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Abstract The aim of this paper is to tackle the self-propelling at low Reynolds number by
using tools coming from control theory. More precisely we first address the controllabil-
ity problem: “Given two arbitrary positions, does it exist “controls” such that the body can
swim from one position to another, with null initial and final deformations?”. We consider
a spherical object surrounded by a viscous incompressible fluid filling the remaining part of
the three dimensional space. The object is undergoing radial and axi-symmetric deforma-
tions in order to propel itself in the fluid. Since we assume that the motion takes place at low
Reynolds number, the fluid is governed by the Stokes equations. In this case, the governing
equations can be reduced to a finite dimensional control system. By combining perturbation
arguments and Lie brackets computations, we establish the controllability property. Finally
we study the time optimal control problem for a simplified system. We derive the neces-
sary optimality conditions by using the Pontryagin maximum principle. In several particular
cases we are able to compute the explicit form of the time optimal control and to investigate
the variation of optimal solutions with respect to the number of inputs.
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1 Introduction

Understanding the motion of solids (such as aquatic microorganisms and micro or nano
swimming robots) is a challenging issue since the propelling mechanism should be adapted
to very low Reynolds numbers, i.e., it should be essentially based on friction forces, with no
role of inertia (which is essential for the swimming mechanism of macroscopic objects, such
as fish like swimming). Among the early contributions to the modeling and analysis of these
phenomena, we mention the seminal works by Taylor [21], Lighthill [14, 15], and Childress
[6]. In several relatively more recent papers (see, for instance, Shapere and Wilczek [20],
San Martin Takahashi and Tucsnak [19], Alouges, DeSimone and Lefebvre [2], Alouges,
DeSimone and Heltai [3] and Lauga and Michelin [16]) the self-propelling at low Reynolds
number has been investigated by using tools coming from optimization and control theory.

The aim of this work is to give a rigorous mathematical approach to the analysis and the
control of a system modeling the low Reynolds number swimming of spherical object. In
order to propel itself in the fluid, the swimmer is assumed to perform radial deformations.
Roughly speaking, the main problems tackled in this work can be stated as follows:

1. Controllability: given an initial and a final position, prove the existence of a sequence
of deformations steering the mass center of the swimmer from the first position to the
second, such that at the beginning and the end of the process the body is a unit ball.

2. Time optimal control: among the sequences of deformations of given amplitude steering
the mass center from one position to another, determine a sequence accomplishing this
task in minimal time.

The controllability based approach to swimming at low Reynolds numbers has been used,
as far as we know in [19] and [2]. In [19] the swimmer is a ball and the control is a tan-
gential velocity field on the boundary (so that the body is not deforming), whereas in [2]
the authors consider a three-sphere swimmer. The main novelty we bring in this direction is
that we consider a one piece (connected) body which advances by undergoing appropriate
deformations. As far as we know, the associated time optimal control problems have not
been tackled in the literature but related optimal control problems, with the efficiency cost
function have been investigated (see, for instance [3, 16, 20]).

We give below some notation which will be used throughout this work. Firstly, we denote
by S0 the unit ball in R

3 and by S(t) the domain occupied by the swimmer at instant t . The
corresponding density field is denoted by ρ, so that, for every positive t , ρ(t, ·) maps S(t)

into (0,∞). The fluid domain is denoted by Ω(t) = R
3\S(t), see Fig. 1. We assume that the

motion takes places at zero Reynolds number so that, at each time t ≥ 0 the velocity field

Fig. 1 The fluid domain and the
swimmer
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u(t, ·) : Ω(t) → R
3 and the corresponding pressure field p(t, ·) : Ω(t) → R of the fluid

satisfy the Stokes equations:{
−μ�u(t, ·) + ∇p(t, ·) = 0 in Ω(t),

divu(t, ·) = 0 in Ω(t),
(1.1)

where μ ∈ R
∗+ is the viscosity. We assume that the fluid is at rest at infinity and that it sticks

onto the swimmer, so that we impose the conditions

lim
|x|→∞

u(t,x) = 0 (t ≥ 0), (1.2)

u(t, ·) = vS(t, ·) on ∂S(t), (1.3)

where vS the velocity of the swimmer. The needed well-posedness results for the system
(1.1)–(1.3) will be recalled in Sect. 2.

We assume that the motion of the swimmer can be decomposed into a rigid part, which is
unknown, and a motion not affecting its mass center and its global orientation, which will be
the input of our problem. The rigid part of the motion is characterized, at each instant t , by
the position h(t) of the mass center and a rotation matrix R(t). More precisely, the motion
of the swimmer is characterized by a map X : S0 × [0,∞) → R

3 which can be written

X(t,y) = h(t) + R(t)X�(t,y) (y ∈ S0, t ≥ 0),

where X� : [0,∞) × S0 → R
3 is the input function (see Fig. 2). The current domain S(t)

occupied by the swimmer is thus given by

S(t) = X(t, ·)(S0) (t ≥ 0).

Since swimming is generally a periodic action, we constrain the input X� to satisfy

X�(t, ·) = X�(t + T , ·) (t ≥ 0), (1.4)

for some T > 0. The corresponding Eulerian velocity field vS of the swimmer can thus be
written

vS(t,x) = ḣ(t) + ω(t) × (x − h(t)
)+ R(t)

∂X�

∂ t

(
t,X�(t, ·)−1(

R�(t)
(
x − h(t)

)))
(
t ≥ 0, x ∈ S(t)

)
, (1.5)

Fig. 2 Deformation and
transport of the swimmer
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where R�(t) stands for the transposed matrix of R(t) and ω is the angular velocity vector,
defined by Ṙ = R�A(ω), with

A(ω) =
⎛
⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ (

ω = (ω1,ω2,ω3)
�).

Using (1.5), condition (1.3) becomes

u(t,x) = ḣ(t) + ω(t) × (x − h(t)
)+ R(t)

∂X�

∂ t

(
t,X�(t, ·)−1(

R�(t)
(
x − h(t)

)))
(
t ≥ 0, x ∈ ∂S(t)

)
. (1.6)

To be consistent with the assumption of low Reynolds number flow, we assume that at each
instant t the swimmer is in equilibrium under the action of forces exerted by the fluid. This
means that we have ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
0 =

∫
∂S(t)

σn dΓ

0 =
∫

∂S(t)

(x − h) × σn dΓ

(t ≥ 0), (1.7)

where

σ = σ(u,p) = μ
(∇u + ∇uT

)− pI3, (1.8)

is the classical Cauchy stress tensor in a viscous incompressible fluid.
The full system under investigation, of unknowns u, p, σ , h and R, with the given input

X� is formed by the equations (1.1), (1.2), (1.6), (1.7) and (1.8). The unknown σ can be
substituted, using (1.8), into (1.7) so that it suffices to consider the unknowns u, p, h and R.
Moreover, solving, for each positive t the stationary Stokes equations (1.1), the full system
reduces to a system of ordinary differential equations for h and R (see Sect. 3).

The main theoretical results concern controllability issues. They imply that for any
h0, h1 ∈ R

3 there exists T > 0 and an input X∗ satisfying (1.4) such that the mass cen-
ter of the swimmer is steered from h0 to h1 in time T , that is, we have

h(0) = h0, h(T ) = h1.

A special attention is devoted to the case in which X� is axi-symmetric, so that the trajectory
of the mass center is a straight line. In this situation we provide a simplified model and
we apply Pontryagin’s principle to give an explicit solution of the associated time optimal
control problem.

