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Abstract The paper deals with a third order semilinear equation which characterizes ex-
ponentially shaped Josephson junctions in superconductivity. The initial-boundary problem
with Dirichlet conditions is analyzed. When the source term F is a linear function, the prob-
lem is explicitly solved by means of a Fourier series with properties of rapid convergence.
When F is nonlinear, appropriate estimates of this series allow to deduce a priori estimates,
continuous dependence and asymptotic behaviour of the solution.
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1 Introduction

We refer to the semilinear equation

Lεu = F(x, t, u) (1)

where Lε is the third-order parabolic operator:

Lε = (∂xx − λ∂x)(ε∂t + 1) − ∂t (∂t + α). (2)

Equation (1) characterizes the evolution of several dissipative models such as the mo-
tions of viscoelastic fluids or solids [1–4]; the sound propagation in viscous gases [5]; the
heat conduction at low temperature [6, 7] and the propagation of localized magnetohydrod-
inamic models in plasma physics [8]. Moreover, it can also be referred to reaction diffusion
systems [9].
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As example of perturbed model of the phase evolution, we will consider the non linear
phenomenon concerning the Josephson effects in superconductivity.

More precisely, if ϕ = ϕ(x, t) is the phase difference in a rectangular junction and γ is
the normalized current bias; when λ = 0 and F = sinϕ − γ , Eq. (1) gives the well-known
perturbed Sine-Gordon equation (PSGE) [10]:

εϕxxt + ϕxx − ϕtt − αϕt = sinϕ − γ. (3)

The terms εϕxxt and αϕt characterize the dissipative normal electron current flow re-
spectively along and across the junction. They represent the perturbations with respect to
the classic Sine Gordon equation [10, 11]. When the surface resistance is negligible, then
ε(< 1) is vanishing and a singular perturbation problem for Eq. (3) could appear [12]. As
for the coefficient α of (3), it depends on the shunt conductance [13] and generally one has
a < 1 [14–16]. However, if the resistance of the junction is so small as to short completely
the capacitance, the case a > 1 arises [10, 17].

More recently, the case of the exponentially shaped Josephson junction (ESJJ) has been
considered. The evolution of the phase inside this junction is described by the third order
equation:

εϕxxt + ϕxx − ϕtt − ελϕxt − λϕx − aϕt = sinϕ − γ (4)

where λ is a positive constant generally less than one [18, 19] while the terms λϕx and λεϕxt

represent the current due to the tapering. In particular λϕx correspond to a geometrical force
driving the fluxons from the wide edge to the narrow edge [19, 20].

According to recent literature [14, 18, 20–23], an exponentially shaped Josephson junc-
tion provides several advantages with respect to a rectangular junction. For instance in [18]
it has been proved that in an ESJJ it is possible to obtain a voltage which is not chaotic any-
more, but rather periodic excluding, in this way, some among the possible causes of large
spectral width. It is also proved that the problem of trapped flux can be avoided. Moreover,
some devices as SQUIDs were built with exponentially tapered loop areas [24].

The analysis of many initial—boundary problems related to the PSGE (3) has been dis-
cussed in a lot of papers. In particular in[25], to deduce an exhaustive asymptotic analysis,
the Green function of the linear operator

L = ∂xx

(
ε∂t + c2

) − ∂t (∂t + α) (5)

has been determined by Fourier series. By means of its properties an exponential decrease
of both linear and non linear solutions is deduced.

The aim of this paper is the analysis of the Dirichlet boundary value problem related to
Eq. (4).

The Green function G of the linear strip problem is determined by Fourier series and
properties of rapid convergence are established. So, when the source term F is a linear
function, then the explicit solution is obtained and an exponential decrease of the solution is
deduced.

When F is nonlinear, the problem is reduced to an integral equation with kernel G and an
appropriate analysis implies results on the existence and uniqueness of the solution. More-
over, by means of suitable properties of G, a priori estimates, continuous dependence upon
the data and asymptotic behaviour of the solution are achieved, too.

2 Statement of the Problem and Properties of the Green Function

Let l, T be arbitrary positive constants and let

ΩT = {
(x, t) : 0 < x < l,0 < t ≤ T

}
.
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The boundary value problem related to equation (1) is the following:
⎧
⎨

⎩

(∂xx − λ∂x)(εut + u) − ∂t (ut + αu) = F(x, t, u), (x, t) ∈ ΩT ,

u(x,0) = h0(x), ut (x,0) = h1(x), x ∈ [0, l],
u(0, t) = 0, u(l, t) = 0, 0 < t ≤ T .

