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Abstract We study the distribution and various properties of exponential functionals of
hypergeometric Lévy processes. We derive an explicit formula for the Mellin transform of
the exponential functional and give both convergent and asymptotic series expansions of its
probability density function. As applications we present a new proof of some of the results
on the density of the supremum of a stable process, which were recently obtained in Hubalek
and Kuznetsov (Electron. Commun. Probab. 16:84–95, 2011) and Kuznetsov (Ann. Probab.
39(3):1027–1060, 2011). We also derive several new results related to (i) the entrance law of
a stable process conditioned to stay positive, (ii) the entrance law of the excursion measure
of a stable process reflected at its past infimum, (iii) the distribution of the lifetime of a stable
process conditioned to hit zero continuously and (iv) the entrance law and the last passage
time of the radial part of a multidimensional symmetric stable process.

Keywords Hypergeometric Lévy processes · Lamperti-stable processes · Exponential
functional · Double gamma function · Lamperti transformation · Extrema of stable
processes
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1 Introduction

Exponential functionals of Lévy processes play a very important role in various domains
of probability theory, such as self-similar Markov processes, random processes in random
environment, fragmentation processes, branching processes, mathematical finance, to name
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but a few. In general, the distribution of the exponential functional of a Lévy process X =
(Xt , t ≥ 0) with lifetime ζ , defined as

I :=
∫ ζ

0
e−Xt dt,

can be rather complicated. Nonetheless, this distribution is known explicitly for the case
when X is either: a standard Poisson processes, Brownian motion with drift, a particular
class of spectrally negative Lamperti-stable process (see for instance [20, 32, 38]), spectrally
positive Lévy processes satisfying the Cramér condition (see for instance [40]). In the class
of Lévy processes with double-sided jumps the distribution of the exponential functional is
known in closed form only in the case of Lévy processes with hyper-exponential jumps, see
the recent paper by Cai and Kou [14]. An overview of this topic can be found in Bertoin and
Yor [7].

For many applications, it is enough to have estimates of P(I < t) as t → 0+ and P(I > t)

as t → +∞. However it is quite difficult to obtain such estimates in the general case. The
behaviour of the tail P(I > t) has been studied the most. There are results in special cases
that correspond to heavy tails, light tails and convolution equivalent tails (see for instance
[19, 20, 24, 36, 41, 42]). On the other hand, the behaviour of P(I < t) has been studied
only in two particular cases: when X has exponential moments and its Laplace exponent is
regularly varying at infinity with index θ ∈ (1,2) (see [37]) and when X is a subordinator
whose Laplace exponent is regularly varying at zero (see [11]).

At the same time, the problem of finding the distribution of the supremum of a stable
process has also stimulated a lot of research. The explicit expressions for the Wiener-Hopf
factors for a dense set of parameters were first obtained by Doney [22]. In the spectrally
positive case a convergent series representation for the density of the supremum was first
obtained by Bernyk, Dalang and Peskir [4], and a complete asymptotic expansion was de-
rived by Patie [39]. The general case was treated recently in [25] and [27], where the au-
thors have derived explicit formulas for the Wiener-Hopf factors, the Mellin transform of
the supremum and also convergent and asymptotic series representations for the density of
the supremum.

In this paper we pursue two goals. First, we study the exponential functionals of hy-
pergeometric processes, in particular we obtain the Mellin transform and both convergent
and asymptotic series representations for the density of the exponential functional. This
gives us the first explicit results on exponential functionals of Lévy processes which have
double-sided jumps of infinite activity or infinite variation. The Mellin transform is identi-
fied explicitly with a new method which is of independent interest since it can also be used
to determine the Mellin transform of exponential functionals of some other Lévy processes
(possibly killed) satisfying Cramer’s condition. For instance, using this method one can de-
rive the well-known results on the exponential functionals of Brownian motion with drift
and the very interesting recent results by Cai and Kou [14] for processes with double-sided
hyper-exponential jumps. At the same time, the techniques that we use to determine con-
vergent and asymptotic series representations are based on similar arguments used in [25]
and [27].

Our second goal is to present applications of these results. Using the Lamperti transfor-
mation and the fact that hypergeometric processes include the Lamperti-stable processes we
will prove several interesting results on fluctuations of stable processes. In particular, we
obtain a new proof for the series representations for the density of the supremum of stable
processes found in [25] and [27], which is more straightforward and somewhat less techni-
cal. We also derive the first known result on the density of the entrance law of the excursion
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measure of a stable process reflected at its past infimum, which, coupled with the recent pa-
per by Chaumont [17], provides a huge number of explicit identities for functionals of stable
processes. We also determine the density of the entrance law of the stable process condi-
tioned to stay positive. Finally, we obtain several new results related to multidimensional
symmetric stable processes, such as the density of the last passage time from the sphere and
the entrance law at zero of the radial process which, to the best of our knowledge, are only
known in the Brownian case (see for instance Getoor [23]).

The paper is organized as follows: in Sect. 2 we introduce hypergeometric processes and
establish the connections between this class and the Lamperti-stable processes. In Sect. 3 we
study the Mellin transform of the exponential functional of a hypergeometric process and in
Sect. 4 we derive the convergent and asymptotic series representations for the density of the
exponential functional. Finally, in Sect. 5 we present some applications of these results to
fluctuations of stable processes.

2 Hypergeometric and Lamperti-Stable Processes

Hypergeometric processes were first introduced in [33] and, more generally, in [29]. These
processes were originally constructed using Vigon’s theory of philanthropy (see [45]) and
they provide examples of Lévy processes with an explicit Wiener-Hopf factorization. The
class of processes which we will study in this paper should be considered as a subclass
of the hypergeometric processes studied in [33] and as a generalization of Lamperti-stable
processes, which were introduced by Caballero and Chaumont [9].

We start by defining a function ψ(z) as

ψ(z) = −�(1 − β + γ − z)

Γ (1 − β − z)

Γ (β̂ + γ̂ + z)

Γ (β̂ + z)
, (1)

where (β, γ, β̂, γ̂ ) belong to the admissible set of parameters

A = {
β ≤ 1, γ ∈ (0,1), β̂ ≥ 0, γ̂ ∈ (0,1)

}
. (2)

Our first goal is to show that ψ(z) is the Laplace exponent of a (possibly killed) Lévy process
X, that is ψ(z) = ln E[exp(zX1)]. We will call this process X a hypergeometric process.

From now on we will use the following notation

η = 1 − β + γ + β̂ + γ̂ . (3)

Recall that the hypergeometric function is defined for |z| < 1, z ∈ C by convergent series

2F1(a, b; c; z) =
∑
n≥0

(a)n(b)n

(c)n

zn

n! ,

where (a)n = Γ (a + n)/Γ (a) is the Pochhammer symbol (see Sect. 9.1 in [26]).

Proposition 1

(i) The function ψ(z) defined by (1) is the Laplace exponent of a Lévy process X. The
density of the Lévy measure of X is given by

π(x) =
{− Γ (η)

Γ (η−γ̂ )Γ (−γ )
e−(1−β+γ )x

2F1(1 + γ,η;η − γ̂ ; e−x), if x > 0,

− Γ (η)

Γ (η−γ )Γ (−γ̂ )
e(β̂+γ̂ )x

2F1(1 + γ̂ , η;η − γ ; ex), if x < 0.
(4)
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(ii) When β < 1 and β̂ > 0, the process X is killed at the rate

q = −ψ(0) = Γ (1 − β + γ )

Γ (1 − β)

Γ (β̂ + γ̂ )

Γ (β̂)
.

When β = 1 and β̂ > 0 {β < 1 and β̂ = 0}, X drifts to +∞ {−∞} and

E[X1] = Γ (γ )Γ (β̂ + γ̂ )

Γ (β̂)

{
E[X1] = −Γ (γ̂ )Γ (1 − β + γ )

Γ (1 − β)

}
.

When β = 1 and β̂ = 0, we have E[X1] = 0 and the process X oscillates.
(iii) The process X has no Gaussian component. When γ + γ̂ < 1 {1 ≤ γ + γ̂ < 2}, the

process has paths of bounded variation and no linear drift {paths of unbounded varia-
tion}.

(iv) We have an explicit Wiener-Hopf factorization −ψ(z) = κ(q,−z)κ̂(q, z) where the
Wiener-Hopf factors are given by

κ(q, z) = Γ (1 − β + γ + z)

Γ (1 − β + z)
, κ̂(q, z) = Γ (β̂ + γ̂ + z)

Γ (β̂ + z)
. (5)

(v) The process X̂ = −X is also a hypergeometric process with parameters (1 − β̂, γ̂ ,1 −
β,γ ).

Proof First let us prove (i). Let X(1) be a general hypergeometric Lévy process (see Sect. 3.2
in [29]) with parameters

σ = d = k1 = δ1 = δ2 = 0, β = 1, c1 = − 1

Γ (−γ )
, c2 = − 1

Γ (−γ̂2)
,

α1 = β, α2 = 1 − β̂, γ1 = γ, γ2 = γ̂ , k2 = Γ (β̂ + γ̂ )

Γ (β̂)
.

This process is constructed using Vigon’s theory of philanthropy (see [45]) from two subor-
dinators H(1) and Ĥ (1) which have Laplace exponents

κ(1)(q, z) = κ(q, z) − κ(q,0), κ̂(1)(q, z) = κ̂(q, z)

where κ(q, z) and κ̂(q, z) are given by (5). We see that the Laplace exponent ψ(1)(z) of the
process X(1) satisfies

ψ(1)(z) = ψ(z) + kκ̂(q, z)

where k = κ(q,0). Therefore the process X
(1)
t has the same distribution as Xt − Ĥkt , in

particular the distribution of the positive jumps of X(1) coincides with the distribution of
the positive jumps of X. From [29], we find that the Lévy measure of X(1) restricted to
x > 0 coincides with (4). The expression of the Lévy measure for x < 0 follows easily by
symmetry considerations. This proves that ψ(z) defined by (1) is the Laplace transform of
a (possibly killed) Lévy process with the density of the Lévy measure given by (4).

