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Abstract In this paper, we are concerned with the existence criteria for positive solutions
of the following nonlinear arbitrary order fractional differential equations with deviating
argument

⎧
⎪⎨

⎪⎩

Dα
0+u(t) + h(t)f (u(θ(t))) = 0, t ∈ (0,1), n − 1 < α ≤ n,

u(i)(0) = 0, i = 0,1,2, . . . , n − 2,

[Dβ

0+u(t)]t=1 = 0, 1 ≤ β ≤ n − 2,

where n > 3 (n ∈ N), Dα
0+ is the standard Riemann-Liouville fractional derivative of or-

der α,f : [0,∞) → [0,∞), h(t) : [0,1] → (0,∞) and θ : (0,1) → (0,1] are continuous
functions. Some novel sufficient conditions are obtained for the existence of at least one
or two positive solutions by using the Krasnosel’skii’s fixed point theorem, and some other
new sufficient conditions are derived for the existence of at least triple positive solutions by
using the fixed point theorems developed by Leggett and Williams etc. In particular, the ex-
istence of at least n or 2n − 1 distinct positive solutions is established by using the solution
intervals and local properties. From the viewpoint of applications, two examples are given
to illustrate the effectiveness of our results.
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1 Introduction

Fractional differential equations have attracted much attention from several scientific areas
in the past several decades. They are generalizations of ordinary differential equations to an
arbitrary (non-integer) order and are widely applied because of their ability to model com-
plex phenomena. These equations capture nonlocal relations in space and time with power-
law memory kernels. Due to the extensive applications of fractional differential equations
in engineering and science, research in this area has grown significantly, especially in areas
of physics, biology, chemistry and dynamical control, etc. For details, we refer the reader to
[1–5] and the references therein.

Hereafter comes from the work of Bai and Lü [6], Kaufmann and Mboumi [7] and
Goodrich [8], which enlighten us on the nonlinear arbitrary order fractional differential
equations with deviating argument.

For the two-point fractional differential equation

{
Dα

0+u(t) + f (t, u(t)) = 0, t ∈ (0,1),

u(0) = u(1) = 0,

where Dα
0+ is the standard Riemann-Liouville fractional derivative of order 1 < α ≤ 2 and

f : [0,1] × [0,∞) → [0,∞) is continuous. Bai and Lü [6] established the existence theory
for at least one or three positive solutions of the above equation by using the Krasnosel’skii’s
fixed point theorem [9] and the Leggett-Williams fixed point theorem [10].

In [7], Kaufmann and Mboumi considered fractional order differential equation

{
Dα

0+u(t) + h(t)f (u(t)) = 0, t ∈ (0,1),

u(0) = u′(1) = 0,

where Dα
0+ is the standard Riemann-Liouville fractional derivative of order 1 < α < 2 and

f : [0,∞) → [0,∞) is continuous.
In [8], Goodrich studied the following fractional differential equations

⎧
⎪⎨

⎪⎩

Dα
0+u(t) + h(t)f (t, u(t)) = 0, t ∈ (0,1),

u(i)(0) = 0, i = 0,1,2, . . . , n − 2,

[Dβ

0+u(t)]t=1 = 0, 1 ≤ β ≤ n − 2,

where Dα
0+ is the standard Riemann-Liouville fractional derivative of order n − 1 < α ≤ n.

Here u(i) represents the ith derivative of u and n > 3 (n ∈ N). Under certain conditions, the
existence criteria are considered for at least one positive solutions by the Krasnosel’skii’s
fixed point theorem too.

It is well-known that the theory of integer order differential equation with deviating argu-
ments has quite many applications in realistic mathematical modelling of various practical
situations [11–13]. Since, in the description of properties of various real materials, fractional
order models are more accurate than integer order models. In other words, the study of frac-
tional order differential equations with deviating arguments is of significance theoretically
and practically. However, to the best of our acknowledge, very few literature resources are
available regarding positive solutions of fractional differential equations with deviating ar-
guments. It is also noted that the results mentioned in [6, 7] are not obtained for the case
of arbitrary order fractional differential equations and no deviating arguments are involved.
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Therefore, it is quite necessary to make study in depth on the existence for positive solutions
of arbitrary order fractional differential equations with deviating arguments in all respects.