(6)

By Fourier method it is possible to determine the Green function of the linear operator Lε .
So, let

γn = nπ

l
, bn = (

γ 2
n + λ2/4

)
, gn = 1

2
(α + εbn), ωn =

√
g2

n − bn (7)

and

Gn(t) = 1

ωn

e−gnt sinh(ωnt), (8)

by standard techniques, the Green function can be given the form:

G(x, t, ξ) = 2

l
e

λ
2 x

∞∑

n=1

Gn(t) sinγnξ sinγnx. (9)

This series is endowed of rapid convergence and it is exponentially vanishing as t tends to
infinity. In fact, if we denote by

aλ = α + ελ2/4 (10)

and

pλ = π2

επ2 + aλl2
, qλ = aλ + ε(π/l)2

2
, δ ≡ min(pλ, qλ), (11)

the following theorem holds:

Theorem 1 Whatever the constants α, ε,λ may be in �+, the function G(x, ξ, t) defined in
(9) and all its time derivatives are continuous functions in ΩT and it results:

∣∣G(x, ξ, t)
∣∣ ≤ Me−δt ,

∣
∣∣
∣
∂jG

∂tj

∣
∣∣
∣ ≤ Nje

−δt , j ∈ N (12)

where M,Nj are constants depending on α,λ, ε.

Proof Physical problems lead to consider αε < 1 and denoting by

Nλ
1,2 = l

2ε2π

[
4(1 ∓ √

1 − αε)2 − ε2λ2
]1/2

, (13)

let us assume that Nλ
1,2 > 1. So, let k be a positive constant less than one and let N̄1,2,N

λ
k be

the lowest integers such that
⎧
⎨

⎩

N̄1 < Nλ
1 , N̄2 > Nλ

2 ;

Nλ
k >

l

2ε2πk
[4(1 ∓ √

1 − αkε)2 − ε2kλ2]1/2.
(14)

We start analysing the hyperbolic terms when n ≥ N̄2. Letting

Xn = bn

g2
n

< 1, ϕn = gn(−1 + √
1 − Xn), (15)
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it is possible to prove that ϕn ≤ − γ 2
n

2gn
. So it results:

e−t (gn−ωn) ≤ e−pλt . (16)

Furthermore, it is easily verified that for all n ≥ Nλ
k (≥ N̄2) it results bn

g2
n

≤ k and hence one
has:

ωn ≥ gn(1 − k)1/2 ≥ n2 2l2

επ2
(1 − k)1/2. (17)

Other terms can be treated similarly. For instance, as for circular terms, it can be proved
that e−gnt ≤ e−qλt .

In consequence estimate (12)1 holds ∀n ≥ 1.
As for (12)2, one has:

gn − ωn = bn

gn + ωn

≤ 2

ε
+ λ2

4εqλ

, ∀n ≥ 1 (18)

and by means of standard computations, (12)2 can be deduced, too.
It may be similarly proved that the theorem holds also when αε ≥ 1 or when the condi-

tions Nλ
1,2 > 1 do not hold.

Finally we notice that when Nλ
1,2 are integers, the constants M and Nj in (12) could

depend on t . �

As for the x-derivatives of Fourier series like (9), attention is needed towards convergence
problems. For this, we will consider x-differentiations of the operator (ε∂t + 1)G instead of
G and Gt .

Theorem 2 Whatever α, ε,λ may be, the function G(x, ξ, t) defined in (9) is such that:
∣∣∂(i)

x (εGt + G)
∣∣ ≤ Aie

−δt (i = 0,1,2) (19)

where δ is defined in (11) and Ai (i = 0,1,2) are constants depending on a, ε,λ.

Proof As for the hyperbolic terms in G, it results:

εGt + G = e
λx
2

∞∑

n=1

e−gnt

lωn

{[
1 − ε(gn − ωn)

]
eωnt − [

1 − ε(gn + ωn)
]
e−ωnt

}
. (20)

where according to (15), it results:

1 − ε(gn − ωn) = 1 + εϕn.