2 Some Background on the Exterior Stokes Problem

In this section we first recall some known results on the exterior (i.e., posed in R
3 \S, where

S is a bounded obstacle) Dirichlet boundary value problem for the stationary Stokes system.
We next introduce the force operator, which associates to a given Dirichlet condition on the
boundary of S the total force exerted by the fluid on that obstacle. The main results in this
section concern the smoothness of this operator with respect to the shape of the obstacle.
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In order to apply the standard control theoretic results we need this dependence to be quite
regular, say C∞. Let us note that the same problem, with more general deformations and
with less regular dependence on the shape, has been considered in Dal Maso, DeSimone
and Morandotti [8]. Since the smoothness with respect to the shape results needed in this
work do not seem to follow directly from [8], we give below a quick derivation of the
needed smoothness results, using a classical approach introduced in Murat and Simon [17]
(see also [4]).

Throughout this section, S denotes a bounded domain of R
3 with locally Lipschitz

boundary and we set Ω = R
3 \ S. To state some well-posedness results for the exterior

Stokes problem we recall the definition of some function spaces, which are borrowed
from [9].

Definition 2.1 The homogeneous Sobolev space D
1,2
0 (Ω) is the closure of C∞

0 (Ω) with
respect to the norm | · |1,2 defined by

|ϕ|1,2 = ‖∇ϕ‖L2(Ω)

(
ϕ ∈ C∞

0 (Ω)
)
.

The homogeneous Sobolev space D1,2(Ω) is defined by

D1,2(Ω) = {ϕ ∈ L1
loc(Ω), ∇ϕ ∈ L2(Ω)

}
.

We note that D
1,2
0 (Ω) ⊂ D1,2(Ω) and that | · |1,2 is a semi-norm on D1,2(Ω). Moreover,

we denote by D
−1,2
0 (Ω) completion of C∞

0 (Ω) with respect to the norm

|f |−1,2 = sup
u∈D1,2(Ω),|u|1,2=1

〈f,u〉L2(Ω).

The far field condition lim|x|→∞ u(x) = 0 should be understood in the sense that

lim
r→+∞

∫ π

0

∫ 2π

0

∣∣u(r, θ,φ)
∣∣ sin θ dφ dθ = 0, (2.1)

where (r, θ,φ) ∈ R
+ × [0,π ] × [0,2π) denotes the spherical coordinates (see Fig. 3).

At this stage we need a well-posedness result for the exterior Stokes system. This result
is a direct consequence of Galdi, [9, Chap. 5, Theorem 2.1, p. 251] and of a lifting result
concerning the divergence operator, sometimes called Bogovski’s Lemma, see, for instance,
[9, Chap. 3, Theorem 3.4, p. 142].

Fig. 3 Spherical coordinates
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Theorem 2.2 Let f ∈ D
−1,2
0 (Ω), g ∈ L2(Ω) and v0 ∈ H

1
2 (∂Ω). Then there exists a unique

weak solution (v,p) ∈ D1,2(Ω) × L2(Ω) of:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−μ�v + ∇p = f in Ω,

divv = g in Ω,

v = v0 on ∂Ω,

lim|x|→∞ v = 0,

(2.2)

such that:

|v|1,2 + ‖p‖L2(Ω) ≤ c(Ω)
(|f |−1,2 + ‖g‖L2(Ω) + ‖v0‖

H
1
2 (∂Ω)

)
.

We next define an operator playing a central role in the remaining part of this work. More
precisely, we introduce the force operator, associating to each Dirichlet boundary condition
v0 in (2.2) the resulting force exerted by the fluid on S.

Let ez be the unitary vector in the direction Oz and let (uz, qz) ∈ D1,2(Ω) × L2(Ω) be
the weak solution of: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

−μ�uz + ∇qz = 0 in Ω,

divuz = 0 in Ω,

uz = ez on ∂Ω,

lim|x|→∞ uz = 0.

(2.3)

An important role in this work is played by the bounded linear operator F(S) : H 1
2 (∂S) → R

defined by

F(S)(v0) =
∫

Ω

σ(v,p) : ∇uz dx
(
v0 ∈ H

1
2 (∂S)

)
, (2.4)

where (v,p) is the solution of (2.2) with f = 0, g = 0 and

σ(v,p) = μ
(∇v + ∇v�)− pI3,

is the Cauchy stress tensor in the fluid. Note that, for (v,p) smooth enough, we have

F(S)(v0) =
∫

∂Ω

σ (v,p)n · ez dΓ
(
v0 ∈ H

1
2 (∂S)

)
, (2.5)

where n is the unitary vector field normal to ∂S and oriented towards the exterior of S. In
other words, for (v,p) smooth enough, F(S)(v0) is the force on the direction Oz exerted by
the fluid on the solid S due to the velocity field v0 at the interface.

Remark 2.3 It can be easily checked that F is essentially invariant with respect to transla-
tions of S. More precisely, for every h ∈ R

3 and for every v0 ∈ H
1
2 (∂(S + h)), we have:

F(S + h)(v0) = F(S)(ṽ0),

with ṽ0 ∈ H
1
2 (∂S) defined, for every x ∈ ∂S, by ṽ0(x) = v0(x + h).

In the remaining part of this section we study the regularity of F with respect to shape
of S.
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We first recall a classical result on the robustness of the locally Lipschitz property of
the boundary ∂S with respect to small geometric perturbations (see, for instance, Bello,
Fernandez-Cara, Lemoine and Simon [4]).

Lemma 2.4 There exists a positive constant c(S) such that for every θ ∈ W 1,∞(R3,R
3) with

‖θ‖W1,∞(R3,R3) < c(S), the set (I + θ)(S) is an open bounded domain with locally Lipschitz
boundary in R

3.

We then define the set of deformations for S:

Θ(S) = {θ ∈ W 1,∞(
R

3,R
3
)
,‖θ‖W1,∞(R3,R3) < min

(
c(S),1

)}
. (2.6)

Then for every θ ∈ Θ(S), the mapping I +θ is a diffeomorphism of R
3, (I +θ)(S) is an open

bounded domain of R
3 with a locally Lipschitz boundary and (I +θ)(Ω) = R

3 \ (I + θ)(S).
We next give a differentiability (with respect to the shape) result. We skip its proof since it
can be obtained by a slight variation of the proof of Theorem 6 from [4], combined with
Theorem 2.2.

Theorem 2.5 Let v0 ∈ H
1
2 (∂Ω). The map associating to every τ ∈ Θ(S) the couple

(
v(τ ),p(τ)

) ◦ (I + τ) ∈ D1,2(Ω) × L2(Ω),

where (v(τ ),p(τ)) is the solution of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−μ�v(τ ) + ∇p(τ) = 0 in (I + τ)(Ω),

divv(τ ) = 0 in (I + τ)(Ω),

v(τ ) = v0 ◦ (I + τ)−1 on ∂(I + τ)(Ω),

lim|x|→∞ v(τ ) = 0,

(2.7)

is infinitely differentiable in a neighborhood of 0.

We are now in a position to prove the smoothness of the real-valued function F, defined
in (2.4), with respect to the shape of the solid.

Theorem 2.6 For every v0 ∈ H
1
2 (∂Ω), the real-valued function defined in Θ(S) by

θ �→ F
(
(I + θ)(S)

)(
v0 ◦ (I + θ)−1

) (
θ ∈ Θ(S)

)
,

is of class C∞ in a neighborhood of 0.