In the present paper, we mainly focus on the following nonlinear arbitrary order fractional
differential equation with deviating argument

⎧
⎪⎨

⎪⎩

Dα
0+u(t) + h(t)f (u(θ(t))) = 0, t ∈ (0,1),

u(i)(0) = 0, i = 0,1,2, . . . , n − 2,

[Dβ

0+u(t)]t=1 = 0, 1 ≤ β ≤ n − 2,

(1.1)

where u(i) represents the ith derivative of u,n > 3 (n ∈ N), Dα
0+ is the standard Riemann-

Liouville fractional derivative of order n − 1 < α ≤ n,f : [0,∞) → [0,∞), h(t) : [0,1] →
(0,∞) and θ : (0,1) → (0,1] are continuous functions. Some novel sufficient conditions
are obtained for the existence of at least one or two positive solutions by using the Kras-
nosel’skii’s fixed point theorem, and some other new sufficient conditions are established
for the existence of at least triple positive solutions by applying the fixed point theorems
developed by Leggett and Williams etc. [10, 14, 15]. In particular, the existence of at least
arbitrary n or 2n − 1 distinct positive solutions are gained by using the solution intervals
and local properties.

The rest of this paper is organized as follows. In Sect. 2, we present several definitions
and lemmas which are preliminary and necessary for our main results, and then state sev-
eral fixed point results. In Sect. 3, by using the Krasnosel’skii’s fixed point theorem, some
sufficient conditions are demonstrated for the existence of at least one or two positive solu-
tions of fractional differential equation (1.1). In Sect. 4, the existence criteria are explored
for at least three or arbitrary odd positive solutions of fractional differential equation (1.1).
Section 5 illustrates two examples.

In order to present our results in a straightforward manner, we assume that

(S1) h ∈ C([0,1], [0,+∞)) and it does not vanish identically on any subinterval;
(S2) The deviating argument θ satisfies t ≤ θ(t) ≤ 1, where t ∈ (0,1).

2 Some Lemmas

To make the paper sufficiently self-contained, in this section we introduce several prelimi-
nary definitions and technical lemmas from fractional calculus theory which can be found
in the recent literature.

Definition 2.1 [16] The Riemann-Liouville fractional integral of order a > 0 of a function
y : (0,∞) → R is given by

Iα
0+y(t) = 1

�(α)

∫ t

0
(t − s)α−1y(s)ds,

provided that the right side is pointwise defined on (0,∞).

Definition 2.2 [16] The Riemann-Liouville fractional derivative of order a > 0 of a function
y : (0,∞) → R is given by

Dα
0+y(t) = 1

�(n − α)

(
d

dt

)n ∫ t

0
(t − s)n−α−1y(s)ds,

provided that the right side is pointwise defined on (0,∞), where n = [α] + 1.
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To obtain our main results, we need the following two lemmas.

Lemma 2.3 [8] Assume that y(t) ∈ C[0,1], then the following fractional differential equa-
tion

⎧
⎪⎨

⎪⎩

Dα
0+u(t) + y(t) = 0, t ∈ (0,1), n − 1 < α ≤ n,

u(i)(0) = 0, i = 0,1,2, . . . , n − 2,

[Dβ

0+u(t)]t=1 = 0, 1 ≤ β ≤ n − 2,

has the unique solution

u(t) =
∫ 1

0
G(t, s)y(s)ds,

where

G(t, s) =
⎧
⎨

⎩

tα−1(1−s)α−β−1−(t−s)α−1

�(α)
, 0 ≤ s ≤ t ≤ 1,

tα−1(1−s)α−β−1

�(α)
, 0 ≤ t ≤ s ≤ 1.

(2.1)

Lemma 2.4 [8] Let G(t, s) be given as (2.1), then we have

(1) G(t, s) is a continuous function on the unit square [0,1] × [0,1];
(2) G(t, s) ≥ 0 for (t, s) ∈ [0,1] × [0,1];
(3) maxt∈[0,1] G(t, s) = G(1, s) for each s ∈ [0,1];
(4) there exists a constant γ ∈ (0,1) such that

min
t∈[ 1

2 ,1]
G(t, s) ≥ γ max

t∈[0,1]
G(t, s) = γG(1, s).

Remark 2.5 In fact, γ has the expression [8]

γ = min

{
( 1

2 )α−β−1

2β − 1
,

(
1

2

)α−1}

.