The rest of the proof is rather straightforward. Property (v) follows easily from the
definition of the Laplace exponent (1). The Wiener-Hopf factorization (iv) follows easily
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by construction: we know that both κ(q, z) and κ̂(q, z) defined by (5) are Laplace trans-
forms of (possibly killed) subordinators, and the result follows from identity −ψ(z) =
κ(q,−z)κ̂(q, z) and the uniqueness of the Wiener-Hopf factorization (see Corollary 6.19
in [31]).

Let us prove (ii). The fact that X drifts to +∞ when β = 1 and β̂ > 0 follows from
the Wiener-Hopf factorization (iv): in this case κ(q,0) = 0, therefore the ascending ladder
height process drifts to +∞, while the descending ladder height process is killed at rate
κ̂(q,0) > 0. The expression for E[X1] follows from (1) using the fact that E[X1] = ψ ′(0).
Other results in (ii) can be verified in a similar way.

Let us prove (iii). Formula (1) and the asymptotic expansion for the Gamma function
(see formula 8.328.1 in [26]) imply that

ψ(iz) = O
(|z|γ+γ̂

) = o
(|z|2), z → ∞, z ∈ R. (6)

Applying Proposition 2 in [5], we conclude that X has no Gaussian component, and that
when γ + γ̂ < 1 {1 < γ + γ̂ < 2} the process has paths of bounded variation and no linear
drift {paths of unbounded variation}. In the remaining case γ + γ̂ = 1 the density of the
Lévy measure has a singularity of the form Cx−2 + o(x−2) as x → 0+ (see formula 15.3.12
in [1]), which implies that the process has paths of unbounded variation. �

Note that hypergeometric processes belong to the larger family of meromorphic pro-
cesses, which were introduced recently in [30]. There are several equivalent definitions of
this class of processes (see Theorem 1 in [30]). In particular, a Lévy process is meromorphic
if the density of the Lévy measure is given by an infinite series of exponential functions with
positive coefficients. This definition and the formula (4) confirm the fact that hypergeometric
processes are meromorphic.

The three Lamperti-stable processes ξ ∗, ξ↑ and ξ↓ were introduced by Caballero and
Chaumont [9] by applying the Lamperti transformation (see [34]) to the positive self-similar
Markov processes constructed from a stable process. In particular, the process ξ ∗ is obtained
from a stable process started at x > 0 and killed upon exit from the positive half-line, while
process ξ↑ {ξ↓} is obtained from a stable process conditioned to stay positive {conditioned
to hit zero continuously}. We refer to [9, 12, 20] for all the details on these processes.

Our next goal is to show that the three Lamperti-stable processes are in fact hypergeo-
metric processes, that is their Laplace exponent is given by (1). First we present several def-
initions and notations. We assume that Y is a strictly stable Lévy process, which is started
at zero and is described by the stability parameter α ∈ (0,1) ∪ (1,2) and the skewness pa-
rameter β ∈ [−1,1]. The characteristic exponent of Y is given by

ΨY (z) = − ln E
[
exp(izY1)

] = c|z|α
(

1 − iβ tan

(
πα

2

)
sign(z)

)
, z ∈ R, (7)

and the Lévy measure of Y is

πY (x) = c+x−1−α1{x>0} + c−|x|−1−α1{x<0}. (8)

The parameters c and β are given in terms of c−, c+ as follows

c = c+ + c−, β = c+ − c−
c+ + c−

. (9)

These classic results can be found in Chap. 8 in [5] or Theorem 14.15 in [44].
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Stable processes satisfy the scaling property, which states that the processes {Yat : t ≥ 0}
and {a 1

α Yt : t ≥ 0} have the same distribution. We see that c in (7) is just a scaling parameter,
thus without loss of generality we set

c = Γ (1 + α)
2

π
sin

(
πα

2

)(
1 + β2 tan

(
πα

2

)2)− 1
2

. (10)

It is of course a rather non-obvious choice of the normalization constant, but as we will see
later, it is in fact appropriate for our purpose of connecting Lamperti-stable processes with
hypergeometric processes.

Usually it is more convenient to parameterize stable processes by the parameters (α,ρ)

instead of (α,β), where the positivity parameter ρ = P(Y1 > 0) can be expressed in terms
of (α,β) as follows

ρ = 1

2
+ 1

πα
tan−1

(
β tan

(
πα

2

))
. (11)

One can check that with our normalization (10) the parameters c+, c− must be given by

c+ = Γ (1 + α)
sin(παρ)

π
, c− = Γ (1 + α)

sin(πα(1 − ρ))

π
. (12)

Conversely, if c+ and c− are given as above and we define c and β as in (9), we will obtain
identities in (10) and (11). Thus (12) is just one possible way to parameterize the Lévy
measure (8) of a general stable process, which is consistent with (10) and (11).

According to Caballero and Chaumont [9], the Laplace exponent ψξ∗(z) = ln E[exp(zξ ∗
1 )]

of the Lamperti-stable process ξ ∗, which is associated to a stable process Y started at x > 0
and killed upon the first exit from the positive half-line, is given by

ψξ∗(z) = c+ − c−
1 − α

z +
∫

R\{0}

(
ezx − 1 − z

(
ex − 1

)
1{|ex−1|<1}

)
exπY

(
ex − 1

)
dx − c−α−1.

(13)

Note that when α < 1, the Laplace exponent (13) can be rewritten as

ψξ∗(z) =
∫

R\{0}

(
ezx − 1

)
exπY

(
ex − 1

)
dx − c−α−1,

so that in this case ξ ∗ is a process of bounded variation with no linear drift.

Theorem 1 Lamperti-stable processes ξ ∗, ξ↑, ξ↓ can be identified as hypergeometric pro-
cesses with the following sets of parameters

β γ β̂ γ̂

ξ ∗ 1 − α(1 − ρ) αρ 1 − α(1 − ρ) α(1 − ρ)

ξ↑ 1 αρ 1 α(1 − ρ)

ξ↓ 0 αρ 0 α(1 − ρ)

Proof For the proof of the result for ξ↑ see Proposition 2 in [33]. The result for ξ↓ follows
from Proposition 1 in [20]. Thus we only need to prove the result for ξ ∗.

Let us set

(β, γ, β̂, γ̂ ) = (
1 − α(1 − ρ),αρ,1 − α(1 − ρ),α(1 − ρ)

)
(14)
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and compute the Lévy measure of the hypergeometric process X defined by these parame-
ters. Note that due to (3) we have η = 1 + α. We find that formulas (4), (8) and (12) imply
that for x > 0 we have

π(x) = − Γ (1 + α)

Γ (1 + αρ)Γ (−αρ)
e−αx

2F1

(
1 + αρ,1 + α;1 + αρ; e−x

)

= Γ (1 + α)
sin(παρ)

π
e−αx

(
1 − e−x

)−1−α = exπY

(
ex − 1

)
.

In order to derive the above identity we have also used the reflection formula for the gamma
function

Γ (s)Γ (1 − s) = π

sin(πs)
, (15)

and the fact that 2F1(a, b;a, z) = (1 − z)−b (see formulas 8.334.3 and 9.131.1 in [26]).
Similarly, we find that π(x) = exπY (ex − 1) for x < 0. We see that, given our normalization
(10), the Lévy measure of the hypergeometric process is the same as the Lévy measure of
the Lamperti-stable process. We know that in the case α < 1 both of these processes have

paths of finite variation and no linear drift, this proves that X
d= ξ ∗.

In the case α > 1 the processes X and ξ ∗ have infinite variation, no Gaussian compo-
nent and identical Lévy measures. Thus their Laplace exponents may differ only by a linear
function. In order to establish that the Laplace exponents are equal it is enough to show that
ψ ′

X(0) = ψ ′
ξ∗(0). Using (1) and (15), we find that the Laplace exponent of the hypergeomet-

ric process X defined by parameters (14) is given by

ψX(z) = 1

π
Γ (α − z)Γ (1 + z) sin

(
π

(
z − α(1 − ρ)

))

Therefore we have

ψ ′
X(0) = Γ (α)

sin(πα(1 − ρ))

π

(
Ψ (α) − Ψ (1)

) + Γ (α) cos
(
πα(1 − ρ)

)
, (16)

where Ψ (z) = Γ ′(z)/Γ (z) is the digamma function (see Sect. 8.36 in [26]). On the other
hand, from (13) we find that

ψ ′
ξ∗(0) = c+ − c−

1 − α
+ c+

[∫ ln(2)

0

(1 + y − ey)ey

(ey − 1)1+α
dy +

∫ ∞

ln(2)

yey

(ey − 1)1+α
dy

]

+ c−
∫ 0

−∞

(1 + y − ey)ey

(1 − ey)1+α
dy, (17)

where c+ and c− are defined in (12). Let us show that the expressions in the right-hand side
of (16) and (17) are identical.