Proof For τ ∈ Θ(S), let (v(τ ),p(τ)) be the solution of (2.7) and let (uz(τ ), qz(τ )) ∈
D1,2((I + τ)(Ω)) × L2((I + τ)(Ω)) satisfy:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−μ�uz(τ ) + ∇qz(τ ) = 0 in (I + τ)(Ω),

divuz(τ ) = 0 in (I + τ)(Ω),

uz(τ ) = ez on ∂(I + τ)(Ω),

lim|x|→∞ uz(τ ) = 0.
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We define (Uz(τ ),Qz(τ )) = (uz(τ ), qz(τ )) ◦ (I + τ) and (V (τ),P (τ)) = (v(τ ),p(τ)) ◦
(I + τ). Then, using (2.4) and the change of variables x = (I + τ)y, it follows that:

F
(
(I + τ)(S)

)(
v0 ◦ (I + τ)−1

) =
∫

(I+τ)(Ω)

σ
(
v(τ ),p(τ)

) : ∇uz(τ )dx

=
∫

Ω

f (τ) ◦ (I + τ) Jac(I + τ)dy,

where f is given by

f (τ) ◦ (I + τ)

= (μ((I3 + ∇τ)−1∇V (τ) + ∇V (τ)T
(
I3 + ∇τ T

)−1)− P (τ)I3

) : (I3 + ∇τ)−1∇Uz(τ).

Using Theorem 2.5, one can easily check that the mapping τ �→ f (τ) ◦ (I + τ) is dif-
ferentiable at 0, with values in L1(Ω). Hence, according to Lemma 12 in [4] (see also
[11, Corollaire 5.2.5]) the mapping τ �→ F((I + τ)(S))(v0 ◦ (I + τ)−1) = ∫

Ω
f (τ) ◦ (I +

τ) Jac(I + τ)dy is also differentiable at 0. In addition, Theorem 2.5 ensures that the map-
pings τ �→ (Uz(τ ),Qz(τ )) and τ �→ (V (τ),P (τ)) are C∞ in a neighborhood of 0. It follows
that τ �→ F((I + τ)(S))(v0 ◦ (I + τ)−1) is also C∞ in a neighborhood of 0. �

3 The Case of Radial Deformations

In this section and in the remaining part of this work we assume that the swimmer’s body
occupies at rest the unit sphere S0 of R

3 and its mass density is constant (ρ0 = 1).
Moreover, we consider only radial axi-symmetric deformations X�(t, ·) of the unit sphere

S0. This means, using appropriate spherical coordinates (r, θ,φ) ∈ R
+ × [0,π] × [0,2π)

(see Fig. 3), that X� can be written in the form

X�(t,y) = (1 + r�
(
t, cos θ(y)

))
y
(
t ∈ [0, T ], y ∈ S0

)
, (3.1)

where r� ∈ C∞([0, T ] × [−1,1],R) and θ is the function which maps x ∈ R
3 to the angle

θ(x) ∈ [0,π] (see Fig. 3). We denote by JacX� the Jacobian of the mapping X� and by ρ�

the mass density field on S�(t) = X�(t, ·)(S0) which is defined by

ρ�
(
t,x�

)= 1

Jac(X�(t, ·))(X�(t, ·)−1(x�))

(
t ∈ [0, T ], x� ∈ S�(t)

)
. (3.2)

Let (Pi)i≥0 be the Legendre polynomials which are known to form an orthogonal basis in
L2([−1,1]). The result below shows that, under mild assumption on r� the deformations
defined by (3.1) satisfy the so-called self-propelling conditions. This result is given without
proof.

Proposition 3.1 Assume that for every t ∈ [0, T ] we have r�(t, ·) orthogonal to {P0,P1} (in
the L2 sense) and that

r�(t, x) > −1
(
t ∈ [0, T ], x ∈ [−1,1]). (3.3)

Then, the following properties hold.
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• For every t > 0, the mapping X�(t, ·) is a diffeomorphism from S0 onto X�(t, ·)(S0) and

0 < JacX�(t,y)
(
t ∈ [0, T ], y ∈ S0

)
. (3.4)

Moreover, X�(t, ·)(S0) is a bounded domain with Lipschitz boundary for every t ∈ [0, T ].
• The mass center is fixed, i.e.,

0 =
∫

S�(t)

ρ�
(
t,x�

)
x� dx�

(
t ∈ [0, T ]). (3.5)

• The angular momentum is constant, i.e.,

0 =
∫

S�(t)

ρ�
(
t,x�

)
Ẋ�
(
t,X�(t, ·)−1(x�

))× x� dx�
(
t ∈ [0, T ]). (3.6)

Formulas (3.5) and (3.6) correspond to the self-propelling conditions which are natural
requirements in understanding swimming from a mathematical view point (at least for large
Reynolds numbers). In the precise control problem which is considered in this work (i.e.,
at low Reynolds numbers and with X∗ time periodic), the reachable space by general axi-
symmetric deformations X∗ coincides with the reachable space obtained with the smaller
input space defined corresponding to the assumptions in Proposition 3.1. This means, that
in the particular case considered in this work, the self-propelling conditions play no role, as
shown in Proposition 3.4 below.

We next show that, under the assumptions of Proposition 3.1, the considered system re-
duces to a quite simple system of ordinary differential equations. Indeed, using the notations
introduced by (2.4) and assuming that the deformation X� is defined by (3.1), we can rewrite
problem (1.1)–(1.3), (1.7) in the form:

0 = F
(
X�(t, ·)(S0) + h(t)ez

)(
ḣ(t)ez + Ẋ�

(
t, · − h(t)ez

))
, (3.7)

h(0) = 0. (3.8)

Using the fact that for every t ∈ [0, T ], F(X�(t, ·)(S0) + h(t)ez) is a linear map from
H

1
2 (∂(X�(t)(S) + h(t)ez)) to R and using Remark 2.3, (3.7) becomes:

F
(
X�(t, ·)(S0)

)
(ez)ḣ(t) = −F

(
X�(t, ·)(S0)

)(
Ẋ�(t, ·)). (3.9)

We also need a result, often in the literature, asserting that the drag acting on a solid
moving at constant velocity in Stokes fluid does not vanish. For the sake of completeness,
we provide the reader with a short proof.

Lemma 3.2 For every bounded and open domain S ⊂ R
3 with Lipschitz boundary we have:

F(S)(ez) �= 0.

Proof Let (uz, qz) be the solution of the exterior homogeneous Stokes problem with bound-
ary condition ez (see (2.3)). Using the Green formulae, we have:
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F(S)(ez) =
∫

R3\S

(
μ
(∇uz + ∇uT

z

)− qzI3

) : ∇uz dx

= μ

2

∫
R3\S

(∇uz + ∇uT
z

) : (∇uz + ∇uT
z

)
dx

+ μ

2

∫
R3\S

(∇uz + ∇uT
z

) : (∇uz − ∇uT
z

)
dx −

∫
R3\S

qzdivuz dx

= μ

2

∫
R3\S

(∇uz + ∇uT
z

) : (∇uz + ∇uT
z

)
dx.

We argue by contradiction. Assuming that F(S)(ez) = 0, we have that ∇uz + ∇uT
z , i.e.,

the symmetric strain rate tensor, is equal to zero. Then it is well known that uz(x) = a +
b × x, with a,b ∈ R

3. But due to the fact that ∇uz ∈ L2(R3 \ S), we obtain that b = 0.
Using the fact that uz decays to zero far from S (in the sense of (2.1)), we deduce that
a = 0. This is in contradiction with the boundary condition uz = ez on ∂S. Consequently
F(S)(ez) �= 0. �

The remaining part of this work is devoted to the study of the system (3.7)–(3.8). We first
note that the following simple result holds.