So, by means of Taylor’s formula, one has:

1 − ε(gn − ωn) = 1 − ε

2
gnXn − ε

8
gnX

2
n − 3

16
εgn

∫ Xn

0

(Xn − y)2

(1 − y)5/2
dy. (21)

Besides, it is possible to prove that ∀n ≥ 1 one has:

Xn <
c2

n2

(
c = l

√
4 + λ2/επ

)
(22)

and for all n ≥ c(1 + c1)(c1 > 0) it results:
∫ Xn

0

(Xn − y)2

(1 − y)5/2
dy ≤ 2

3
X2

n

[
(c1 + 1)3

c1(c1 + 2)]3/2
− 1

]
. (23)
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So, taking into account that

ε

2
gnXn = 1 − α

aλ + εγ 2
n

,

ε

8
gnX

2
n = εb2

n

(aλ + εγ 2
n )3

;

there exists a positive constant k1 such that:

|1 + εϕn| ≤ 1

n2

(
αl2

επ2
+ k1

n2

)
. (24)

Estimates of Theorem 1 together with (24) show that the series terms related to the operator
εGt + G have order at least of n−4. So it can be differentiated term by term with respect to
x and the estimate (19) can be deduced. �

As solution of the equation Lεv = 0 we will mean a continuous function v(x, t) which
has continuous the derivatives vt , vtt , ∂x(εvt + v), ∂xx(εvt + v) and these derivatives verify
the equation.

So, we are able to prove the following theorem:

Theorem 3 The function G(x, t) defined in (9) is a solution of the equation

LεG = (∂xx − λ∂x)(εGt + G) − ∂t (Gt + αG) = 0. (25)

Proof The uniform convergence proved in Theorems 1–2 allows to deduce that:

(∂t + α)
∂G

∂t
= 2e

λx
2

l

∞∑

n=1

{[
bn(εgn − 1)Gn − εbne

−gnt coshωnt
]

sinγnξ sinγnx
}
, (26)

∂x(ε∂t + 1)G = 2

l
e

λx
2

∞∑

n=1

{[
λ

2
(1 − εgn)Gn + λε

2
e−gnt coshωnt

]
sinγnξ sinγnx

+ [
Gnγn(1 − εgn) + εγne

−gnt coshωnt
]

sinγnξ cosγnx

}
. (27)

Moreover, being

∂xx(ε∂t + 1)G = 2

l
e

λx
2

∞∑

n=1

{[
(εgn − 1)

(
bn − λ2

2

)
Gn

+
(

−λ2ε

4
+ εγ 2

n

)
e−gnt coshωnt

]
sinγnξ sinγnx

+ [
Gnλγn(1 − εgn) + ελγne

−gnt coshωnt
]

sinγnξ cosγnx

}
, (28)

(25) can be deduced. �

3 Properties of the Convolution

To achieve the solution of the strip problem (6), the convolution of the function G with the
data must be analysed. For this, let h(x) be a continuous function on (0, l) and let:
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uh(x, t) =
∫ l

0
h(ξ)G(x, ξ, t)dξ (29)

u∗
h(x, t) = (∂t + α + ελ∂x − ε∂xx)uh(x, t). (30)

The following theorems hold:

Theorem 4 If the data h(x) is a C1(0, l) function, then uh defined by (29) is a solution of
the equation Lε = 0 and it results:

lim
t→0

uh(x, t) = 0, lim
t→0

∂tuh(x, t) = h(x), (31)

uniformly for all x ∈ [0, l].

Proof The absolute convergence of uh with its partial derivatives is proved by means of
Theorems 1 and 2 and continuity of function h(x). So, since (25) Lεuh = 0 is verified, while
Theorem 1 and hypotheses on h(x) imply (31)1.

More being:

∂G

∂t
= − 2

π

∂

∂ξ

∞∑

n=1

∂Gn

∂t

cosγnξ

n
sinγnx (32)

and

∂tuh = − 2

π

∞∑

n=1

∂Gn

∂t

[
h(ξ) cosγnξ

]l

0

sinγnx

n

+ 2

π

∫ l

0

∞∑

n=1

∂Gn

∂t
h′(ξ)

cosγnξ

n
dξ sinγnx, (33)

denoting by η(x) the Heaviside function, it results:

lim
t→0

∂tuh = x

l

[
h(l) − h(0)

] + h(0) −
∫ l

0
h′(ξ)

[
η(ξ − x) + x

l
− 1

]
dξ = h(x). (34)

�

Theorem 5 Let h(x) be a C3(0, l) function such that h(i)(0) = h(i)(l) = 0(i = 1,2,3). Then
u∗

h defined in (30) is a solution of the equation Lε = 0 and it results:

lim
t→0

u∗
h(x, t) = h, lim

t→0
∂tu

∗
h(x, t) = 0 (35)

uniformly for all x ∈ (0, l).