Let the Banach space E = C[0,1] be equipped with the norm ‖u‖ = maxt∈[0,1] |u(t)|,
and define the cone P ⊂ E by

P =
{
u ∈ E|u ∈ C[0,1], u ≥ 0, min

t∈[ 1
2 ,1]

u
(
θ(t)

) ≥ γ ‖u‖
}
,

where γ ∈ (0,1).
Define the operator A : E → E by

Au =
∫ 1

0
G(t, s)h(s)f

(
u
(
θ(s)

))
ds. (2.2)

Applying Lemma 2.3 with y(t) = h(t)f (u(θ(t))), we obtain that fractional differential
equation (1.1) has a solution if and only if the operator A has a fixed point.

Let u ∈ P , by Lemma 2.4, then we have

min
t∈[ 1

2 ,1]
Au = min

t∈[ 1
2 ,1]

∫ 1

0
G(t, s)h(s)f

(
u
(
θ(s)

))
ds,
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=
∫ 1

0
min

t∈[ 1
2 ,1]

G(t, s)h(s)f
(
u
(
θ(s)

))
ds,

≥ γ max
t∈[0,1]

∫ 1

0
G(t, s)h(s)f

(
u
(
θ(s)

))
ds,

= γ ‖Au‖,
which implies AP ⊂ P . By means of the Ascoli-Arzelá theorem, it is easy to prove that
T : P → P is completely continuous.

Now, we present some useful theorems regarding the theory of cones in Banach spaces
[17, 18], and state several fixed point theorems which are needed to establish the existence
of positive solutions of fractional differential equation (1.1).

Definition 2.6 A map α is said to be a nonnegative continuous concave (convex) functional
on a cone P of a real Banach space E if α : P → [0,∞) is continuous and α(tx+(1− t)y) ≥
tα(x)+ (1− t)α(y) (β(tx + (1− t)y) ≤ tβ(x)+ (1− t)β(y)) for all x, y ∈ P and t ∈ [0,1].

We introduce the Krasnosel’skii’s fixed point theorem.

Lemma 2.7 [18] Let P be a cone in a Banach space E. Assume �1 and �2 are open
subsets of E with 0 ∈ �1 and �1 ⊂ �2. If A : P ∩ (�2\�1) → P is a completely continuous
operator such that either

(i) ‖Ax‖ ≤ ‖x‖,∀x ∈ P ∩ ∂�1 and ‖Ax‖ ≥ ‖x‖,∀x ∈ P ∩ ∂�2, or
(ii) ‖Ax‖ ≥ ‖x‖,∀x ∈ P ∩ ∂�1 and ‖Ax‖ ≤ ‖x‖,∀x ∈ P ∩ ∂�2.

Then A has a fixed point in P ∩ (�2\�1).

Let Pc = {u ∈ P : ‖u‖ < c}, P (q, b, d) = {u ∈ P : b ≤ q(u),‖u‖ ≤ d} and the map q is
a nonnegative continuous concave functional on P . Next, we state the fixed-point theorem
due to Leggett and Williams [10].

Lemma 2.8 Suppose that A : P c → P c is completely continuous and there exists a con-
cave positive functional q on P such that q(u) ≤ ‖u‖ for u ∈ P c . Suppose that there exist
constants 0 < a < b < d ≤ c such that

(i) {u ∈ P (q, b, d) : q(u) > b} �= ∅ and q(T u) > b if u ∈ P (q, b, d);
(ii) ‖T u‖ < a if u ∈ Pa ;

(iii) q(T u) > b for u ∈ P (q, b, c) with ‖T u‖ > d .

Then A has at least three fixed points u1, u2 and u3 such that

‖u1‖ < a, b < q(u2) and u3 > a with q(u3) < b.

Given a nonnegative continuous functional γ on a cone P of a real Banach space E,
for each d > 0, we let P (γ, d) = {x ∈ P : γ (x) < d}. The following fixed-point theorem is
developed in [19], which is initially motivated by Avery and Henderson’s double fixed-point
theorem [15].

Lemma 2.9 Let P be a cone in a real Banach space E. Let α,β and γ be increas-
ing, nonnegative continuous functionals on P such that for some c > 0 and H > 0,
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γ (x) ≤ β(x) ≤ α(x) and ‖x‖ ≤ Hγ (x) for all x ∈ P(γ, c). Suppose that there exist pos-
itive numbers a and b with a < b < c, and A : P (γ, c) → P is a completely continuous
operator such that:

(i) γ (Ax) < c for all x ∈ ∂P (γ, c);
(ii) β(Ax) > b for all x ∈ ∂P (β, b);

(iii) P (α,a) �= ∅ and α(Ax) < a for x ∈ ∂P (α, a).