Proposition 3.3 Assume that the smooth function r� satisfies (3.3). Then there exists a
unique solution h ∈ C∞([0, T ],R) solution of (3.7)–(3.8).

Proof Using Proposition 3.1, Lemma 3.2 and Theorem 2.6, we obtain that the map

t �→ F(X�(t, ·)(S0))(Ẋ�(t, ·))
F(X�(t, ·)(S0))(ez)

is C∞ on [0, T ].
Hence, the unique solution of (3.7)–(3.8) is h ∈ C∞([0, T ],R) defined by:

h(t) = −
∫ t

0

F(X�(s, ·)(S0))(Ẋ�(s, ·))
F(X�(s, ·)(S0))(ez)

ds
(
t ∈ [0, T ]). (3.10)

�

The proposition below shows that, if we assume that r� is time-periodic, then the or-
thogonality on P0 and P1 (and, consequently, the self-propelling conditions), assumed in
Proposition 3.1, does not affect the set of reachable final positions h(T ) of the solid.

Proposition 3.4 Let X�
1 and X�

2 be two axi-symmetric deformations defined for t ∈ [0, T ]
satisfying X�

i (0, ·) = X�
i (T , ·) = I, i ∈ {1,2} and which satisfy, for every t ∈ [0, T ], the

condition

X�
1(t, ·) = X�

2(t, ·) + hc(t)ez,

for some hc ∈ C1([0, T ],R). Let h1 (resp. h2) be defined by (3.10) with X� = X�
1 (resp.

X� = X�
2). Then h1(T ) = h2(T ).
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Proof From (3.9) it follows that

F
(
X�

2(t)(S0)
)
(ez)ḣ2(t) = −F

(
X�

2(t)(S0)
)(

Ẋ�
2(t)
)
,

F
(
X�

1(t)(S0)
)
(ez)ḣ1(t) = −F

(
X�

1(t)(S0)
)(

Ẋ�
1(t)
)
.

Using Remark 2.3 it follows that

−F
(
X�

2(t)(S0)
)(

Ẋ�
2(t)
)= −F

(
X�

1(t)(S0)
)(

Ẋ�
1(t) + ḣc(t)ez

)
= −F

(
X�

1(t)(S0)
)(

Ẋ�
1(t)
)− F

(
X�

1(t)(S0)
)
(ez)ḣc(t)

and

F
(
X�

2(t)(S0)
)
(ez) = F

(
X�

1(t)(S0)
)
(ez).

Hence

ḣ2 + ḣc = ḣ1.

Finally, since X�
i (0, ·) = X�

i (T , ·) = I, i ∈ {1,2} (consequently hc(0) = hc(T ) = 0), we
obtain h2(T ) = h1(T ). �

Denote, for the remaining part of this paper

Di(y) = Pi+1

(
cos θ(y)

)
y (i ≥ 1, y ∈ S0), (3.11)

where (Pi)i∈N are the Legendre polynomials and (r(y), θ(y),φ(y)) ∈ R+ × [0,π] × [0,2π)

are the spherical coordinates of y (see Fig. 3).
The remaining part of this section deals with the first derivative with respect to the shape

of a certain ratio of hydrodynamical forces. We use, in particular, asymptotic formulas de-
rived by Lighthill (see [15]). The precise form in which we use these results is borrowed
from Shapere and Wilczek [20, Eq. (2.12)].

Proposition 3.5 Let F be the force operator introduced in Sect. 2, let L ≥ 1 and let MSW =
(MSW

i,j )i,j∈{1,...,L} ∈ ML(R) be defined by:

MSW
i,j =

⎧⎪⎪⎨
⎪⎪⎩

(i+1)2

(2i+1)(2i+3)
if j = i − 1,

−i2+2i+5
(2i+3)(2i+5)

if j = i + 1,

0 otherwise

(3.12)

for every i, j ∈ {1, . . . ,L}. Then

F((I + ε
∑L

j=1 αjDj )(S0))(ε
∑L

i=1 α̇iDi)

F((I + ε
∑L

j=1 αjDj )(S0))(ez)
= ε2

〈
MSWα, α̇

〉+ o
(
ε2
)

(ε → 0), (3.13)

for every α = (α1, . . . , αL)T ∈ C∞(R+,R
L), where (Di)i∈{1,...,L} are given by (3.11).

As a consequence of the above proposition, we have the following result.
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Proposition 3.6 Let L ≥ 1 and (Di)i≥1 be the deformations defined by (3.11). Then for
every i, j ∈ {1, . . . ,L}, we have:

F(S0)(Di) = 0 and

(
F

′(Dj )(Di)

F(S0)(ez)

)
i,j∈{1,...,L}

= MSW ∈ ML(R),

where MSW ∈ ML(R) is the matrix defined in Proposition 3.5 by (3.12) and, for every
τ ∈ Θ(S) and every v0 ∈ H

1
2 (∂Ω), F

′(τ )(v0) stands for the differential of θ �→ F((I +
θ)(S))(v0 ◦ (I + θ)−1) at 0 in the direction τ (which exists according to Theorem 2.6).

Proof For every α ∈ C∞(R+,R
L), we deduce from Theorem 2.6 that the map

ε �→ F((I + ε
∑L

j=1 αjDj )(S0))(ε
∑L

i=1 α̇iDi)

F((I + ε
∑L

j=1 αjDj )(S0))(ez)
,

is of class C∞ in a neighborhood of the origin. By comparing the second order Taylor
expansion of this function around the origin with formula (3.13) we obtain the required
result. �

4 Controllability Results

Recall from the introduction that our aim is to steer the mass center of the swimmer in a
prescribed final position, with initial and final deformation equal to zero. Since we also want
to control the final deformation, it seems convenient to extend the state space by including
in it the variables describing the deformation (i.e., the function r�) and to use the derivative
with respect to time of r� as a new input function.

Based on the above remark and under the assumptions of Proposition 3.3, the system
(3.7)–(3.8) can be written:

ḣ(t) = −F(X�(t, ·)(S0))(w
�(t, ·))

F(X�(t, ·)(S0))(ez)
, (4.1)

ṙ �(t, ·) = Q�(t, ·), (4.2)

with the initial conditions

r�(0, ·) = 0, h(0) = 0, (4.3)

where the deformation velocity w� is given by

w�(t,y) = Q�
(
t, cos θ(y)

)
y
(
(t,y) ∈ [0, T ] × S0

)
,

and Q� is the new input function.
With the above notation, the main result in this section states as follows:

Theorem 4.1 For every h1 ∈ R, there exists T > 0 and Q� ∈ C∞([0, T ] × [−1,1],R) such
that the solution (h, r�) of (4.1)–(4.3) satisfies:

1. h(T ) = h1 and r�(T , ·) = 0,
2. for every t ∈ [0, T ], ‖Q�(t, ·)‖L∞(−1,1) ≤ 1,
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3. for every t ∈ [0, T ], r�(t, ·) ∈ {P0,P1}⊥ and inf(t,x)∈[0,T ]×[−1,1] r�(t, x) > −1.