First we will deal with the integrals multiplying c+ in (17). We rearrange the terms as
follows ∫ ln(2)

0

(1 + y − ey)ey

(ey − 1)1+α
dy +

∫ ∞

ln(2)

yey

(ey − 1)1+α
dy

=
∫ ∞

0

(1 + y − ey)ey

(ey − 1)1+α
dy +

∫ ∞

ln(2)

(ey − 1)ey

(ey − 1)1+α
dy. (18)

Performing the change of variables u = exp(y) it is easy to see that the second integral in
the right-hand side of (18) is equal to 1/(α − 1). In order to compute the first integral we
use integration by parts
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∫ ∞

0

(1 + y − ey)ey

(ey − 1)1+α
dy = − 1

α

∫ ∞

0

(
1 + y − ey

)
d
(
ey − 1

)−α

= 1

α

∫ ∞

0

1 − ey

(ey − 1)α
dy = π

α sin(πα)
(19)

where in the last step we have used the reflection formula for the gamma function (15) and
the following integral formula∫ ∞

0

eau

(ebu − 1)c
du = 1

b

Γ (c − a
b
)Γ (1 − c)

Γ (1 − a
b
)

,
a

b
< c < 1, (20)

which can be obtained by a change of variables e−u = x from the integral representation for
the beta function, see formula 3.191.3 in [26]. The last integral in (17) can also be computed
using integration by parts

∫ 0

−∞

(1 + y − ey)ey

(1 − ey)1+α
dy

=
∫ ∞

0

(1 − y − e−y)eαy

(ey − 1)1+α
dy

= − 1

α

∫ ∞

0

(
1 − y − e−y

)
e(α−1)yd

(
ey − 1

)−α

= 1

α

∫ ∞

0

(−1 + e−y)e(α−1)y + (1 − y − e−y)(α − 1)e(α−1)y

(ey − 1)α
dy

= α − 2

α

∫ ∞

0

e(α−2)y

(ey − 1)α−1
dy − α − 1

α

∫ ∞

0

ye(α−1)y

(ey − 1)α
dy

= α − 2

α

Γ (2 − α)Γ (1)

Γ (3 − α)
− α − 1

α

d

dz

[∫ ∞

0

ezy

(ey − 1)α
dy

]
z=α−1

= − 1

α
− 1

α

(
Ψ (1) − Ψ (2 − α)

)
(21)

where we have again used (20). Combining (17), (18), (19) and (21) we see that

ψ ′
ξ∗(0) = c+ − c−

1 − α
+ c+

[
1

α − 1
+ π

α sin(πα)

]
+ c−

[
− 1

α
− 1

α

(
Ψ (1) − Ψ (2 − α)

)]
.

Using (12), the reflection formula for the digamma function Ψ (2 − α) = Ψ (α) +
π cot(πα) + 1/(1 − α) (see formulas 8.365.1 and 8.365.8 in [26]), the identity Γ (z + 1) =
zΓ (z) and the addition formula for the sine function it is not hard to reduce the above
expression to (16). We leave all the remaining details to the reader. �

3 Mellin Transform of the Exponential Functional

Let X be a hypergeometric Lévy process with parameters (β, γ, β̂, γ̂ ) ∈ A and β̂ > 0. We
assume that α > 0 and define the exponential functional as

I (α,X) =
∫ ζ

0
e−αXt dt, (22)

where ζ is the lifetime of the process X. Note that the above integral converges with proba-
bility one: according to Proposition 1, either ζ is finite (if β < 1) or ζ = +∞ and the process
X drifts to +∞ (if β = 1). Everywhere in this paper we will denote δ = 1/α.
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Our main tool in studying the exponential functional is the Mellin transform, which is
defined as

M(s) = M(s;α,β, γ, β̂, γ̂ ) = E
[
I (α,X)s−1

]
. (23)

From the definition of the Laplace exponent (1) we find that X satisfies Cramér’s condition,
that is to say E[exp(−β̂X1)] = 1, therefore applying Lemma 2 from [43] we conclude that
M(s) exists for s ∈ (0,1 + β̂δ).

In order to describe our main result in this section, we need to define the double gamma
function, G(z; τ). This function was introduced by Alexeiewsky in 1889 and was exten-
sively studied by Barnes [2, 3]. The double gamma function is defined by an infinite product
in Weierstrass’s form

G(z; τ) = z

τ
ea z

τ +b z2
2τ

∏
m≥0

∏
n≥0

′
(

1 + z

mτ + n

)
e

− z
mτ+n + z2

2(mτ+n)2 ,
∣∣arg(τ )

∣∣ < π, z ∈ C.

(24)

Here the prime in the second product means that the term corresponding to m = n = 0
is omitted. Note that by definition G(z; τ) is an entire function in z and if τ /∈ Q it has
simple zeros on the lattice mτ + n, m ≤ 0, n ≤ 0. Barnes has shown that it is possible to
define constants a = a(τ) and b = b(τ) in such a way so that we have G(1; τ) = 1 and that
G(z; τ) satisfies the following three functional identities (see [2] and [27])

G(z + 1; τ) = Γ

(
z

τ

)
G(z; τ), (25)

G(z + τ ; τ) = (2π)
τ−1

2 τ−z+ 1
2 Γ (z)G(z; τ), (26)

G(z; τ) = (2π)
z
2 (1− 1

τ )τ− z2
2τ

+ z
2 (1+ 1

τ )−1G

(
z

τ
; 1

τ

)
. (27)

The function G(z; τ) can also be expressed as an infinite product of gamma functions, see
[2]. An integral representation for ln(G(z; τ)) was obtained in [35] and several important
asymptotic expansions were established in [8].

Next we introduce a function which will play a central role in our study of exponential
functionals. Recall that we have denoted δ = 1/α.

Definition 1 For s ∈ C we define

M(s) = M(s;α,β, γ, β̂, γ̂ )

= C
G((1 − β)δ + s; δ)

G((1 − β + γ )δ + s; δ)
G((β̂ + γ̂ )δ + 1 − s; δ)

G(β̂δ + 1 − s; δ) , s ∈ C. (28)

where the constant C is such that M(1) = 1.

Our main result in this section is the following Theorem, which provides an explicit
expression for the Mellin transform of the exponential functional.

Theorem 2 Assume that α > 0, (β, γ, β̂, γ̂ ) ∈ A and β̂ > 0. Then M(s) ≡ Γ (s)M(s) for
all s ∈ C.

Before we are able to prove Theorem 2, we need to establish several auxiliary results.
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Lemma 1

(i) Assume that τ > 0. When s → ∞ in the domain | arg(s)| < π − ε < π , we have

ln

[
G(a + s; τ)

G(s; τ)

]
= a

τ
s ln(s) − a

τ

(
1 + ln(τ )

)
s + a

2τ
(a − 1 − τ) ln(s) + O(1).

(29)

(iv) When s → ∞ in the domain 0 < ε < arg(s) < π − ε, we have

ln
(
M(s)

) = −(γ + γ̂ )s ln(s) + s
((

1 + ln(δ)
)
(γ + γ̂ ) + π iγ̂ + O

(
ln(s)

)
. (30)

(iii) When s → ∞ in a vertical strip a < Re(s) < b, we have

∣∣M(s)
∣∣ = exp

(
π

2
(γ − γ̂ )

∣∣Im(s)
∣∣ + O

(
ln

∣∣Im(s)
∣∣)

)
. (31)

Proof Part (i) follows from the asymptotic expansion for G(z; τ), given in formula (4.5) in
[8], while parts (ii) and (iii) are simple corollaries of (i) and (28). �

The following notation will be used extensively in this paper: if X is a hypergeometric
process with parameters (β, γ, β̂, γ̂ ), then X̃ will denote the hypergeometric process with
parameters (δβ, δγ, δβ̂, δγ̂ ), provided that this parameter set is admissible. In particular, the
Laplace exponent of X̃ is given by

ψ̃(z) = −Γ (1 − δ(β − γ ) − z)Γ (δ(β̂ + γ̂ ) + z)

Γ (1 − δβ − z)Γ (δβ̂ + z)
. (32)

Lemma 2

(i) M(s) is a real meromorphic function which has zeros{−(1 − β)δ − mδ − n, 1 + (β̂ + γ̂ )δ + mδ + n
}

m,n≥0
, (33)

and poles{
z−
m,n = −(1 − β + γ )δ − mδ − n, z+

m,n = 1 + β̂δ + mδ + n
}

m,n≥0
. (34)

All zeros/poles are simple if α /∈ Q.
(ii) M(s) satisfies the following functional identities

M(s + 1) = − 1

ψ(−αs)
M(s), (35)

M(s + δ) = − α−δ(γ̂+γ )

ψ̃(1 − δ − s)
M(s), (36)

M(s;α,β, γ, β̂, γ̂ ) = α(1−s)(γ+γ̂ )M(1 − α + αs; δ, δβ, δγ, δβ̂, δγ̂ ). (37)

Proof The proof of (i) follows from the definition of the double gamma function (24), while
the functional identity (35) is a simple corollary of the functional identity for the double
gamma function (25).

Let us prove (37). We use (27) and find that for all s and x

G(s + x; δ)
G(s; δ) = ααsxC

G(α(s + x);α)

G(αs;α)
,
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where C = C(x) depends only on x. The above identity implies that

G((1 − β)δ + s; δ)
G((1 − β + γ )δ + s; δ)

G((β̂ + γ̂ )δ + 1 − s; δ)
G(β̂δ + 1 − s; δ)

= C̃α−s(γ+γ̂ ) G(1 − β + αs;α)

G(1 − β + γ + αs;α)

G(β̂ + γ̂ + α − αs;α)

G(β̂ + α − αs;α)
,

where C̃ does not depend on s. It is easy to see that (37) follows from the above identity
and (28).

The functional identity (36) follows from (37) and (35), we leave all the details to the
reader. �

The following proposition will be central in the proof of Theorem 2. It allows us to
identify explicitly the Mellin transform of the exponential functional. This result is also
applicable to some other Lévy process, including Brownian motion with drift and more gen-
erally, processes with hyper-exponential or phase-type jumps, therefore it is of independent
interest.

First let us present the main ingredients. Let Y be a (possibly killed) Lévy process started
from zero, and let ψY (z) = ln E[exp(zY1)] denote its Laplace exponent. In the case when
ψY (0) = 0 (the process is not killed) we will also assume that E[Y1] > 0, so that Y drifts
to +∞. As usual we define the exponential functional I = ∫ ζ

0 exp(−Yt )dt (where ζ is the
lifetime of Y ) and the Mellin transform MY (s) = E[I s−1].