Then A has at least three fixed points x1, x2 and x3 belonging to P (γ, c) such that

0 ≤ α(x1) < a < α(x2) with β(x2) < b < β(x3) and γ (x3) < c.

Lemma 2.10 [20, 21] Let P be a cone in a real Banach space E. Let α,β and γ be in-
creasing, nonnegative continuous functionals on P such that for some c > 0 and H > 0,
γ (x) ≤ β(x) ≤ α(x) and ‖x‖ ≤ Hγ (x) for all x ∈ P (γ, c). Suppose that there exist positive
numbers a and b with a < b < c, and A : P (γ, c) → P is a completely continuous operator
such that:

(i) γ (Ax) > c for all x ∈ ∂P (γ, c);
(ii) β(Ax) < b for all x ∈ ∂P (β, b);

(iii) P (α,a) �= ∅ and α(Ax) > a for x ∈ ∂P (α, a).

Then A has at least three fixed points x1, x2 and x3 belonging to P (γ, c) such that

0 ≤ α(x1) < a < α(x2) with β(x2) < b < β(x3) and γ (x3) < c.

Let β and φ be nonnegative continuous convex functionals on P , λ be a nonnegative
continuous concave functional on P and ϕ be a nonnegative continuous functional on P ,
respectively. We define the following convex sets:

P (φ,λ, b, d) = {
x ∈ P : b ≤ λ(x), φ(x) ≤ d

}
,

P (φ,β,λ, b, c, d) = {
x ∈ P : b ≤ λ(x), β(x) ≤ c, φ(x) ≤ d

}
,

and a closed set

R(φ,ϕ, a, d) = {
x ∈ P : a ≤ ϕ(x), φ(x) ≤ d

}
.

Finally, we introduce the following fixed point theorem due to Avery and Peterson [14].

Lemma 2.11 Let P be a cone in a real Banach space E and β , φ, λ, ϕ be defined as the
above. Moreover, ϕ satisfies ϕ(λ′x) ≤ λ′ϕ(x) for 0 ≤ λ′ ≤ 1 such that, for some positive
numbers h and d ,

λ(x) ≤ ϕ(x) and ‖x‖ ≤ hφ(x), (2.3)

holds for all x ∈ P (φ,d). Suppose A : P (φ,d) → P (φ,d) is completely continuous and
there exist positive real numbers a, b, c, with a < b such that:

(i) {x ∈ P (φ,β,λ, b, c, d) : λ(x) > b} �= ∅ and λ(A(x)) > b for x ∈ P (φ,β,λ, b, c, d);
(ii) λ(A(x)) > b for x ∈ P (φ,λ, b, d) with β(A(x)) > c;

(iii) 0 /∈ R(φ,ϕ, a, d) and λ(A(x)) < a for all x ∈ R(φ,ϕ, a, d) with ϕ(x) = a.

Then A has at least three fixed points x1, x2, x3 ∈ P (φ,d) such that

φ(xi) ≤ d for i = 1,2,3, b < λ(x1), a < ϕ(x2) and λ(x2) < b with ϕ(x3) < a.
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3 Single or Twin Solutions

For u ∈ P , we define

f0 = lim
u→0+

f (u)

u
and f∞ = lim

u→∞
f (u)

u
.

Following [22], we let the sign of i0 stand for the number of zeros in the set {f0, f∞}
and i∞ stand for the number of infinities in the set {f0, f∞}. Clearly, i0, i∞ = 0, 1, or 2,
and there exist six possible cases: (i) i0 = 1 and i∞ = 1; (ii) i0 = 0 and i∞ = 0; (iii) i0 = 0
and i∞ = 1; (iv) i0 = 0 and i∞ = 2; (v) i0 = 1 and i∞ = 0; and (vi) i0 = 2 and i∞ = 0.
In the following, according to the Krasnosel’skii’s fixed point theorem in a cone, we may
first consider the existence for at least one or two positive solutions of fractional differential
equation (1.1) under the above six possible cases.

3.1 The Case of i0 = 1 and i∞ = 1

In this subsection, we discuss the existence for at least single positive solution of fractional
differential equation (1.1) only under i0 = 1 and i∞ = 1, and obtain

Theorem 3.1 Fractional differential equation (1.1) has at least one positive solution in the
case of i0 = 1 and i∞ = 1.

