ∈ D1×p01 . Since
M is i-pure, 1 of Theorem 8 then implies that εi is injective.

The exactness of the top horizontal complex of (93) at D1×qj for j = 0, . . . , i − 1 shows
that the left D-module Pi = D1×qi /(D1×qi−1Qi) admits a free resolution of length i defined
by .Qj with j = i, . . . ,1, which implies that extjD(Pi,D) = 0 for all j > i. Using this free
resolution of Pi , we obtain extiD(Pi,D) ∼= Dq0/(Q1D

q1) = extiD(M,D) �= 0, which proves
that lpdD(Pi) = i by Proposition 2.

Finally, kerD(.Qi+1)/ imD(.Qi) is a left D-submodule of Pi = D1×qi /(D1×qi−1Qi), and
thus εi induces an injective left D-homomorphism εi : M −→ Pi defined by εi(π(λ)) =
σi(λLi) for all λ ∈ D1×p01 , where σi : D1×qi −→ Pi is the canonical projection onto Pi ,
which proves the result. �

Theorem 14 is implemented in the PURITYFILTRATION package.
A proof of Theorem 14 based on Spencer cohomology [52] was obtained in [38].

Example 7 Let D be an Auslander regular ring with gld(D) = n and M a nonzero holo-
nomic left D-module. Then, gld(D) = n yields extiD(M,D) = 0 for i > n by Proposition 3.
By definition of a holonomic module, jD(M) = n, and thus extnD(M,D) �= 0, which proves
that lpdD(M) = n by Proposition 2. Finally, since M is n-pure, we can take Pn = M and
εn = idM in Theorem 14.

Example 8 Let D be an Auslander regular ring and M a nonzero left D-module defined by

the free resolution 0 −→ D1×p .R−→ D1×p π−→ M −→ 0. Since M ∼= ext1
D(ext1

D(M,D),D),
i.e., M is 1-pure, and lpdD(M) = 1, we can then take P1 = M and ε1 = idM in Theorem 14.
If D is also a Cohen-Macaulay ring, then dimD(M) = dim(D) − 1. If D is the ring of PD
operators with coefficients in a differential field K of characteristic 0, then this result proves
Janet’s conjecture [25], which was first proved by Johnson in [27] (see also [39, 40]).

Corollary 6 Let D be an Auslander regular ring, M = D1×p/(D1×qR) an i-pure left D-
module, and F an injective left D-module. Then, there exist Q ∈ Ds×r and L ∈ Dp×r such
that lpdD(P ) = i, where P = D1×r/(D1×sQ), and

kerF (R.) = LkerF (Q.),

i.e., an i-pure linear system is the image of a linear system of projective dimension i.

Proof The proof of Theorem 14 shows that the commutative exact diagram holds

0 Pi D1×qi D1×qi−1

0 M D1×p01 D1×p11,

σi .Qi

.R11

.Li−1

π

.Liεi

(94)

where εi ∈ homD(M,Pi) is injective, R11 = R, p01 = p, and p11 = q . Applying the con-
travariant exact functor homD( · , F ) to (94), we obtain the following commutative exact
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diagram

0 kerF (Qi.) F qi F qi−1

0 kerF (R11.) F p01 F p11 ,

ε�
i Li .

Qi .

Li−1.

R11.

where ε�
i : kerF (Qi.) −→ kerF (R.) is defined by ε�

i (ξ) = Liξ for all ξ ∈ kerF (Qi.). By

Theorem 3, the short exact sequence 0 −→ M
εi−→ Pi −→ coker εi −→ 0 yields the follow-

ing long exact sequence:

0 −→ homD(coker εi, F ) −→ homD(Pi, F )
ε∗
i−→ homD(M, F ) −→ ext1

D(coker εi, F ).

Since F is an injective left D-module, ext1
D(coker εi, F ) = 0 (see Definition 3), which

shows that ε�
i is surjective, i.e., using Theorem 1, for every η ∈ kerF (R.), there exists ξ ∈

kerF (Qi.) such that η = Liξ . Finally, we note that ε�
i is injective iff homD(coker εi, F ) ∼=

kerF ((LT
i QT

i )T .) = 0. �

Example 9 Let M be the D = Q[∂1, ∂2, ∂3]-module finitely presented by:

R =
⎛

⎜
⎝

∂1 0

0 ∂1

∂2 −∂3

⎞

⎟
⎠ ∈ D3×2.

Then, the D-module M admits the following free resolution:

0 ←− M
π←− D1×2 .R←− D1×3 .R2←− D ←− 0, R2 = (−∂2 ∂3 ∂1).

Clearly, ext2
D(M,D) = D/(∂1, ∂2, ∂3) �= 0, which shows that pdD(M) = 2 by Proposition 2.

Using Algorithm 1, we can check that M = M1 = t (M) and M2
∼= ext2

D(N22,D) = 0, where
N22 = D/(∂1, ∂2, ∂3), which shows that M is a 1-pure D-module. With the notations of
Sect. 3 and of the proof of Theorem 14, i.e., R11 = R, R22 = R2, kerD(R22.) = R12D

3,
kerD(R12.) = R02D, R12F02 = R11, Q1 = (F02 R02), L0 = R12, and L1 = (I2 0), where

R12 =
⎛

⎜
⎝

∂3 ∂1 0

∂2 0 ∂1

0 ∂2 −∂3

⎞

⎟
⎠ , F02 =

⎛

⎜
⎝

0 0

1 0

0 1

⎞

⎟
⎠ , R02 =

⎛

⎜
⎝

−∂1

∂3

∂2

⎞

⎟
⎠ ,

we obtain ext1
D(M,D) = kerD(R22.)/(R11D

2) = (R12D
3)/(R11D

2) ∼= D3/(Q1D
3). By

Theorem 14, the D-homomorphism ε : M −→ P1 = D1×3/(D1×3Q1) defined by ε1(π(λ)) =
σ1(λL1) is injective. Since the matrix Q1 has full row rank and P1 �= 0, pdD(P1) = 1, which
shows that the 1-pure D-module M can be embedded into the D-module P1 of projective
dimension 1. If F = C∞(R3) (see Example 2), then

kerF (Q1.) = {(
∂3φ(x2, x3) ∂2φ(x2, x3) −φ(x2, x3)

)T | ∀φ ∈ C∞(
R

2
)}

,

which finally yields:

kerF (R.) = L1 kerF (Q1.) = {(
∂3φ(x2, x3) ∂2φ(x2, x3)

)T | ∀φ ∈ C∞(
R

2
)}

.
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