In order to prove the above result, we use Chow’s theorem (see for instance [22, Chap. 5,
Proposition 5.14, p. 89] or [13]):

Theorem 4.2 (Chow) Let m, n ∈ N and let (f i )i=1,n be C∞ vector fields on R
n. Consider

the control system, of state trajectory q ,

q̇ =
m∑

i=1

uif i (q), (4.4)

with input function u = (ui)i=1,m ∈ C∞([0,+∞),BRm(0, r)) for some r > 0.
Let O an open and connected set of R

n and assume that

Lieq{f 1, . . . ,f m} = R
n q ∈ O,

Then the system (4.4) is controllable, i.e., for every q0, q1 ∈ O there exists T > 0 and u ∈
C∞([0, T ],BRm(0, r)) such that q(0) = q0 and q(T ) = q1 and q(t) ∈ O for every t ∈ [0, T ].

In the previous theorem, the Lie-bracket of two vector fields g1, g2 is a new vector field
defined by

[g1,g2](q) = Dqg2 · g1(q) − Dqg1 · g2(q).

We recall that a Lie-algebra is a space closed for the Lie-bracket [·, ·] and that (Lie{f 1, . . . ,

f m}, [·, ·]) is the smallest Lie-algebra containing {f 1, . . . ,f m}. Moreover, Lieq{f 1,

. . . ,f m} ⊂ R
n is the subspace of R

n spanned by all the values in q of the vector fields
in Lie{f 1, . . . ,f m}.

We are now in position to prove our main controllability result.

Proof of Theorem 4.1 Let consider the two dimensional space of deformations X� defined
by

X�(t,y) = y + α1(t)D1(y) + α2(t)D2(y)
(
(t,y) ∈ [0, T ] × S0

)
,

with αi ∈ C∞([0, T ], (− 1
2 , 1

2 )) and (Di)i∈{1,2} introduced in (3.11).
Due to the fact that |Pi(ζ )| ≤ 1 for every ζ ∈ [−1,1] and i ∈ N, the above defined

deformations X� satisfy the assumptions in Proposition 3.1. Moreover, if we assume that
αi(0) = αi(T ) = 0 then X�(0, ·) = X�(T , ·) = I . With the above notation, it is easily seen
that (3.9) writes:

ḣ = −
2∑

i=1

βi

−F(X�(t, ·)(S0))(Di)

F(X�(t, ·)(S0))(ez)
,

α̇1 = β1,

α̇2 = β2.

The above system can be written in the condensed form:

q̇ =
2∑

i=1

βi f̃ i (q), (4.5)
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where q = (h,α1, α2)
T ∈ R × (− 1

2 , 1
2 )2 and (f̃ i )i∈{1,2} are the C∞ vector field on R ×

(− 1
2 , 1

2 )2 defined by:

f̃ 1

(
(h,α1, α2)

�) =
⎛
⎝

−F((I+α1D1+α2D2)(S0))(D1)

F((I+α1D1+α2D2)(S0))(ez)

1
0

⎞
⎠ ,

f̃ 2

(
(h,α1, α2)

�) =
⎛
⎝

−F((I+α1D1+α2D2)(S0))(D2)

F((I+α1D1+α2D2)(S0))(ez)

0
1

⎞
⎠ ,

for every (h,α1, α2)
� ∈ R × (− 1

2 , 1
2 )2. According to Proposition 3.6,

Df̃ i |q=0 ·
(

0
ej

)
= (〈MSW ei , ej

〉
,0, . . . ,0

)�
,

where the matrix MSW ∈ M2(R) is given by:

MSW = 3

35

(
0 2
3 0

)
.

Hence [f̃ 1, f̃ 2]q=0 = (〈MSW e2, e1〉 − 〈MSW e1, e2〉,0,0)� = 3
35 (1,0,0)�, so that

dim Lieq=0{f̃ 1, f̃ 2} = 3.

Since f̃ 1, f̃ 2 and q �→ [f̃ 1, f̃ 2]q are C∞ functions (see Theorem 2.6), there exists ε > 0
such that for every q ∈ {0}× ]−ε, ε[2, dim Lieq{f̃ 1, f̃ 2} = 3. Using the fact that f̃ 1, f̃ 2 and
[f̃ 1, f̃ 2] do not depend on h (i.e., on the first component of q), it follows that

dim Lieq{f̃ 1, f̃ 2} = 3
(
q ∈ R × ]−ε, ε[2

)
.

We conclude by using Theorem 4.2 with O a neighborhood of R × {(0,0)�}. �

In the end of this section we study the time optimal control associated to the control-
lability problem introduced in Theorem 4.1, by restricting the inputs to a vector space of
dimension L ≥ 2.

Let us first give some notations. Given α ∈ R
L, we denote by S�(α) the deformed sphere,

S�(α) =
(

I +
L∑

i=1

αiDi

)
(S0)

(
α = (α1, . . . , αL)� ∈ R

L, |α|2 ≤ c
)
, (4.6)

where Di are defined in (3.11) and c > 0 is small enough in order to ensure that Jac(I +∑L

i=1 αiDi) > 0 on S0. We also introduce, for every α ∈ R
L small enough, the vector f (α) =

(fi(α))i∈{1,...,L} ∈ R
L with

fi(α) = F(S�(α))(Di)

F(S�(α))(ez)

(
α = (α1, . . . , αL) ∈ R

L, |α|2 ≤ c, i ∈ {1, . . . ,L}). (4.7)

With the above notation and assumptions, the control system (4.1)–(4.3) writes

ḣ = 〈f (α),β
〉
, (4.8)
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α̇ = β, (4.9)

h(0) = 0, α(0) = 0. (4.10)

Looking to the proof of Theorem 4.1, we easily see that the following corollary holds:

Corollary 4.3 For every L ≥ 2 and h1 ∈ R, there exists T > 0 and β ∈ C∞([0, T ],R
L)

such that the solution (h,α) of (4.8)–(4.10) satisfies:

h(T ) = h1, α(T ) = 0, (4.11)

with the constraint on the control variable:∣∣β(t)
∣∣
2
≤ 1

(
t ∈ [0, T ]) (4.12)

and the state constraint ∣∣α(t)
∣∣
2
≤ c

(
t ∈ [0, T ]). (4.13)

Remark 4.4 According to Corollary 4.3, we see that two scalar inputs are sufficient to steer
the sphere to any final position lying on ez. Note that, due to the scallop Theorem, see Purcell
[18], at least two controls are necessary. It follows that with six scalar inputs the sphere can
deform itself periodically in time in order to reach any final position h1 ∈ R

3.

Proposition 4.5 For any L ≥ 2 and h1 ∈ R, there exists a minimal time T ∗ ≥ 0 such that
the control problem (4.8)–(4.11) with constraints (4.12) and (4.13) admits a solution for
controls β chosen in L∞((0, T ),R

L).

Proof For L ≥ 2, the existence of a solution (T ,h,α,β) satisfying (4.8)–(4.13) is ensured
according to the controllability result given in Corollary 4.3. To prove the existence of a
minimal time, we shall make use of the classical Filippov Theorem (see for instance [5, 10]
or [1]). First, due to the linearity of the optimal problem with respect to the control variables
β , the set

A(α, t) = {(〈f (α),β
〉
, β
) ∈ R × R

L with
∣∣β(t)

∣∣
2
≤ 1
}

is convex for any state variables α with |α(t)|2 ≤ c and for all t ∈ [0, T ].
Moreover, using Theorem 2.6 we deduce that the functions fi are continuous with respect

to α. Therefore, there exists a constant C > 0 such that, for all t ∈ [0, T ],∣∣f (α(t)
)∣∣

2
≤ C,

for any |α(t)|2 ≤ c and |β(t)|2 ≤ 1. The uniform bound on f provides a bound on h. Indeed,
for all t ∈ [0, T ], we have

∣∣h(t)
∣∣= ∣∣∣∣

∫ t

0

〈
f (α),β

〉
ds

∣∣∣∣≤
∫ t

0

∣∣f (α)
∣∣
2
|β|2ds ≤ CT .