Proposition 2 (Verification result) Assume that Cramér’s condition is satisfied: there exists
z0 < 0 such that ψY (z) is finite for all z ∈ (z0,0) and ψY (−θ) = 0 for some θ ∈ (0,−z0). If
f (s) satisfies the following three properties

(i) f (s) is analytic and zero-free in the strip Re(s) ∈ (0,1 + θ),
(ii) f (1) = 1 and f (s + 1) = −sf (s)/ψY (−s) for all s ∈ (0, θ),

(iii) |f (s)|−1 = o(exp(2π |Im(s)|)) as Im(s) → ∞, uniformly in Re(s) ∈ (0,1 + θ),

then MY (s) ≡ f (s) for Re(s) ∈ (0,1 + θ).

Proof The Cramér’s condition and Lemma 2 in [43] imply that MY (s) can be extended to
an analytic function in the strip Re(s) ∈ (0,1+θ). In the case when ψY (0) = 0 {ψY (0) < 0}
we use Lemma 2.1 in [36] {Proposition 3.1 from [15]} to conclude that MY (s) satisfies the
functional identity

MY (s + 1) = − s

ψY (−s)
MY (s) (38)

for all s ∈ (0, θ). Since f (s) satisfies the same functional identity we conclude that the func-
tion F(s) = MY (s)/f (s) satisfies F(s + 1) = F(s) for all s ∈ (0, θ). Using the assumption
that f (s) is analytic and zero-free we conclude that F(s) is an analytic function in the strip
Re(s) ∈ (0,1 + θ). Since F(s) is also periodic with period equal to one, it can be extended
to an analytic and periodic function in the entire complex plane.

Our goal now is to prove that the function F(s) is in fact constant. Since F(s) is analytic
and periodic in the entire complex plane, it can be represented as a Fourier series

F(s) =
∑
n∈Z

cne
2π ins,
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where the series converges in the entire complex plane. This means that the two functions

F1(z) =
∑
n≥1

cnz
n, F2(z) =

∑
n≥1

c−nz
n.

are analytic in the entire complex plane, and that for all s ∈ C

F(s) = c0 + F1

(
exp(2π is)

) + F2

(
exp(−2π is)

)
. (39)

Due to the inequality |MY (s)| < MY (Re(s)), assumption (iii) and periodicity of F(s) we
conclude that uniformly in Re(s) we have

F(s) = o
(
exp

(
2π

∣∣Im(s)
∣∣)), as Im(s) → ∞. (40)

In particular, when Im(s) → +∞ we have F1(exp(2π is)) → F1(0) = 0, therefore the esti-
mates (39) and (40) imply that F2(z) = o(|z|) as z → ∞ in the entire complex plane, and
using Cauchy’s estimates (Proposition 2.14 in [21]) we conclude that F2(z) ≡ 0. Similarly,
considering the case when Im(s) → −∞, we find that F1(z) ≡ 0. Therefore F(s) must be
constant, and the value of this constant is equal to one, since F(1) = MY (1)/f (1) = 1. �

We would like to stress that Proposition 2 is an important result of independent interest.
We know that if Cramér’s condition is satisfied then the Mellin transform MY (s) satisfies
the functional identity (38), however it is clear that there are infinitely many functions which
satisfy the same functional identity. Proposition 2 tells us that if we have found such a
function f (s), which satisfies (38), and if we can verify the two conditions about the zeros
of this function and its asymptotic behaviour, then we can in fact uniquely identify MY (s) ≡
f (s). In particular, this proposition can be used to provide a very simple and short proof of
the well-known result on exponential functional of Brownian motion with drift and of the
recent results on exponential functionals of processes with double-sided hyper-exponential
jumps (see [14]).

Proof of Theorem 2 First of all, we check that Cramér’s condition is satisfied with θ = β̂δ.
Let f (s) = Γ (s)M(s), where M(s) is defined by (28). From Lemma 2(i) we know that
f (s) is analytic and zero-free in the strip Re(s) ∈ (0,1 + β̂δ). By construction we have
f (1) = 1, and from formula (35) we find that f (s) satisfies f (s +1) = −sf (s)/ψ(−αs) for
s ∈ (0, β̂δ). Next, Lemma 1 (iii) and Stirling’s asymptotic formula for the gamma function
(see formula 8.327.3 in [26])

ln
(
Γ (s)

) = s ln(s) − s + O
(
ln(s)

)
, as s → ∞ in any sector

∣∣arg(s)
∣∣ ≤ π − ε < π

(41)

imply that as s → ∞ in the vertical strip Re(s) ∈ (0,1 + β̂δ) we have

∣∣f (s)
∣∣−1 = exp

(
π

2
(1 − γ + γ̂ )

∣∣Im(s)
∣∣ + o

(
Im(s)

)) = o
(
exp

(
π

∣∣Im(s)
∣∣)),

where in the last step we have also used the fact that both γ and γ̂ belong to the interval
(0,1).

We see that function f (s) satisfies all conditions of Proposition 2, thus we can conclude
that M(s) ≡ f (s). �
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Corollary 1 Assume that α > 0, β̂ > 0 and that both sets of parameters (β, γ, β̂, γ̂ ) and
(δβ, δγ, δβ̂, δγ̂ ) belong to the admissible set A. Then we have the following identity in
distribution

εα
1 × I (α;X)

d= αγ+γ̂ × ε1 × I (δ; X̃)α (42)

where ε1 ∼ Exp(1) and all random variables are assumed to be independent.

Proof Rewrite (37) as

Γ (1 − α + αs)M(s;α,β, γ, β̂, γ̂ ) = α(s−1)(γ+γ̂ )Γ (s)M(1 − α + αs; δ, δβ, δγ, δβ̂, δγ̂ )

and use the following facts: (i) Γ (s) = E[εs−1
1 ]; (ii) if f (s) is the Mellin transform of a

random variable ξ then f (1 − α + αs) is the Mellin transform of the random variable ξα ;
(iii) the Mellin transform of the product of independent random variables is the product of
their Mellin transforms. �

4 Density of the Exponential Functional

In this section we will study the density of the exponential functional, defined as

p(x) = d

dx
P
(
I (α,X) ≤ x

)
, x ≥ 0.

As in the previous section, X is a hypergeometric process with parameters (β, γ, β̂, γ̂ ) ∈ A
and β̂ > 0. The main results of this section are the convergent series representations and
complete asymptotic expansions of this function as x → 0+ or x → +∞. These results
should be seen as extensions of related results in [25] and [27].

Let us define the following three sets of parameters which will be used extensively later.
In the following definition (and everywhere else in this paper) ψ(·), ψ̃(·) and M(·) denote
the functions which were defined in (1), (32) and (28); the sequences z−

m,n and z+
m,n represent

the poles of M(·) and were defined in (34); the constant η is defined by (3).

Definition 2 Define the coefficients {an}n≥0 as

an = − 1

n!
n∏

j=0

ψ(αj), n ≥ 0. (43)

The coefficients {bm,n}m,n≥0 are defined recursively
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

b0,0 = δ
Γ (η)Γ (−(1 − β + γ )δ)

Γ (η − γ̂ )Γ (−γ )
M

(
1 − (1 − β + γ )δ

)
,

bm,n = −ψ(−αz−
m,n)

z−
m,n

bm,n−1, m ≥ 0, n ≥ 1,

bm,n = −αδ(γ+γ̂ )ψ̃(1 − δ − z−
m,n)

Γ (z−
m,n)

Γ (z−
m−1,n)

bm−1,n, m ≥ 1, n ≥ 0.

(44)
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Similarly, {cm,n}m,n≥0 are defined recursively
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c0,0 = δ
Γ (1 + β̂δ)Γ (1 − β + β̂)

Γ (η − γ̂ )Γ (γ̂ )
M(β̂δ)

cm,n = − z+
m,n−1

ψ(−αz+
m,n−1)

cm,n−1, m ≥ 0, n ≥ 1,

cm,n = − α−δ(γ+γ̂ )

ψ̃(1 − δ − z+
m−1,n)

Γ (z+
m,n)

Γ (z+
m−1,n)

cm−1,n, m ≥ 1, n ≥ 0.

(45)

Note that if β = 1 we have ψ(0) = 0, which implies that an = 0 for all n ≥ 0.

Proposition 3 Assume that α /∈ Q. For all m,n ≥ 0, we have

Res
(

M(s) : s = −n
) = an, if β < 1,

Res
(

M(s) : s = z−
m,n

) = bm,n,

Res
(

M(s) : s = z+
m,n

) = −cm,n.

Proof Let us prove that the residue of M(s) at s = z−
m,n is equal to bm,n. First, we use

Theorem 2 and rearrange the terms in the functional identity (35) to find that

M(s) = δM(s + 1)

s + (1 − β + γ )δ

Γ (2 − β + γ + αs)Γ (β̂ + γ̂ − αs)

Γ (1 − β + αs)Γ (β̂ − αs)
.

The above identity and the definition (44) imply that as s → −(1 − β + γ )δ

M(s) = b0,0

s + (1 − β + γ )δ
+ O(1),

which means that the residue of M(s) at z−
0,0 = −(1 − β + γ )δ is equal to b0,0.

Next, let us prove that the residues satisfy the second recursive identity in (44). We
rewrite (35) as

M(s) = −ψ(−αs)

s
M(s + 1). (46)

We know that M(s) has a simple pole at s = z−
m,n while M(s + 1) has a simple pole at

z−
m,n + 1 = z−

m−1,n. One can also check that the function ψ(−αs) is analytic at s = z−
m,n for

m ≥ 1. Therefore we have as s → z−
m,n

M(s) = Res
(

M(s) : s = z−
m,n

) 1

s − z−
m,n

+ O(1),

M(s + 1) = Res
(

M(s) : s = z−
m−1,n

) 1

s − z−
m,n

+ O(1),

−ψ(−αs)

s
= −ψ(−αz−

m,n)

z−
m,n

+ O
(
s − z−

m,n

)

which, together with (46) imply that

Res
(

M(s) : s = z−
m,n

) = −ψ(−αz−
m,n)

z−
m,n

× Res
(

M(s) : s = z−
m−1,n

)
.
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The proof of all remaining cases is very similar and we leave the details to the reader. �

Proposition 3 immediately gives us a complete asymptotic expansion of p(x) as x → 0+

and x → +∞, which we present in the next Theorem.