Proof Properties of h(x) assure that:

(λ∂x − ∂xx)uh(x, t)

= −2

l
(λ∂x − ∂xx)e

λx
2

∞∑

n=1

Gn(t)

∫ l

0
h′′(ξ)

sinγnξ

γ 2
n

dξ sinγnx

= −2

l
e

λx
2

∞∑

n=1

[
Gn(t)

(
γ 2

n + λ2

4

)∫ l

0
h′′(ξ)

sinγnξ

γ 2
n

dξ sinγnx

]

= −uh′′(x, t) + λ2

4
uh(x, t). (36)
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So, since Theorem 3, Lεu
∗
h = 0 is verified. Moreover, being:

∂tu
∗
h = (∂xx − λ∂x)uh (37)

(36) implies (35)2, too. Finally, owing to (31) and (36) , one obtains:

lim
t→0

u∗
h = lim

t→0

[
∂tuh + ε

(
λ2

4
uh − uh′′

)]
= h(x). (38)

�

4 Solution of the Linear Problem

Let us consider the homogeneous case. From Theorems 4, 5 the following result is obtained:

Theorem 6 When F = 0 and the initial data h1(x), and h0(x) verify the hypotheses of
Theorems 4–5, then the function:

u(x, t) = uh1 + (∂t + α + ελ∂x − ε∂xx)uh0 (39)

represents a solution of the homogeneous strip problem (6).

Otherwise, when F = f (x, t), let consider

uf (x, t) = −
∫ t

0
dτ

∫ l

0
f (ξ, τ )G(x, ξ, t − τ)dξ. (40)

Standard computations lead to consider at first the problem (6) with g0 = g1 = 0. For this
the following theorem is proved:

Theorem 7 If the function f (x, t) is a continuous function in ΩT with continuous derivative
with respect to x, then the function uf represents a solution of the nonhomogeneous strip
problem.

Proof Since (31)1 it results:

∂tuf (x, t) =
∫ t

0
dτ

∫ l

0
f (ξ, τ )Gt(x, ξ, t − τ)dξ (41)

and as proved in Theorem 4, one obtains:

lim
τ→t

∂tuf (x, t) = f (x, t). (42)

Hence, one has:

∂2
t uf = f (x, t) +

∫ t

0
dτ

∫ l

0
f (ξ, τ )Gtt (x, ξ, t − τ)dξ (43)

and Theorem 3 assures that Lεuf = f (x, t).
Furthermore, owing to (40)–(41) and estimates (12), if Bi (i = 1,2) are two positive

constants, it results:

|uf | ≤ B1

(
1 − e−δt

); |∂tuf | ≤ B2

(
1 − e−δt

)
(44)

from which initial homogeneous conditions follow. �

The uniqueness is a consequence of the energy-method and we have:
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Theorem 8 When the source term f (x, t) satisfies Theorem 7 and the initial data (h0, h1)

satisfy Theorem 6, then the function

u(x, t) = uh1 + (∂t + α + ελ∂x − ε∂xx)uh0 + uf (45)

is the unique solution of the linear non-homogeneous strip problem (6).

5 Solution of the Non-linear Problem

Let us consider now the non-linear problem:
⎧
⎪⎨

⎪⎩

(∂xx − λ∂x)(εut + u) − ∂t (ut + αu) = F(x, t, u), (x, t) ∈ ΩT ,

u(x,0) = h0(x), ut (x,0) = h1(x), x ∈ [0, l],
u(0, t) = 0, u(l, t) = 0, 0 < t ≤ T .

(46)

As for the data F and hi(x) (i = 0,1) we shall admit:

Assumption 9 The functions hi(x) (i = 0,1) are continuously differentiable and bounded
together with h′

1(x) and h
(k)

0 (k = 1,2). The function F(x, t, u) is defined and continuous
on the set

DT ≡ {
(x, t, u) : (x, t) ∈ ΩT ,−∞ < u < ∞}

(47)

and more it is uniformly Lipschitz continuous in (x, t, u) for each compact subset of ΩT .
Besides, F is bounded for bounded u and there exists a constant CF such that the estimate

∣∣F(x, t, u1) − F(x, t, u2)
∣∣ ≤ CF |u1 − u2| (48)

holds for all (u1, u2).