Thus, all the state and control variables are uniformly bounded, provided that the control and
the state satisfy the given constraints. Therefore, we can apply the Filippov-Cesari theorem
(see [10, Theorem 3.1] or [5, Theorem 9.3]) to conclude to the existence of an optimal
solution (T ∗, h∗,α∗,β∗). �
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In the next two sections, we consider a simplified model for which we shall explicitly
determine the optimal solutions (T ∗, h∗,α∗,β∗) of problem (4.8)–(4.13). We neglect the
state constraint (4.13) and we obtain the optimal explicit solutions by directly applying
Pontryagin’s maximum principle.

To obtain the simplified model we note that if α is small enough, according to Proposi-
tion 3.5, (4.8) can be approximated by

ḣ = 〈MSWα,β
〉
.

The above equation is of independent interest. In particular, it can be seen as a generaliza-
tion of the system describing a nonholonomic integrator, see, for instance Coron [7]. In the
remaining part of this work we study a slight generalization of the above control system,
obtained by replacing the matrix MSW by an arbitrary non-symmetric matrix M ∈ ML(R).

5 A Simplified Optimal Control Problem Without State Constraints

In this section we consider the simplified control system described at the end of the last sec-
tion. More precisely, given an integer L ≥ 2, M ∈ ML(R) with M� �= M and h1 ∈ R

∗, our
aim consists in determining the minimal time T ∗ for which there exists β ∈ L∞((0, T ∗),R

L)

such that ∣∣β(t)
∣∣
2
≤ 1

(
for a.e. t ∈ (0, T ∗)), (5.1)

and the solution (α, h) ∈ W 1,∞((0, T ∗),R
L) × W 1,∞((0, T ∗),R) of

ḣ = 〈Mα,β〉, (5.2)

α̇ = β, (5.3)

h(0) = 0 and α(0) = 0 (5.4)

satisfies

h
(
T ∗)= h1 and α

(
T ∗)= 0. (5.5)

We assume that h1 �= 0, since otherwise the time optimal control problem is trivial.
Before integrating the Pontryagin maximum principle, we give some elementary facts

about this control problem.

Proposition 5.1 The time T ∗ > 0 and the control β∗ ∈ L∞((0, T ∗),R
L) are solutions of

the time optimal control system (5.1)–(5.5) if and only if T ∗ and β∗ are solution of the time
optimal control system obtained from (5.1)–(5.5) by replacing (5.2) with the equation

ḣ =
〈

1

2

(
M − M�)α,β

〉
. (5.6)

In other words, the optimal time and controls of the system (5.1), (5.2)–(5.5) coincide
with the ones of the system (5.1), (5.6), (5.3)–(5.5).

Proof of Proposition 5.1 Note that (5.2) can be written in the form

ḣ =
〈

1

2

(
M + M�)α, α̇

〉
+
〈

1

2

(
M − M�)α, α̇

〉
.
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Since M + M� is symmetric, we have,

〈(
M + M�)α, α̇

〉= 1

2

d

dt

〈(
M + M�)α, α

〉
.

Integrating 〈(M + M�)α, α̇〉 over t ∈ [0, T ∗] yields
∫ T ∗

0 〈(M + M�)α, α̇〉dt = 0 due to the
initial and final conditions α(0) = α(T ∗) = 0. In other words, the symmetric part of M does
not play any role in the control system. This fact clearly implies that the optimal times and
the optimal time controls of the two considered systems coincide. �

The remaining part of this section is devoted to the application of Pontryagin’s maximum
principle which yields, at least for the simplified model with no state constraints, an explicit
solution of the optimal control problem. We first recall, following [22], some basic facts on
Pontryagin’s maximum principle and we adapt the general procedure to our case. To this end
we introduce the Hamiltonian H for the minimal time problem of the control system (5.1)–
(5.5). To accomplish this goal we gather the state variables in a single vector by setting

q =
(

h

α

)
∈ R

L+1,

and we denote

F (q,β) =
(〈Mα,β〉

β

)
∈ R

L+1.

Then the differential system (5.2)–(5.5) reads

q̇ = F (q,β), (5.7)

q(0) = 0, q(T ) =
(

h1

0L

)
, (5.8)

where 0L denotes the null vector in R
L. The Hamiltonian of the system (5.7), (5.8) for the

optimal time problem is the function H : R
L+1 × R

L × R
L+1 × (−∞,0] defined by

H(q,β, r, s0) = 〈r,F (q,β)
〉+ s0,

with q, r ∈ R
L+1, β ∈ R

L and s0 ≤ 0. We recall that r is generally designed as the adjoint
state. In the present case it is convenient to write r into the form

r =
(

p0

p

)
∈ R

L+1,

with p0 ∈ R and p ∈ R
L. With the above notation, the Hamiltonian can be also written:

H(α,β,p0,p, s0) = 〈p0Mα + p,β〉 + s0, (5.9)

with p ∈ R
L, p0 ∈ R and s0 ∈ R, s0 ≤ 0.

The Pontryagin maximum principle ensures that if (T ,q,β) is an optimal solution
to (5.7), (5.8), then there exist a function r : [0, T ] → R

L+1 and a scalar s0 ≤ 0 such that the
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pair (r, s0) is nontrivial and such that

q̇ = ∂H
∂r

= F (q,β), (5.10)

ṙ = −∂H
∂q

= −
(

∂F

∂q

)�
r, (5.11)

q(0) = 0, q(T ) =
(

h1

0L

)
, (5.12)

H(α,β,p0,p, s0) = max
γ∈R

L

|γ |2≤1

H(α,γ ,p0,p, s0). (5.13)

Moreover, since the system (5.7), (5.8) is autonomous, if (T ,h,α,β,p0,p) is an optimal
solution to (5.15)–(5.20) then

H
(
α(t),β(t),p0(t),p(t), s0

)= 0
(
for a.e. t ∈ [0, T ]).

This property, combined with the expression (5.9) for the Hamiltonian leads to

〈
p0Mα(t) + p(t), β(t)

〉+ s0 = 0
(
for a.e. t ∈ [0, T ]). (5.14)

This fact implies that, going back to the variables h and α, that (5.10)–(5.12), reduce to
determining T ∈ R+, h ∈ W 1,∞([0, T ],R), α ∈ W 1,∞([0, T ],R

L), β ∈ L∞((0, T ),R
L),

p0 ∈ W 1,∞([0, T ],R) and p ∈ W 1,∞([0, T ],R
L) such that ((p0,p)�, s0) �≡ 0, the rela-

tion (5.14) holds and

ḣ = 〈Mα,β〉, (5.15)

α̇ = β, (5.16)

ṗ0 = 0, (5.17)

ṗ = −p0M
�β, (5.18)

h(0) = 0, α(0) = 0, (5.19)

h(T ) = h1, α(T ) = 0. (5.20)

We are now in a position to show that the cost multiplier s0 is negative and to express the
optimal control β in function of the state and adjoint state.