Theorem 3 Assume that α /∈ Q. Then

p(x) ∼
∑
n≥0

anx
n +

∑
m≥0

∑
n≥0

bm,nx
(m+1−β+γ )δ+n, x → 0+, (47)

p(x) ∼
∑
m≥0

∑
n≥0

cm,nx
−(m+β̂)δ−n−1, x → +∞. (48)

Proof The starting point of the proof is the expression of p(x) as the inverse Mellin trans-
form

p(x) = 1

2π i

∫
1+iR

M(s)x−sds, x > 0. (49)

Due to (31), Theorem 2 and Stirling’s formula (41) we know that |M(x + iu)| decreases
exponentially as u → ∞ (uniformly in x in any finite interval), therefore the integral in
the right-hand side of (49) converges absolutely and p(x) is a smooth function for x > 0.
Assume that c < 0 and that c satisfies c �= z−

m,n and c �= −n for all m,n. Shifting the contour
of integration 1 + iR �→c + iR and taking into account the residues at the poles s = z−

m,n and
s = −n, we find that

p(x) =
∑

Res
(

M(s) : s = z−
m,n

) × x−z−
m,n +

∑
0≤n<|c|

Res
(

M(s) : s = −n
) × xn

+ 1

2π i

∫
c+iR

M(s)x−sds, (50)

where the first summation is over all m ≥ 0, n ≥ 0, such that z−
m,n > c. Next, we perform a

change of variables s = c + iu and obtain the following estimate

∣∣∣∣
∫

c+iR
M(s)x−sds

∣∣∣∣ = x−c

∣∣∣∣
∫

R

M(s)x−iudu

∣∣∣∣ < x−c

∫
R

∣∣M(c + iu)
∣∣du = O

(
x−c

)

which proves (47). The proof of (48) is identical, except that we have to shift the contour of
integration in the opposite direction. �

It turns out that for almost all parameters α the asymptotic series (47) and (48) converge
to p(x) for all x > 0. In order to state this result, we need to define the following set of real
numbers.

Definition 3 Let L be the set of real irrational numbers x, for which there exists a constant
b > 1 such that the inequality ∣∣∣∣x − p

q

∣∣∣∣ <
1

bq
(51)

is satisfied for infinitely many integers p and q .
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This set was introduced in [27] in connection with the distribution of the supremum of
the stable process and it was later studied in [25]. It was proved in [25] that x /∈ L ∪Q if and
only if

lim
q→+∞

ln‖qx‖
q

= 0. (52)

where ‖x‖ = min{|x − i| : i ∈ Z}. There also exists a characterization of elements of L
in terms of their continued fraction expansion (see Proposition 1 in [25]). It is known that
L is a proper subset of Liouville numbers, that it is dense in R and that its Hausdorff di-
mension of L is zero (which implies that it has Lebesgue measure zero). This set is closed
under addition/multiplication by rational numbers. It is also known that x ∈ L if and only if
x−1 ∈ L. See [25] for proofs of these results and for some further references.

The following Theorem is our second main result in this section.

Theorem 4 Assume that α /∈ L ∪ Q. Then for all x > 0

p(x) =

⎧⎪⎨
⎪⎩

∑
n≥0

anx
n + ∑

m≥0

∑
n≥0

bm,nx
(m+1−β+γ )δ+n, if γ + γ̂ < 1,

∑
m≥0

∑
n≥0

cm,nx
−(m+β̂)δ−n−1, if γ + γ̂ > 1.

(53)

First let us establish the following technical result, which gives us a formula for M(s)

similar to the reflection formula for the Gamma function (15).

Lemma 3 Define

ck = 1 − (1 − β + γ )δ − δ/2 − k. (54)

Then for all u ∈ C

M(ck + iu) = (−1)k M(ck + k + iu) × F(−iu)

F (−iu + k)

×
k−1∏
j=0

cos(πα(j − iu + γ δ))

cos(πα(j − iu))
, (55)

where we have defined

F(w) = Γ
(
(1 − β + γ )δ + δ/2 + w

) G( 3
2δ + w; δ)

G((γ + 3
2 )δ + w; δ)

× G((η − γ̂ + 1
2 )δ + w; δ)

G((η + 1
2 )δ + w; δ) . (56)

Proof Let us set s = ck + iu. Then iterating the functional identity (35) k times we obtain

M(s) = M(s + k)
Γ (s)

Γ (s + k)

k−1∏
j=0

Γ (1 − β + γ + αs + αj)

Γ (1 − β + αs + αj)

Γ (β̂ + γ̂ − αs − αj)

Γ (β̂ − αs − αj)
. (57)

We use identity

Γ (s)

Γ (s + k)
= (−1)k Γ (1 − k − s)

Γ (1 − s)
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and (15) and rewrite (57) as

M(s) = (−1)k M(s + k)
Γ ((1 − β + γ )δ + δ/2 − iu)

Γ (k + (1 − β + γ )δ + δ/2 − iu)

×
k−1∏
j=0

Γ (−α(k − 1 − j) − 1
2 + iαu)

Γ (−α(k − 1 − j) − γ − 1
2 + iαu)

× Γ (α(k − 1 − j) + η + 1
2 − iαu)

Γ (α(k − 1 − j) + η − γ̂ + 1
2 − iαu)

. (58)

Next we change the index j �→ k − 1 − j and use (15) to obtain

k−1∏
j=0

Γ (−α(k − 1 − j) − 1
2 + iαu)

Γ (−α(k − 1 − j) − γ − 1
2 + iαu)

=
k−1∏
j=0

cos(πα(j − iu + γ δ))

cos(πα(j − iu))

Γ (αj + γ + 3
2 − iαu)

Γ (αj + 3
2 − iαu)

. (59)

The proof of (55) follows from (58), (59) and the following identity

k−1∏
j=0

Γ (αj + z) = G(δz + k; δ)
G(δz; δ) ,

which is obtained by iterating formula (25) k times. �

Proof of Theorem 4 We will use a similar technique as in the proof of Theorem 2 in [25].
Let us define B = 1 − γ − γ̂ and assume that B > 0. We start with (50) and set c = ck ,
where ck is defined by (54). Note that M(s) does not have singularities on the vertical line
ck + iR; if this was not the case then ck would coincide with one of the poles z−

m,n, which
would imply that α is rational.

We define

I1(x, k) = x−ck Re

[∫ k

0
M(ck + iu)x−iudu

]
,

I2(x, k) = x−ck Re

[∫ ∞

k

M(ck + iu)x−iudu

]
.

(60)

It is clear that the integral in the right-hand side of (50) is equal to 2(I1(x, k) + I2(x, k)).
Our goal is to prove that Ij (x, k) → 0 as k → +∞ for all x > 0.

First, let us deal with I2(x, k). Using Theorem 2, formula (30) and Stirling’s asymptotic
formula (41) we find that there exists a constant C1 > 0 such that for all s in the domain

D =
{
s ∈ C : |s| > 2 and

π

8
< arg(s) <

7π

8

}

we have an upper bound
∣∣M(s)

∣∣ < |s|C1 exp
(
Re

[
Bs ln(s) + s

((
1 + ln(δ)

)
(1 − B) + π iγ̂ − 1

)])
.

From now on we will denote u = Im(s). Computing the real part in the above expression we
obtain that for all s ∈ D
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∣∣M(s)
∣∣ < |s|C1 exp

(
BRe(s) ln |s| − (

πγ̂ + B arg(s)
)
u

+ Re(s)
((

1 + ln(δ)
)
(1 − B) − 1

))
. (61)

Next we check that for all k large enough, the conditions u > k and s = ck + iu imply
s ∈ D, so the integrand in formula (60) defining I2(x, k) can be bounded from above as given
in (61). Let us restrict s to the line of integration L2 = {s = ck + iu : u ≥ k} and simplify
this upper bound. Basically, we want to isolate a term of the form exp(−Bk ln(k)) and show
that everything else does not grow faster than an exponential function of k. First of all, when
s ∈ L2 we have Re(s) = ck < 1 − k and |s| > |Re(s)| = |ck| > k − 1, therefore

exp
(
BRe(s) ln |s|) < exp

(−B(k − 1) ln(k − 1)
)
.

Next, for s ∈ L2 and k sufficiently large it is true that −2k < Re(s) < 1 − k, which implies
that there exists a constant C2 > 0 such that

exp
(
Re(s)

((
1 + ln(δ)

)
(1 − B) − 1

))
< Ck

2 .

Finally, for s ∈ L2 we have arg(s) > 0, which together with the assumption B > 0 shows
that for all u > 0

exp
(−(

πγ̂ + B arg(s)
)
u
)
< exp(−πγ̂ u).

Combining the above three estimates with (60) and (61) we see that

∣∣I2(x, k)
∣∣ ≤ x−ck

∫ ∞

k

∣∣M(ck + iu)
∣∣du

< x−ckCk
2e

−B(k−1) ln(k−1)

∫ ∞

k

(
c2
k + u2

) C1
2 e−πγ̂ udu

< |ck|C1+1x−ckCk
2e

−B(k−1) ln(k−1). (62)

The right-hand side of the above inequality converges to 0 as k → +∞, therefore I2(x, k) →
0 as k → +∞.

Now we will deal with I1(x, k). Our first goal is to find an upper bound for the product
of trigonometric functions in (55). We will follow the proof of Theorem 2 in [25]: we use
the trigonometric identities

cos(x + iy) = cos(x) cosh(y) − i sin(x) sinh(y),∣∣cos(x + iy)
∣∣2 = cosh(y)2 − sin(x)2,

which imply that | cos(x)| cosh(y) ≤ | cos(x + iy)| ≤ cosh(y), therefore

∣∣∣∣cos(a + iy)

cos(b + iy)

∣∣∣∣ ≤ 1

| cos(b)| .