When the problem (46) admits a solution u then, properties of G and the Assumption 9
ensure that u must satisfy the integral equation

u(x, t) =
∫ l

0
h1(ξ)G(x, ξ, t)dξ + (∂t + α + ελ∂x − ε∂xx)

∫ l

0
h0(ξ)G(x, ξ, t)dξ

+
∫ t

0
dτ

∫ l

0
G(x, ξ, t − τ)F

(
ξ, τ, u(ξ, τ )

)
dξ, (49)

and it is possible to prove that [26–28]

Theorem 10 The non linear problem (46) admits a unique solution if and only if the integral
equation (49) has a unique solution which is continuous on ΩT .

Moreover, let ‖v‖T = supΩT
|v(x, t)| and let BT denote the Banach space

BT ≡ {
v(x, t) : v ∈ C(ΩT ), ‖v‖T < ∞}

. (50)

By means of standard methods related to integral equations it is possible to prove that the
mapping ψ defined by (49) is a contraction of BT in BT and so it admits a unique fixed point
u(x, t). In consequence the following theorem holds:

Theorem 11 When the initial data hi(i = 0,1) and the source term F verify the Assump-
tion 9, then the problem (46) admits a unique regular solution.
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6 Applications

All these results allow us to obtain continuous dependence upon the data, a priori estimates
of the solution and asymptotic properties.

According to Assumption 9, let

‖hi‖ = sup
(0,l)

∣∣hi(x)
∣∣ (i = 0,1),

∥∥h′′
0

∥∥ = sup
(0,l)

∣∣h′′
0(x)

∣∣,

‖u‖T = sup
ΩT

∣
∣u(x, t)

∣
∣, ‖F‖ = sup

DT

∣
∣F(x, t, u)

∣
∣.

So, by means of the following theorem the dependence upon the data can be proved:

Theorem 12 Let u1, u2 be two solutions of the problem related to the data (h0, h1,F1) and
(γ0, γ1F2) which satisfy the Assumption 9. Then, there exists a positive constant C such that

‖u1 − u2‖T ≤ C sup
ΩT

|h0 − γ0| + C sup
ΩT

|h1 − γ1| + C sup
DT

∣
∣F1(x, t, u) − F2(x, t, u)

∣
∣,

where C depends on CF ,T and on the parameters α, ε,λ.

The integral equation and the properties proved for Green Function G imply a priori
estimates, too.

Theorem 13 When the data (h0, h1,F ) of the problem (46) verify the Assumption 9, then
the following estimate holds:

∥
∥u(x, t)

∥
∥

T
≤ 1

δ

(
1 − e−δt

)‖F‖ + K
[‖h1‖ + ‖h0‖ + ‖h′′

0‖
]
e−δt (51)

where the constants δ- defined in (11) and K depend on α, ε,λ.

As for the asymptotic properties, obviously the behaviour of the solution depends upon
the shape of the source term.

For instance, in the linear case one has:

Theorem 14 When the source term f (x, t) satisfies the condition:
∣∣f (x, t)

∣∣ ≤ Ce−mt (C,m = const > 0), (52)

one has:
∣∣u(x, t)

∣∣ ≤ ke−m∗t , m∗ = min{δ,m}, k = const. (53)

An exponentially decreasing behaviour is also possible in the non linear case. In fact,
according to [29], let us consider a normed space where

∥
∥u(x, t)

∥
∥ = max

x∈(0,l)

∣
∣u(x, t)

∣
∣ (54)

is such that
∥
∥u(x, t)

∥
∥ ≤ βe−δt (55)

being β a positive constant and δ is defined in (11). Furthermore, let us introduce the fol-
lowing definition [29]:
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Definition 15 When the function F is such that |F(x, t, u)| ≤ γ ‖u‖e−δt , then F is an ex-
ponential Lipschitz function.

So the following theorem can be proved:

Theorem 16 If the non linear source F is an exponential Lipschitz function, then the solu-
tion of the semilinear problem (46) vanishes as follows:

∣∣u(x, t)
∣∣ ≤ K1e

−δt (56)

where K1 is a positive constant depending on α, ε,λ.

Since | sinu| ≤ |u|, a similar behaviour is also verified for the model of superconductivity
when F(x, t, u) = sinu.
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