Lemma 5.2 Let (T ,h,α,β,p0,p, s0) be a solution of (5.13)–(5.20). Then s0 < 0, p(0) �= 0
and p0 �= 0. In addition, for every t ∈ [0, T ] we have that p0Mα(t) + p(t) �= 0 and the
optimal control variables are given by

β(t) = p0Mα(t) + p(t)

|p0Mα(t) + p(t)|2
(
for a.e. t ∈ [0, T ]). (5.21)

Proof We first remark that since h1 �= 0 we necessarily have T > 0. We start by proving that
s0, p(0) and p0 do not vanish. We argue by contradiction.
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• Suppose that s0 = 0. From (5.9) and (5.14), we deduce that

H(α,β,p0,p, s0) = 〈p0Mα + p,β〉 = 0. (5.22)

On the other hand, (5.17) implies that p0 is a constant, so that (5.22) and (5.15) give

p0ḣ(t) + 〈p(t),β(t)
〉= 0

(
for a.e. t ∈ [0, T ]). (5.23)

Furthermore, using (5.15), (5.16) and (5.18), we obtain

d

dt
〈p,α〉 = 〈ṗ,α〉 + 〈p, α̇〉 = −p0

〈
M�β,α

〉+ 〈p,β〉 = −p0ḣ + 〈p,β〉. (5.24)

Combining (5.24) and (5.23), we deduce that

d

dt

(
2p0h(t) + 〈p(t),α(t)

〉)= 0
(
for a.e. t ∈ [0, T ]).

Integrating the above formula on [0, T ] we get

2p0h1 = 0. (5.25)

On the other hand, since (p0,p)� and s0 form a nontrivial pair and s0 = 0, we nec-
essarily have (p0,p) �≡ (0,0). If p0 = 0 then p �= 0 and the Hamiltonian reduces to
H(α,β,p0,p, s0) = 〈p,β〉. From the maximum principle (5.13), we obtain that β = p

|p|2
and H(α,β,p0,p, s0) = |p|2 �= 0 which is in contradiction with (5.22). Hence, we have
p0 �= 0 and we deduce from (5.25) that h1 = 0 which is a contradiction. We have thus shown
that s0 �= 0.

• Assume that p(0) = 0. Using the relation (5.14) at t = 0 we obtain that s0 = 0, which
is a contradiction. Thus, p(0) �= 0.

• Finally, suppose that p0 = 0. Then, according to (5.18) we have that p(t) = p(0)

for all t ∈ [0, T ]. The maximum principle property (5.13) provides the optimal control
β(t) = p(0)

|p(0)|2 = β(0) for all t ∈ [0, T ]. Since α(0) = α(T ) = 0, we get β(0) = 0 by inte-
grating (5.16) so that β(t) = 0 for all t ∈ [0, T ]. We deduce from (5.14) that s0 = 0 which is
a contradiction. Thus, p0 �= 0.

We are now in position to determine the optimal control variables β . Using the fact that
s0 < 0, it follows from (5.14) that p0Mα(t) + p(t) �= 0 for every t ∈ [0, T ]. Using the
expression (5.9) of the Hamiltonian, together with (5.13) we deduce that the optimal control
β is indeed given by (5.21). �

The result below shows that, for the simplified control problem (5.1)–(5.5), without state
constraints, an optimal solution can be explicitly determined. For the remaining part of the
paper, we denote by σ(A) the set of the complex eigenvalues of a matrix A.

Proposition 5.3 The minimal time T ∗ such that (5.1)–(5.5) admits a solution is given by

T ∗ =
√

2π |h1|
λ∗ , (5.26)

where λ∗ = max{|λ|, λ ∈ σ( 1
2 (M − M�))} > 0. Moreover, an optimal time control is

β∗(t) = exp

(
sign(h1)

√
2π

λ∗|h1| t
(M − M�)

2

)
β0

(
t ∈ [0, T ∗]), (5.27)
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where the initial control β0 ∈ R
L is chosen such that |β0|2 = 1 with β0 ∈ Ker((M−M�

2 )2 +
λ∗2).

Proof Let us denote by MA the skew-symmetric part of the non-symmetric matrix M , i.e.
MA = 1

2 (M − M�) �= 0. According to Proposition 5.1, it is enough to consider the control
system (5.1)–(5.5) with M replaced by MA. From Lemma 5.2 with the relation (5.14), we
deduce that the optimal control variables β is given by

β(t) = − (p0MAα(t) + p(t))

s0

(
t ∈ [0, T ]).

Hence, differentiating the above relation over t and using (5.16) and (5.18), we obtain

β̇ = δ−1MAβ,

with δ = − s0
2p0

. Integrating the above ordinary differential equation in β yields for all t ∈
[0, T ],

β(t) = exp
(
δ−1t MA

)
β(0). (5.28)

Now, we turn to the computation of α and h. Using (5.16), we obtain

d

dt

(
δ−1MAα

)= δ−1MAβ = β̇

and then we get

MAα(t) = δ
(
β(t) − β(0)

) (
t ∈ [0, T ]). (5.29)

Using (5.29) in (5.15) we obtain that

ḣ = 〈MAα,β〉 = δ
〈
β(t) − β(0), β(t)

〉
.

Integrating the above relation on [0, T ] we obtain

h(T ) = h(0) + δ

∫ T

0

∣∣β(t)
∣∣2
2

dt − δ
〈
β(0), α(T ) − α(0)

〉
dt = δ

∫ T

0

∣∣β(t)
∣∣2
2

dt. (5.30)

On the other hand, (5.21) and (5.28) imply that∣∣β(t)
∣∣
2
= ∣∣β(0)

∣∣
2
= 1

(
t ∈ [0, T ]).

This fact, combined with (5.30) and the final condition h(T ) = h1, leads to

h1 = δT . (5.31)

We obtain from (5.28) that

β(t) = exp

(
T

h1
t MA

)
β(0). (5.32)

We now turn to the final condition α(T ) = 0. Since MA is the skew-symmetric part of
M , MA is a normal matrix. Thus there exist a unitary matrix U ∈ ML(C) with UU ∗ =
U ∗U = IL and a diagonal matrix Λ = i diag(λ1, . . . , λL) where (iλj )j are the eigenvalues
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of MA, such that MA = UΛU ∗. Let us note that the non-zero eigenvalues of MA are all pure
imaginary and they must occur in complex conjugate pairs. Therefore, if iλ is an eigenvalue
of MA then −iλ is also an eigenvalue. The columns of the matrix U are formed by the
eigenvectors of MA. We clearly can rearrange the matrices U and Λ such that there exists
R ∈ N

∗ with 2R ≤ L and λj = 0 for every j > 2R. Using the above decomposition of MA

and relation (5.31), we obtain

β(t) = U

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp(i T
h1

λ1 t) 0
. . .

0 exp(i T
h1

λ2R t)

0

0

1 0
. . .

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

U ∗β(0)
(
t ∈ [0, T ]).

Integrating the above formula on [0, t], we obtain for every t ∈ [0, T ],

α(t) =
∫ t

0
β(s)ds

= U

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1
T λ1

(exp(i T
h1

λ1 t) − 1) 0
. . .

0 h1
T λ2R

(exp(i T
h1

λ2R t) − 1)

0

0

t 0
. . .

0 t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

U ∗β(0).

(5.33)

The condition α(T ) = 0 with T > 0 leads to⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(exp(
iλ1
h1

T 2) − 1) 0
. . .

0 (exp(
iλ2R

h1
T 2) − 1)

0

0

1 0
. . .