Applying the above estimate and Lemma 1 from [25] we conclude that for α /∈ L ∪ Q and
for k large enough

∣∣∣∣∣
k−1∏
j=0

cos(πα(j − iu + γ δ))

cos(πα(j − iu))

∣∣∣∣∣ ≤
k−1∏
j=0

∣∣sec(παj)
∣∣ = 2k+o(k) < 3k.
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Using (57), (60) and the above inequality we conclude that for all k large enough

∣∣I1(x, k)
∣∣ < x−ck 3k

∫ k

0

∣∣M(ck + k + iu)
∣∣ ×

∣∣∣∣ F(−iu)

F (−iu + k)

∣∣∣∣du. (63)

Now our goal is to prove that F(iu)/F (−iu + k) converges to zero faster than any expo-
nential function of k as k → +∞. We use (56), Stirling’s formula (41) and the asymptotic
expansion (29) to conclude that when w → ∞ in the domain | arg(w)| < 3π/4 we have

ln
(
F(w)

) = Bw ln(w) + O(w).

This asymptotic result implies that there exists a constant C3 > 0 such that for k large enough
and for all v ∈ [0,1]∣∣∣∣ F(−ikv)

F (−ikv + k)

∣∣∣∣ < Ck
3 exp

(
BRe

[
(−ikv) ln(−ikv) − k(1 − iv) ln

(
k(1 − iv)

)])

= Ck
3 exp

(
B

[
−k ln

(
k
√

1 + v2
) + kv

(
arctan(v) − π

2

)])

< Ck
3 exp

(−Bk ln(k)
)

where in the last step we have used the fact that arctan(v) < π/2 and B > 0. Thus we see
that for all k large enough we have

max
0≤u≤k

∣∣∣∣ F(−iu)

F (−iu + k)

∣∣∣∣ = max
0≤v≤1

∣∣∣∣ F(−ikv)

F (−ikv + k)

∣∣∣∣ < Ck
3 exp

(−Bk ln(k)
)
.

Combining the above estimate with (63) we obtain that for all k large enough

∣∣I1(x, k)
∣∣ < x−ck 3kCk

3e
−Bk ln(k)

∫ ∞

0

∣∣M
(
1 − (1 − β + γ )δ − δ/2 + iu

)∣∣du

and we see that I1(x, k) → 0 as k → +∞. Thus when γ + γ̂ < 1 the first series in (53)
converges to p(x) for all x > 0.

When γ + γ̂ > 1 the proof is very similar, except that one has to shift the contour of
integration in the opposite direction. �

As we have mentioned in Sect. 2, hypergeometric processes belong to a bigger class
of meromorphic Lévy processes, which was introduced in [30]. It is a natural question of
whether the results similar to the ones presented in Theorems 2, 3 and 4 can be obtained
for this bigger class of meromorphic processes. We think that there is a good chance that
Theorem 2, which gives an explicit expression for the Mellin transform of the exponential
functional, can be generalized. The Mellin transform of the exponential functional would
probably be given by an infinite product of gamma functions and would involve roots and
poles of the function ψ(z), where ψ(z) is the Laplace exponent of the meromorphic process.
This is certainly the case for hypergeometric processes, as formula (28) can be rewritten as
an infinite product of gamma functions with the help of formula (4.5) in [27]. Another piece
of evidence which supports our guess is provided by the case when the process X has hyper-
exponential jumps, which can be considered as simple examples of meromorphic processes:
here the Mellin transform can be given explicitly by a finite product of gamma functions,
see [14].

At the same time, we are almost certain that Theorems 3 and 4, which provide asymp-
totics and series expansions for the density of the exponential functional, can not be extended
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to the case of general meromorphic processes. One of the main facts used in the proof of
Theorems 3 and 4 was the fact that the Mellin transform M(s) has only simple poles. Con-
sidering the functional equation (46) it is easy to see that this condition is equivalent to
requiring that there are no roots/poles of the Laplace exponent ψ(αz) which differ by an
integer number. The case of hypergeometric processes is very special (and unique) in that
we know explicitly the roots/poles of the Laplace exponent ψ(z) (which is given by (1)),
and by imposing the condition α �∈ Q we can ensure that the Mellin transform M(s) has
no multiple poles. This will not work for general meromorphic processes: since we don’t
know explicitly the roots of ψ(z), there is always a possibility that the Mellin transform
has poles of multiplicity greater than one, which will have two important implications. First
of all, it will make it hard (maybe impossible?) to compute the residues at these poles (as
we do in Proposition 3). Second, it will also imply that the asymptotic expansions for the
density of the exponential functional (similar to the ones presented in Theorem 3) will be
more complicated and will contain logarithmic terms.

An unusual feature of the results presented in Theorems 3 and 4 (and of the similar re-
sults in [25] and [27]) is that they do not hold for rational values of α, which is clearly the
case that would be most interesting for applications. As we’ve discussed above, the problem
lies in the fact that for α ∈ Q the Mellin transform M(s) has poles of multiplicity greater
than one, which makes the picture much more complicated. Some consolation can be pro-
vided by the fact that if α is rational then the formula (28) can be simplified and the Mellin
transform M(s) can be given in terms of simpler functions, see the recent paper [28] for an
example of these computations in the related case of the supremum of a stable process. The
density of the exponential functional can be recovered then by inverting the Mellin trans-
form numerically. Another possible way of approximating the density of the exponential
functional when α is rational is based on the following procedure: (i) first approximate α by
an algebraic but irrational α̃ (which will ensure that α̃ /∈ L ∪ Q) and (ii) compute the density
using series expansions given in Theorem 4. Again, see [28] for several numerical examples.

5 Applications

In this section we will present several applications of the above results on exponential func-
tionals of hypergeometric Lévy processes. In particular, we will study various functionals
related to strictly stable Lévy processes. Our main tool will be the Lamperti transformation,
which links a positive self-similar Markov process (pssMp) to an associated Lévy process.
By studying this associated Lévy process and its exponential functional we can obtain many
interesting results about the original self-similar Markov process.

We assume that the reader is familiar with the Lamperti transformation [34] and
Lamperti-stable processes (see [9, 12, 13, 20]).

5.1 Extrema of Stable Processes

As our first example, we will present a new proof of some results on the distribution of
extrema of general stable processes, which were obtained in [25] and [27]. Let us define
St = sup{Ys : 0 ≤ s ≤ t}, where Y is a stable process (started from zero) with parameters
(α,ρ), whose characteristic exponent is given by (7) and the parameter c is normalized as
in (10). The infinite series representation for the density of S1 (valid for almost all values of
α) was derived recently in [25]. This formula was obtained using an explicit expression for
the Mellin transform of S1, which was found in [27] via the Wiener-Hopf factorization of
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stable processes. Our goal in this section is to present a more direct route which leads to the
density of S1.

We start with a hypergeometric Lévy process ξ̂ , which is defined by Laplace exponent
(1) and

parameters of ξ̂ : (β, γ, β̂, γ̂ ) = (
1 − αρ,α(1 − ρ),1 − αρ,αρ

)
.

Let Ŷ = −Y denote the dual process of Y . Note that Ŷ is a stable process with parameters
(α,1 − ρ). From [9] and Theorem 1 we find that ξ̂ is associated by the Lamperti transfor-
mation [34] to the positive self-similar Markov process Ẑ, which is defined as the process
Ŷ killed at the first exit from the positive half-line. More precisely,

Ẑt =
{

x + Ŷt , if t < T̂x ,
�, if t ≥ T̂x ,

where T̂x = inf{t > 0 : Ŷt ≤ −x} and � denotes the cemetery state. It is a well-known result
from the theory of the Lamperti transformation that the lifetime of Ẑ started at one is equal
in distribution to the exponential functional of the associated Lévy process, which gives us
the following identity

T̂1
d=

∫ ζ

0
eαξ̂t dt,

where ζ is the lifetime of ξ̂ . Using our notation (22) this identity can be written as

T̂1
d= I (α, ξ), (64)

where ξ = −ξ̂ is also a hypergeometric Lévy process, and from Proposition 1(v) we find
that

parameters of ξ : (β, γ, β̂, γ̂ ) = (
αρ,αρ,αρ,α(1 − ρ)

)
. (65)

Finally, using the fact that Ŷ = −Y and the scaling property of stable processes we obtain

P(T̂1 < t) = P
(
inf{Ŷs : 0 ≤ s ≤ t} < −1

) = P
(
sup{−Ŷs : 0 ≤ s ≤ t} > 1

)
= P(St > 1) = P

(
t

1
α S1 > 1

) = P
(
S1 > t−

1
α
)
.

The above identity combined with (64) shows that S−α
1

d= I (α, ξ). In particular, the density
of S1 can be represented in terms of the density of I (α, ξ) (which we will denote by p(x))
as follows

d

dx
P(S1 ≤ x) = αx−1−αp

(
x−α

)
, x > 0.

Using this expression, the fact that ξ has parameters (65) and applying Theorem 3
{Theorem 4} we recover the asymptotic expansions that appears in Theorem 9 in [27] {the
convergent series representations given in Theorem 2 in [25]}.

Remark 1 Note that the convergent and the asymptotic series given in Theorems 3 and 4
have identical form. Combining these two results we obtain the following picture: depending
on whether γ + γ̂ < 1 or γ + γ̂ > 1 one of the series in (53) converges for all x ∈ (0,∞),
and this convergent series is also asymptotic at one of the boundaries of this interval (at 0
or +∞). At the same time the second series in (53) provides an asymptotic series at the
other boundary. Therefore in what follows we will only present the statements about the
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convergent series representation, with the understanding that the asymptotic expansions are
implicitly imbedded into these results.