Proof of Theorem 3.1 We divide the proof into two steps:
Step (i): f0 = 0 and f∞ = ∞.
According to f0 = 0, there exists a constant r1 > 0 such that for 0 < u ≤ r1 it holds

f (u) ≤ εu, where ε > 0 and satisfies

ε

∫ 1

0
G(1, s)h(s)ds ≤ 1.

For u ∈ P with ‖u‖ = r1, by (2.2) we have

‖Au‖ = max
t∈[0,1]

∫ 1

0
G(t, s)h(s)f

(
u
(
θ(s)

))
ds,

=
∫ 1

0
max
t∈[0,1]

G(t, s)h(s)f
(
u
(
θ(s)

))
ds,

<

∫ 1

0
G(1, s)h(s)εu

(
θ(s)

)
ds,

≤ ε

∫ 1

0
G(1, s)h(s)ds‖u‖,

≤ ‖u‖.
So if let �r1 = {u ∈ P : ‖u‖ < r1}, we have ‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂�r1 .

It follows from f∞ = ∞ that there exists a constant r2 > 0 such that f (u) ≥ ku for
u ≥ r2, where k > 0 satisfies the following inequality

γ 2k

∫ 1

1
2

G(1, s)h(s)ds ≥ 1. (3.1)
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Set

r2 > r1 and �r2 = {u ∈ P : ‖u‖ < r2}.
Since t ≤ θ(t) ≤ 1, t ∈ (0,1) and u(t) = ∫ 1

0 G(t, s)y(s)ds, in view of Lemma 2.4, one has

min
t∈[ 1

2 ,1]
u
(
θ(t)

) ≥ min
t∈[ 1

2 ,1]
u(t),

=
∫ 1

0
min

t∈[ 1
2 ,1]

G(t, s)y(s)ds,

≥ γ max
t∈[0,1]

∫ 1

0
G(t, s)y(s)ds,

= γ ‖u‖. (3.2)

If u ∈ P with ‖u‖ = r2, in terms of (3.1) and (3.2), we get

‖Au‖ = max
t∈[0,1]

∫ 1

0
G(t, s)h(s)f

(
u
(
θ(s)

))
ds,

≥
∫ 1

2

0
G(t, s)h(s)f

(
u
(
θ(s)

))
ds +

∫ 1

1
2

G(t, s)h(s)f
(
u
(
θ(s)

))
ds,

≥
∫ 1

1
2

G(t, s)h(s)f
(
u
(
θ(s)

))
ds,

≥
∫ 1

1
2

min
t∈[ 1

2 ,1]
G(t, s)h(s)f

(
u
(
θ(s)

))
ds,

≥
∫ 1

1
2

γG(1, s)h(s)ku
(
θ(s)

)
ds,

≥ γ 2k

∫ 1

1
2

G(1, s)h(s)‖u‖ds,

≥ ‖u‖. (3.3)

Thus, by virtue of Lemma 2.7, fractional differential equation (1.1) has at least a single
positive solution u ∈ P ∩ (�r2\�r1) with r1 ≤ ‖u‖ ≤ r2.

Step (ii): f0 = ∞ and f∞ = 0.
Since f0 = ∞, there exists an r3 > 0 such that f (u) ≥ mu for 0 < u ≤ r3, where m

satisfies

γ 2m

∫ 1

1
2

G(1, s)h(s)ds ≥ 1. (3.4)

For u ∈ P with ‖u‖ = r3, according to (3.2) and (3.4), one has

‖Au‖ ≥
∫ 1

0
G(t, s)h(s)f

(
u
(
θ(s)

))
ds,

≥
∫ 1

1
2

G(t, s)h(s)f
(
u
(
θ(s)

))
ds,
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≥
∫ 1

1
2

min
t∈[ 1

2 ,1]
G(t, s)h(s)f

(
u
(
θ(s)

))
ds,

≥
∫ 1

1
2

γG(1, s)h(s)mu
(
θ(s)

)
ds,

≥ γ 2m

∫ 1

1
2

G(1, s)h(s)‖u‖ds,

≥ ‖u‖. (3.5)

Taking �r3 = {u ∈ E : ‖u‖ < r3}, we have ‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂�r3 .
Now, we consider f∞ = 0. By the definition, there exists r4 > r3 such that

f (u) ≤ δu for u ≥ r4, (3.6)

where δ > 0 satisfies

δ

∫ 1

0
G(1, s)h(s)ds ≤ 1. (3.7)

Suppose that f is bounded, then we have f (u) ≤ ϕp(K) for all u ∈ [0,∞) and some
constant K > 0. Choose

r4 = max

{

2r3,K

∫ 1

0
G(1, s)h(s)ds

}

.