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

U ∗β(0) = 0. (5.34)

We deduce from condition (5.34) that[
U ∗β(0)

]
k
= 0 for all k > 2R.

Moreover, for every k ∈ {1, . . . ,2R}, we either have [U ∗β(0)]k = 0 or |λk |
|h1|T

2 ∈ 2πN
∗.

Hence, the set of times T > 0 such that condition (5.34) holds with β(0) ∈ R
L \ {0} is

given by

K =
⋃

iλ∈σ(MA)

{√
2nπ |h1|

|λ| , n ∈ N
∗
}

. (5.35)
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The minimum element of the set K is

T ∗ =
√

2π |h1|
λ∗ ,

where λ∗ = max{λ1, . . . , λ2R} > 0.
Finally, we choose β(0) = β0 ∈ R

L with |β0|2 = 1 such that β0 ∈ Ker(M2
A + λ∗2) and it

can be easily checked that the condition (5.34) is satisfied with T = T ∗ i.e. α(T ∗) = 0. The
proof of Proposition 5.3 is then complete. �

In the case where the matrix M is equal to the matrix MSW given by (3.12), the minimal
time obtained in Proposition 5.3 tends to a limit when the number L of deformation modes
goes to +∞. This limit is a lower bound for the minimal time obtained using a finite dimen-
sional input space and it can be seen as the minimal time obtained by allowing an infinite
dimensional input space.

Corollary 5.4 Let us consider the optimal control problem (5.1)–(5.5) with the (L × L)-
matrix M = MSW defined by (3.12). We denote by T ∗

L the corresponding minimal time given
by (5.26). Then, the map L �→ T ∗

L is nonincreasing and

lim
L→+∞

T ∗
L = 2

√
π |h1|. (5.36)

Proof Using the expression (3.12) of the matrix MSW , we obtain that its skew-symmetric
part MA = 1

2 (MSW − MSW �
) is the (L × L)-bidiagonal matrix given by

MA =

⎛
⎜⎜⎜⎜⎜⎝

0 a2 0
−a2 0 a3

. . .
. . .

. . .

−aL−1 0 aL

0 −aL 0

⎞
⎟⎟⎟⎟⎟⎠ ,

with

ak = −2k2 + 2k + 1

2(2k + 1)(2k + 3)
for k = 2, . . . ,L.

According to Proposition 5.3, the minimal time is given by T ∗
L =

√
2π |h1|

λ∗
L

, where λ∗
L > 0 is

given by λ∗
L = max{|λ|, λ ∈ σ(MA)}. We first prove that L �→ T ∗

L is nonincreasing. For that
it suffices to check that λ∗

L is nondecreasing function with respect to L. In order to check this
assertion we denote, for every integer k with 2 ≤ k ≤ L, by Ak the complex (k × k)-matrix

Ak = i

⎛
⎜⎜⎜⎜⎜⎝

0 a2 0
−a2 0 a3

. . .
. . .

. . .

−ak−1 0 ak

0 −ak 0

⎞
⎟⎟⎟⎟⎟⎠ . (5.37)

Let us remark that Ak is a Hermitian matrix and thus all its eigenvalues μi = μi(Ak) for i =
1, . . . , k are real numbers. We may assume that the eigenvalues μi are arranged in increasing
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order, so that μk(Ak) = max1≤i≤k μi(Ak). Moreover, one can easily check that if μ is an
eigenvalue of Ak then −μ is also an eigenvalue. This implies that μk(Ak) ≥ 0 for every
1 ≤ k ≤ L, so that μL(AL) = λ∗

L. The inclusion principle (see [12, Theorem 4.3.15]) ensures
that

μk(Ak) ≤ μL(AL) for all 2 ≤ k ≤ L. (5.38)

The inclusion property (5.38) leads to λ∗
L−1 ≤ λ∗

L. Thus, the largest eigenvalue modulus λ∗
L

is an increasing function of L.
Next, we prove that λ∗

L tends to 1
2 as L goes to +∞. To this end, we first show that:

2

L

L∑
k=2

|ak| ≤ λ∗
L ≤ 1

2
(L ≥ 2). (5.39)

• The upper bound is obtained by applying the Gershgorin theorem (see [12, Theo-
rem 6.1.1]) for the localization of the eigenvalues of MA. Indeed, the eigenvalues λ of MA

are such that

|λ| ≤ max
([a2|, |a2| + |a3|, . . . , |aL−1| + |aL|, |aL|)= |aL−1| + |aL| ≤ 1

2
.

In particular, we have

λ∗
L ≤ 1

2
. (5.40)

• The lower bound is obtained by using the Rayleigh-Ritz theorem for the Hermitian
matrix AL (see [12, Theorem 4.2.2]). The largest eigenvalue modulus |λ∗

L| is characterized
by

λ∗
L = μL(AL) = max

u∈C
L

u �=0

u∗ALu

u∗u
. (5.41)

Let us choose u = (uk)1≤k≤L ∈ C
L such that

uk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if k ≡ 1 (mod4),

i if k ≡ 2 (mod4),

−1 if k ≡ 3 (mod4),

−i if k ≡ 4 (mod4).

Then, a straightforward calculation leads to

u∗ALu = −
L∑

k=2

ak

and u∗u = L. According to (5.41) and the fact that ak ≤ 0 for all 2 ≤ k ≤ L, we obtain that

λ∗
L ≥ u∗ALu

u∗u
= 1

L

L∑
k=2

|ak|.
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Thus, estimate (5.39) is proved. Finally, we prove that limL→+∞ 2
L

∑L

k=2 |ak| = 1. Let us
denote

SL = 1 − 2

L

L∑
k=2

|ak|.

We have that

SL = 2

L

L∑
k=2

(
1

2
− |ak|

)
= 2

L

L∑
k=2

(12k + 5)

(2k + 1)(2k + 3)

and then

|SL| ≤ 2

L

L∑
k=2

(12k + 5)

4k2
= 6

L

L∑
k=2

1

k
+ 5

2L

L∑
k=2

1

k2
. (5.42)

One can easily check that the right-hand side of estimate (5.42) tends to 0 as L goes
to +∞. Hence, we deduce that limL→+∞ SL = 0 and then limL→+∞ 2

L

∑L

k=2 |ak| = 1. We
conclude from (5.39) that limL→+∞ λ∗

L = 1
2 and the proof of Corollary 5.4 is completed. �

The fact, proved rigorously above, that the minimal time T ∗
L is a decreasing function

of the number L of deformation modes is checked numerically in Fig. 4 below where the
eigenvalues of 1

2 (MSW − (MSW)�) are computed with the ARPACK library in MATLAB.
To conclude, we give a numerical computation of an optimal solution for the simplified

control problem (5.1)–(5.5), in the case where the matrix M is the Shapere-Wilczek matrix
M = MSW defined by (3.12). The optimal solution corresponding to the final position h1 = 1
is computed according to the formulae given in Proposition 5.3. Radial and axi-symmetric
deformations are considered with a number L = 10 of deformation modes. The position and
the shape of the swimmer at several instants t are depicted in Fig. 5. The corresponding
minimal time is T ∗ � 4.483.

Fig. 4 Minimal time with
respect to the number L of
deformation modes for the
simplified control problem
without state constraints.
Convergence to the limit value
2
√

π |h1| with h1 = 1
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Fig. 5 Simplified control problem without state constraints. Time optimal control for radial and axi-sym-
metric deformations of the unit sphere with L = 10 modes of deformations
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