5.2 Entrance Laws

In this section we will obtain some explicit results on the entrance law of the stable pro-
cess conditioned to stay positive and the entrance law of the excursion measure of the stable
process reflected at its past infimum. We will use the following result from [6]: if a non-
arithmetic Lévy process X satisfies E[|X1|] < ∞ and E[X1] > 0, then as x → 0+ its cor-
responding pssMp (Z,Qx) in the Lamperti representation converges weakly (in the sense
of finite-dimensional distributions) towards a nondegenerate probability law (Z,Q0). Under
these conditions, the entrance law under Q0 is described as follows: for every t > 0 and
every measurable function f : R+ → R+,

Q0
[
f (Zt )

] = 1

αE[X1]E

[
1

I
f

(
t

I

)]
, (66)

where I = I (α,X) = ∫ ∞
0 exp{−αXs}ds. Necessary and sufficient conditions for the weak

convergence of (Z,Qx) on the Skorokhod space were given in [10].
As before, we consider a stable process (Y,Px) and denote by (Y,P

↑
x ) the stable process

conditioned to stay positive (see [16, 18] for a proper definition). It is known that (Y,P
↑
x ) is

a pssMp with index α. According to Corollary 2 in [9] (and Theorem 1 above) its associ-
ated Lévy process is given by ξ↑, which is a hypergeometric Lévy process with parameters
(1, αρ,1, α(1 − ρ)). From Proposition 1 (ii) we see that E[ξ↑

1 ] > 0, and the fact that hy-
pergeometric processes have Lévy measures with exponentially decaying tails implies that
E[|ξ↑

1 |] < ∞, thus we have the weak convergence of (Y,P
↑
x ) as x → 0+. We denote the

limiting law by P
↑. Note also that in this particular case, the weak convergence of (Y,P

↑
x )

has been proved in a direct way in [16].
In our next result the coefficients {bm,n}m,n≥0 and {cm,n}m,n≥0 are defined as in Defini-

tion 2 with parameters β = β̂ = 1, γ = αρ and γ̂ = α(1 − ρ).

Proposition 4 Assume that α /∈ L ∪ Q.

(i) Let p
↑
t be the density of the entrance law of (Y,P

↑). For x > 0 we have

p
↑
1 (x) =

{
x−1−ρ

αΓ (αρ)Γ (1+α(1−ρ))

∑
m≥0

∑
n≥0 bm,nx

−m/α−n, if α < 1,
x1/α

αΓ (αρ)Γ (1+α(1−ρ))

∑
m≥0

∑
n≥0 cm,nx

m/α+n, if α > 1.
(67)

(ii) Let qt be the density of the entrance law of the excursion measure of the reflected process
(Y − Y ,P), where Y t = inf0≤s≤t Ys . Then q1(x) = x−α(1−ρ)p

↑
1 (x) can be computed via

(67).

Proof Let p(x) be the density of I (α, ξ↑). From (66) we find that the density of the entrance
law of (Y,P

↑) is given by

p
↑
1 (x) = 1

αE[ξ↑
1 ]x

−1p
(
x−1

)
.

Using Proposition 1 (ii) we obtain E[ξ↑
1 ] = Γ (αρ)Γ (1 + α(1 − ρ)). In order to finish

the proof of part (i) we only need to apply results of Theorem 53. The identity q1(x) =
x−α(1−ρ)p

↑
1 (x) in part (ii) was established in [16]. �
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5.3 The Distribution of the Lifetime of a Stable Process Conditioned to Hit Zero
Continuously

Our third application deals with stable processes conditioned to hit zero continuously.
Processes in this class are defined as Doob’s h-transform with respect to the function
h(x) = αρxαρ−1, which is excessive for the killed process (Yt1{t<T },Px). Its law P

↓
x , which

is defined on each σ -field Ft by

dP
↓
x

dPx

∣∣∣∣
Ft

= Y
αρ−1
t

xαρ−1
1{t<T }, (68)

is that of a pssMp that hits zero in a continuous way. According to Corollary 3 in [9] (and
Theorem 1 above), its associated Lévy process in the Lamperti representation is the hyper-
geometric Lévy process ξ↓ with parameters (0, αρ,0, α(1 − ρ)). In particular from Propo-
sition 1(ii) we find that the process ξ↓ drifts to −∞. Let T ↓ be the life-time of the stable
process conditioned to hit zero continuously. From the Lamperti transformation it follows

that T ↓ d= I (α,−ξ↓), therefore T ↓ d= I (α, ξ), where ξ is a hypergeometric process with pa-
rameters (1, α(1 −ρ),1, αρ). Let us define the coefficients {bm,n}m,n≥0 and {cm,n}m,n≥0 as in
Definition 2 with β = β̂ = 1, γ = α(1 − ρ) and γ̂ = αρ. Then according to Theorem 53, if
α /∈ L ∪ Q and x > 0 we have

d

dt
P

↓
1

(
T ↓ ≤ t

) =
{

t1−ρ
∑

m≥0

∑
n≥0 bm,nt

m/α+n, if α < 1,

t−1−1/α
∑

m≥0

∑
n≥0 cm,nt

−m/α−n, if α > 1.

5.4 Distribution of Some Functionals Related to the Radial Part of a Symmetric Stable
Process

Our last application deals with the radial part of symmetric stable processes in R
d . Let

Y = (Yt , t ≥ 0) be a symmetric stable Lévy process of index α ∈ (0,2) in R
d (d ≥ 1),

defined by

E0

[
ei〈λ,Yt 〉] = e−t‖λ‖α

,

for all t ≥ 0 and λ ∈ R
d . Here Py denotes the law of the process Y started from y ∈ R

d , ‖ · ‖
is the norm in R

d and 〈·, ·〉 is the Euclidean inner product.
According to Caballero et al. [13], when α < d the radial process Rt = 1

2‖Yt‖ is a tran-
sient positive self-similar Markov process with index α and infinite lifetime. From Theo-
rem 7 in [13] we find that the Laplace exponent of its associated Lévy process ξ is given
by

ψξ(z) = −Γ ((α − z)/2)

Γ (−z/2)

Γ ((z + d)/2)

Γ ((z + d − α)/2)
. (69)

This shows that the process X := 2ξ is a hypergeometric Lévy process with parameters
(1, α/2, (d − α)/2, α/2). From Proposition 1(ii) we see that ξ drifts to +∞ and that

E[ξ1] = 1

2

Γ (α
2 )Γ ( d

2 )

Γ ( d−α
2 )

. (70)

Let Px denote the law of the process R starting from x > 0. The process ξ satisfies
E[ξ1] > 0 and E[|ξ1|] < ∞, and according to [6, 10] we have the weak convergence of
(R,Px) towards (R,P0) as x → 0+.
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Proposition 5 Let p̃t be the density of the entrance law of (R,P0). If α < d then for x > 0
we have

p̃1(x) =
⎧⎨
⎩

2x−1

παΓ ( d
2 )

∑
n≥1 sin( παn

2 )Γ (1 + αn
2 )Γ ( d+αn

2 ) (−1)n+1

n! x−n, if α < 1,

4x−1+d/α

α2Γ ( d
2 )

∑
m≥0

Γ ( d+2m
α )

Γ ( d+2m
2 )

(−1)m

m! x2m/α if α > 1.
(71)

Proof We follow the same approach as in the proof of Proposition 4. Using (66) we conclude
that p̃1(x) = (2/αE[ξ1])x−1p(x−1), where p(x) is the density of I (α, ξ) = I (α/2,X). In
the case α /∈ L ∪ Q the infinite series representation for p(x) and the expression for the
coefficients follow from Theorem 53 and Definition 2 with β = 1, γ = α/2, β̂ = (d − α)/2
and γ̂ = α/2. Note that both infinite series in (71) converge for all α, thus we can remove
the assumption α /∈ L ∪ Q.

There is also a simpler way to derive an explicit series representation for p(x). Theorem 2
and Definition 1 tell us that the Mellin transform of I (α/2,X) is given by

E
[
I (α/2,X)s−1

] = Γ (s)M

(
s; α

2
,1,

α

2
,
d − α

2
,
α

2

)

= CΓ (s)
G(s; 2

α
)

G(1 + s; 2
α
)

G( d
α

+ 1 − s; 2
α
)

G( d
α

− s; 2
α
)

, (72)

where C is a constant such that the right-hand side of the above identity is equal to one for
s = 1. Using the functional identity (25) for the double gamma function we simplify the
right-hand side in (72) and obtain

E
[
I (α/2,X)s−1

] = Γ (α
2 )

Γ ( d−α
2 )

Γ (s)
Γ ( d−αs

2 )

Γ ( αs
2 )

. (73)

We see that E[I (α/2,X)s−1] has simple poles at points {−n}n≥1 and {(d + 2m)/α}m≥0. The
residues at these points (which give us the coefficients in (71)) can be easily found using the
fact that the residue of Γ (s) at s = −n is equal to (−1)n/n!. �

Next, we will study the last passage time of (Y,P0) from the sphere in R
d of radius r ,

i.e.

Ur = sup
{
s ≥ 0 : ‖Ys‖ < r

}
.

Due to the self-similarity property of Y we find that random variables Ur satisfy the scaling

property bαUr
d= Ubr (valid for any b, r > 0), thus it is sufficient to consider the case of U2.

Proposition 6 If α < d then

d

dt
P(U2 ≤ t) =

⎧⎨
⎩

1
πΓ ( d−α

2 )

∑
n≥0 sin( πα(1+n)

2 )Γ ( α(1+n)

2 )Γ ( d+αn
2 ) (−1)n

n! xn, if α < 1,

2x−d/α

αΓ ( d−α
2 )

∑
m≥0

Γ ( d+2m
α )

Γ ( d−α
2 +m+1)

(−1)m

m! x−2m/α, f α > 1.
(74)

Proof Let us define the last passage time of R as Lr = sup{s ≥ 0 : ‖Rs‖ < r}. It is clear

that U2
d= L1. According to Proposition 1 in [19], the random variable L1 has the same law

as GαI (α, ξ), where ξ is a Lévy process associated to R by the Lamperti transformation

and G is independent of ξ . Lemma 1 in [19] tells us that G d= e−U Z , where U and Z are
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independent random variables, such that U is uniformly distributed over [0,1] and the law
of Z is given by

P(Z > u) = 1

E[H1]
∫

(u,∞)

x ν(dx), u ≥ 0,

where H = (Ht , t ≥ 0) denotes the ascending ladder height of ξ and ν its Lévy measure.
From the proof of Lemma 3 in [13] we know that H has no linear drift and that its Lévy
measure is given by (up to a multiplicative constant)

ν(dx) = e2x

(e2x − 1)1+α/2
dx.