If u ∈ P with ‖u‖ = r4, we get

‖Au‖ = max
t∈[0,1]

∫ 1

0
G(t, s)h(s)f

(
u
(
θ(s)

))
ds,

<

∫ 1

0
G(1, s)h(s)Kds,

≤ K

∫ 1

0
G(1, s)h(s)ds,

≤ r4 = ‖u‖.
If f is unbounded, from f ∈ C([0,1], [0,+∞)), there exists a constant C > 0 such that

f (u) ≤ C for u ∈ [0, r4].
Making use of (3.6) we have

f
(
u
(
θ(t)

)) ≤ max{C,δu} for t ∈ [0,1].
Let

r4 > max

{
C

δ
,2r3

}

. (3.8)

Assume that u ∈ P with ‖u‖ = r4, then using (3.6), (3.7) and (3.8), we deduce

‖Au‖ = max
t∈[0,1]

∫ 1

0
G(t, s)h(s)f

(
u
(
θ(s)

))
ds,
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<

∫ 1

0
G(1, s)h(s)max{C,δu}ds,

≤ δ‖u‖
∫ 1

0
G(1, s)h(s)ds,

≤ ‖u‖.
Apparently, in either case, taking �r4 = {u ∈ P : ‖u‖ < r4}, for u ∈ P ∩ ∂�r4 , one has

‖Au‖ ≤ ‖u‖. Consequently, it follows from condition (ii) of Lemma 2.7 that fractional
differential equation (1.1) has at least a single positive solution u ∈ P ∩ (�r4\�r3) with
r3 ≤ ‖u‖ ≤ r4. �

3.2 The Case i0 = 0 and i∞ = 0

In this subsection, we discuss the existence for the positive solution to fractional differential
equation (1.1) under the case of i0 = 0 and i∞ = 0, and obtain

Theorem 3.2 Assume that the following conditions are satisfied:

(i) there exists a constant p > 0 such that f (u) ≤ p�1 for u ∈ [0,p], where

�1 =
(∫ 1

0
G(1, s)h(s)ds

)−1

;

(ii) there exists another constant q > 0 (p �= q) such that f (u) ≥ q�2 for u ∈ [0, q], where

�2 =
(

γ

∫ 1

1
2

G(1, s)h(s)ds

)−1

.

Then fractional differential equation (1.1) has at least one positive solution u such that
‖u‖ lies between p and q .

Proof of Theorem 3.2 Without loss of generality, we may assume that p < q .
Let �p = {u ∈ E : ‖u‖ < p}. For any u ∈ P ∩ ∂�p , it follows from condition (i) that

‖Au‖ = max
t∈[0,1]

∫ 1

0
G(t, s)h(s)f

(
u
(
θ(s)

))
ds,

<

∫ 1

0
G(1, s)h(s)p�1ds,

≤ p�1

∫ 1

0
G(1, s)h(s)ds,

≤ ‖u‖, (3.9)

which implies

‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂�p.

Similarly, let �q = {u ∈ E : ‖u‖ < q}. For u ∈ P ∩ ∂�q , it follows from condition (ii)
that

‖Au‖ ≥
∫ 1

0
G(t, s)h(s)f

(
u
(
θ(s)

))
ds,
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≥
∫ 1

1
2

G(t, s)h(s)f
(
u
(
θ(s)

))
ds,

≥
∫ 1

1
2

min
t∈[ 1

2 ,1]
G(t, s)h(s)f

(
u
(
θ(s)

))
ds,

≥
∫ 1

1
2

γG(1, s)h(s)q�2ds,

≥ q�2γ

∫ 1

1
2

G(1, s)h(s)ds,

≥ ‖u‖.
So, letting �q = {u ∈ E : ‖u‖ < q}, we have

‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂�q.

Thus, it follows from part (i) of Lemma 2.7 that fractional differential equation (1.1) has
at least one positive solution u ∈ P ∩ (�q\�p). �

Theorem 3.3 Assume that f0 ∈ (
�2
γ

,∞) and f∞ ∈ (0,�1) are satisfied. Then fractional
differential equation (1.1) has at least one positive solution.