Using the above expression, integration by parts, the integral identity (20) and the reflection
formula for the gamma function (15) we obtain

E[H1] =
∫ ∞

0
xν(dx) = π

α sin( πα
2 )

.

Let us find the Mellin transform of L1. We use the independence of U and Z and obtain

E
[

Gs
] = E

[
e−sU Z ] = 1

s
E

[
1 − e−sZ

Z

]
= 1

sE[H1]
∫ ∞

0

(1 − e−sz)e2z

(e2z − 1)1+α/2
dz

= − 1

αsE[H1]
∫ ∞

0

(
1 − e−sz

)
d
[(

e2z − 1
)−α/2]

= 1

αE[H1]
∫ ∞

0

e−sz

(e2z − 1)α/2
dz = 1

αE[H1]
Γ (α

2 (1 + s))Γ (1 − α
2 )

Γ (1 + αs
2 )

,

where we have again applied integration by parts and the integral identity (20). Combining
the above two expressions with (73) we have

E
[
Ls−1

1

] = E
[

Gs−1
] × E

[
I (α, ξ)s−1

] = Γ (s)

Γ ( d−α
2 )

Γ ( d−αs
2 )

Γ (1 − α(1−s)

2 )
.

The function in the right-hand side of the above equation has simple poles at points {−n}n≥0

and {(d+2m)/α}m≥0. We express the density of L1 as the inverse Mellin transform, compute
the residues and use similar technique as in the proof of Theorem 4 to obtain the series
representation (74). The details are left to the reader. �

Acknowledgements A. Kuznetsov’s research is supported by the Natural Sciences and Engineering Re-
search Council of Canada.

References

1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions: With Formulas, Graphs, and
Mathematical Tables. Dover, New York (1970)

2. Barnes, E.W.: The genesis of the double gamma function. Proc. Lond. Math. Soc. 31, 358–381 (1899)
3. Barnes, E.W.: The theory of the double gamma function. Philos. Trans. R. Soc. Lond. A 196, 265–387

(1901)
4. Bernyk, V., Dalang, R.C., Peskir, G.: The law of the supremum of a stable Lévy process with no negative

jumps. Ann. Probab. 36(5), 1777–1789 (2008)



138 A. Kuznetsov, J.C. Pardo

5. Bertoin, J.: Lévy Processes. Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press,
Cambridge (1996)

6. Bertoin, J., Yor, M.: The entrance laws of self-similar Markov processes and exponential functionals of
Lévy processes. Potential Anal. 17(4), 389–400 (2002)

7. Bertoin, J., Yor, M.: Exponential functionals of Lévy processes. Probab. Surv. 2, 191–212 (2005) (elec-
tronic)

8. Billingham, J., King, A.C.: Uniform asymptotic expansions for the Barnes double gamma function. Proc.
R. Soc. Lond. A 453, 1817–1829 (1997)

9. Caballero, M.E., Chaumont, L.: Conditioned stable Lévy processes and the Lamperti representation.
J. Appl. Probab. 43(4), 967–983 (2006)

10. Caballero, M.E., Chaumont, L.: Weak convergence of positive self-similar Markov processes and over-
shoots of Lévy processes. Ann. Probab. 34(3), 1012–1034 (2006)

11. Caballero, M., Rivero, V.: On the asymptotic behaviour of increasing self-similar Markov processes.
Electron. J. Probab. 14, 865–894 (2009) (electronic)

12. Caballero, M.E., Pardo, J.C., Pérez, J.L.: On Lamperti stable processes. Probab. Math. Stat. 30, 1–28
(2010)

13. Caballero, M.E., Pardo, J.C., Pérez, J.L.: Explicit identities for Lévy processes associated to symmetric
stable processes. Bernoulli 17(1), 34–59 (2011)

14. Cai, N., Kou, S.G.: Pricing Asian options under a hyper-exponential jump diffusion model. Oper. Res.
60(1), 64–77 (2012). doi:10.1287/opre.1110.1006

15. Carmona, P., Petit, F., Yor, M.: On the distribution and asymptotic results for exponential functionals
of Levy processes. In: Yor, M. (ed.) Exponential Functionals and Principal Values Related to Brownian
Motion, Bibl. Rev. Mat. Iberoamericana, pp. 73–121 (1997)

16. Chaumont, L.: Conditionings and path decompositions for Lévy processes. Stoch. Process. Appl. 64(1),
39–54 (1996)

17. Chaumont, L.: On the law of the supremum of Lévy processes. Ann. Probab. (2012, to appear)
18. Chaumont, L., Doney, R.A.: On Lévy processes conditioned to stay positive. Electron. J. Probab. 28(10),

948–961 (2005) (electronic)
19. Chaumont, L., Pardo, J.C.: The lower envelope of positive self-similar Markov processes. Electron. J.

Probab. 11(49), 1321–1341 (2006) (electronic)
20. Chaumont, L., Kyprianou, A.E., Pardo, J.C.: Some explicit identities associated with positive self-similar

Markov processes. Stoch. Process. Appl. 119(3), 980–1000 (2009)
21. Conway, J.B.: Functions of One Complex Variable, 2nd edn. Springer, Berlin (1978)
22. Doney, R.A.: On Wiener-Hopf factorisation and the distribution of extrema for certain stable processes.

Ann. Probab. 15(4), 1352–1362 (1987)
23. Getoor, R.: The Brownian escape process. Ann. Probab. 7(5), 864–867 (1979)
24. Haas, B.: Loss of mass in deterministic and random fragmentations. Stoch. Process. Appl. 106(2), 245–

277 (2003)
25. Hubalek, F., Kuznetsov, A.: A convergent series representation for the density of the supremum of a

stable process. Electron. Commun. Probab. 16, 84–95 (2011)
26. Jeffrey, A. (ed.): Table of Integrals, Series and Products, 7th edn. Academic Press, San Diego (2007)
27. Kuznetsov, A.: On extrema of stable processes. Ann. Probab. 39(3), 1027–1060 (2011)
28. Kuznetsov, A.: On the density of the supremum of a stable process (2012). arXiv:1112.4208
29. Kuznetsov, A., Kyprianou, A.E., Pardo, J.C., Van Schaik, K.: A Wiener-Hopf Monte-Carlo simulation

technique for Lévy processes. Ann. Appl. Probab. 21(6), 2171–2190 (2011)
30. Kuznetsov, A., Kyprianou, A.E., Pardo, J.C.: Meromorphic Lévy processes and their fluctuation identi-

ties. Ann. Appl. Probab. (2012, to appear)
31. Kyprianou, A.: Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer,

Berlin (2006)
32. Kyprianou, A.E., Pardo, J.C.: Continuous-state branching processes and self-similarity. J. Appl. Probab.

45(4), 1140–1160 (2008)
33. Kyprianou, A.E., Pardo, J.C., Rivero, V.M.: Exact and asymptotic n-tuple laws at first and last passage.

Ann. Appl. Probab. 20(2), 522–564 (2010)
34. Lamperti, J.: Semi-stable Markov processes. I. Z. Wahrscheinlichkeitstheor. Verw. Geb. 22, 205–225

(1972)
35. Lawrie, J.B., King, A.C.: Exact solutions to a class of functional difference equations with application

to a moving contact line flow. Eur. J. Appl. Math. 5, 141–147 (1994)
36. Maulik, K., Zwart, B.: Tail asymptotics for exponential functionals of Lévy processes. Stoch. Process.

Appl. 116, 156–177 (2006)
37. Pardo, J.C.: On the future infimum of positive self-similar Markov processes. Stochastics 78(3), 123–155

(2006)

http://dx.doi.org/10.1287/opre.1110.1006
http://arxiv.org/abs/arXiv:1112.4208


Fluctuations of Stable Processes and Exponential Functionals 139

38. Patie, P.: Exponential functionals of a new family of Lévy processes and self-similar continuous state
branching processes with immigration. Bull. Sci. Math. 133(4), 355–382 (2009)

39. Patie, P.: A few remarks on the supremum of stable processes. Stat. Probab. Lett. 79, 1125–1128 (2009)
40. Patie, P.: Law of the absorption time of positive self-similar Markov processes. Ann. Probab. 40(2),

765–787 (2012). doi:10.1214/10-AOP638
41. Rivero, V.: A law of iterated logarithm for increasing self-similar Markov processes. Stoch. Stoch. Rep.

75(6), 443–472 (2003)
42. Rivero, V.: Recurrent extensions of self-similar Markov processes and Cramér’s condition. Bernoulli

11(3), 471–509 (2005)
43. Rivero, V.: Recurrent extensions of self-similar Markov processes and Cramér’s condition. II. Bernoulli

13(4), 1053–1070 (2007)
44. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathe-

matics, vol. 68. Cambridge University Press, Cambridge (1999)
45. Vigon, V.: Simplifiez vos Lévy en titillant la factorisation de Wiener-Hopf. Thèse de doctorat de l’INSA

de Rouen (2002)

http://dx.doi.org/10.1214/10-AOP638

	Fluctuations of Stable Processes and Exponential Functionals of Hypergeometric Lévy Processes
	Abstract
	Introduction
	Hypergeometric and Lamperti-Stable Processes
	Mellin Transform of the Exponential Functional
	Density of the Exponential Functional
	Applications
	Extrema of Stable Processes
	Entrance Laws
	The Distribution of the Lifetime of a Stable Process Conditioned to Hit Zero Continuously
	Distribution of Some Functionals Related to the Radial Part of a Symmetric Stable Process

	Acknowledgements
	References