Proof of Theorem 3.3 On the one hand, let ε1 = f0 − �2
γ

> 0, then there exists a sufficiently
small constant q ′ > 0 such that

f (u)

u
≥ f0 − ε1 = �2

γ
for u ∈ (0, q ′].

If u ∈ [0, q ′], then f (u) ≥ γ�2u, which implies that

‖Au‖ ≥
∫ 1

1
2

min
t∈[ 1

2 ,1]
G(t, s)h(s)f

(
u
(
θ(s)

))
ds,

≥
∫ 1

1
2

G(1, s)h(s)�2u
(
θ(s)

)
ds,

≥ �2γ ‖u‖
∫ 1

1
2

G(1, s)h(s)ds,

≥ ‖u‖.
So, letting �q ′ = {u ∈ E : ‖u‖ < q ′}, we derive

‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂�q ′ .

On the other hand, for ε2 = �1 − f∞ > 0, there exists a p′′ (> q ′) such that

f (u)

u
≤ f∞ + ε2 = �1 for u ∈ [p′′,∞). (3.10)

There are two cases here.
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Case (i): if f is bounded. That is, there exists a constant K1 > 0 satisfying f (u) ≤ K1

for u ∈ [0,∞). Then we choose p′ such that p′ ≥ max{K1/�1, p′′} and

f (u) ≤ K1 ≤ �1p
′ for u ∈ [

0, p′],

which implies that condition (i) of Theorem 3.2 holds.
Case (ii): if f is unbounded. Since f ∈ C([0,1], [0,∞)), there exists p∗

1 > p′ such that
f (u) ≤ f (p∗

1) for u ∈ [0,p∗
1]. By the assumption p′ ≥ max{K1/�1, p′′}, it follows from

(3.10) that

f
(
p∗

1

) ≤ �1p
∗
1,

and

f (u) ≤ f
(
p∗

1

) ≤ �1p
∗
1 for u ∈ [

0,p∗
1

]
.

This implies that condition (i) of Theorem 3.2 is fulfilled. Letting

�p1∗ = {
u ∈ E : ‖u‖ < p∗

1

}
,

we have

‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂�p∗
1
.

So, we have completed the proof. �

Theorem 3.4 Assume that f0 ∈ (0,�1) and f∞ ∈ (�2,∞) are satisfied. Then fractional
differential equation (1.1) has at least one positive solution.

Under the above assumptions, it is easy to prove in a similar way that conditions (i) and
(ii) in Theorem 3.2 are satisfied. So we omit the proof.

3.3 The Case i0 = 1 and i∞ = 0 or i0 = 0 and i∞ = 1

In this subsection, we discuss the existence of at least single positive solution to fractional
differential equation (1.1) under conditions i0 = 1 and i∞ = 0 or i0 = 0 and i∞ = 1, respec-
tively.

Theorem 3.5 Suppose that f0 ∈ (0,�1) and f∞ = ∞ hold. Then fractional differential
equation (1.1) has at least one positive solution.

Proof of Theorem 3.5 Since f∞ = ∞, it follows from inequality (3.3) that

‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂�r2 .

For any ε3 = �1 − f0 > 0, according to f0 ∈ (0,�1), there exists a sufficiently small p′
2 ∈

(0, r2) which satisfies

f (u) ≤ (f0 + ε3)u = �1u ≤ �1p
′
2 for u ∈ [

0,p′
2

]
.

This implies that part (i) of Theorem 3.2 holds. It is directly deduced that

‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂�p′
2
.

So the proof is complete. �
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Theorem 3.6 Assume that f0 = ∞ and f∞ ∈ (0,�1) hold. Then fractional differential
equation (1.1) has at least one positive solution.

Proof of Theorem 3.6 Firstly, since f0 = ∞, in view of inequality (3.5), we have

‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂�r3 .

Secondly, since f∞ ∈ (0,�1), using a similar technique to the second part of the proof in
Theorem 3.3, we obtain that condition (i) of Theorem 3.2 holds. That is, inequality (3.9) is
fulfilled, which leads to

‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂�p′ ,

where p′ > r3. Hence, fractional differential equation (1.1) has at least one positive solu-
tion. �

By virtue of Theorems 3.5 and 3.6, respectively, we can easily have the following two
corollaries.

Corollary 3.7 Assume that one of the following two conditions holds

(i) f∞ = ∞ or f0 = ∞, and condition (i) in Theorem 3.2 is satisfied;
(ii) f0 = 0 or f∞ = 0, and condition (ii) in Theorem 3.2 is satisfied.

Then fractional differential equation (1.1) has at least one positive solution.

Thus, it is straightforward to obtain the following result.

Theorem 3.8 Assume that one of the following two conditions holds:

(i) f0 ∈ (�2,∞) and f∞ = 0;
(ii) f0 = 0 and f∞ ∈ (�2,∞).

Then fractional differential equation (1.1) has at least one positive solution.

3.4 The Case i0 = 0 and i∞ = 2 or i0 = 2 and i∞ = 0

In this subsection, we present the existence of at least two positive solutions for fractional
differential equation (1.1) under i0 = 0 and i∞ = 2 or i0 = 2 and i∞ = 0.

Combining Theorems 3.1 and 3.2, we can obtain the following theorem immediately.

Theorem 3.9

(i) Assume that i0 = 0 and i∞ = 2, and condition (i) of Theorem 3.2 holds, then fractional
differential equation (1.1) has at least two distinct positive solutions u1 and u2 ∈ P such
that 0 < ‖u1‖ < p < ‖u2‖.

(ii) Assume that i0 = 2 and i∞ = 0, and condition (ii) of Theorem 3.2 holds, then fractional
differential equation (1.1) has at least two distinct positive solutions u1 and u2 ∈ P such
that 0 < ‖u1‖ < q < ‖u2‖.
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4 Triple or Multiple Solutions

We have established some existence results of at least one or two positive solutions to frac-
tional differential equation (1.1) in the preceding section. In this section, we will further
discuss the existence of positive solutions to fractional differential equation (1.1) by using
three different methods.

For the notational convenience, we denote

M =
∫ 1

1
2

G(1, s)h(s)ds,

N = γ

∫ 1

1
2

G(1, s)h(s)ds,

L =
∫ 1

0
G(1, s)h(s)ds.

4.1 Three Solutions

In this subsection, we discuss the existence of at least three positive solutions to (1.1).

Theorem 4.1 Let a, b and c be constants such that 0 < a < b < N
L
c. In addition, if the

following conditions are satisfied.

(i) f (u(θ(t))) < a
L

for (t, u) ∈ [0,1] × [0, a];
(ii) f (u(θ(t))) > b

N
for (t, u) ∈ [ 1

2 ,1] × [b, c];
(iii) f (u(θ(t))) ≤ c

L
for (t, u) ∈ [0,1] × [0, c].

Then (1.1) has at least triple positive solutions u1, u2, u3 ∈ P such that

0 < ‖u1‖ < a, b < inf
t∈[ 1

2 ,1]
u2, a < u3 with inf

t∈[ 1
2 ,1]

u3 < b.

Proof of Theorem 4.1 For u ∈ P , let q(u) = inft∈[ 1
2 ,1] u. It is obvious that q(u) is a nonneg-

ative concave function and satisfies

q(u) ≤ ‖u‖ for u ∈ Pc.

In the following, we shall show that all the conditions of Lemma 2.8 hold with respect to the
operator A.

For u ∈ Pc, which reduces to u ∈ [0, c], by condition (iii) we have

‖Au‖ = max
t∈[0,1]

Au,

=
∫ 1

0
max
t∈[0,1]

G(t, s)h(s)f
(
u
(
θ(s)

))
ds,

≤
∫ 1

0
G(1, s)h(s)

c

L
ds,

≤ c, (4.1)
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which implies A : P c → P c .
If u ∈ Pa , we have u ∈ [0, a]. This indicates that condition (ii) of Lemma 2.8 is satisfied.

Let d be a fixed constant such that b < d ≤ c, namely, q(d) = d > b and ‖d‖ = d , so we
find P (q, b, d) �= ∅. For any u ∈ P (q, b, d), we have

‖u‖ ≤ d and q(u) = inf
t∈[ 1

2 ,1]
u ≥ b,

and

q(Au) = inf
t∈[ 1

2 ,1]
Au,

=
∫ 1

1
2

inf
t∈[ 1

2 ,1]
G(t, s)h(s)f

(
u
(
θ(s)

))
ds,

>

∫ 1

1
2

γG(1, s)h(s)
b

N
ds,

> b.

Thus, condition (i) of Lemma 2.8 is satisfied.
Finally, using an analogous argument, for any u ∈ P (q, b, c) with ‖Au‖ > d , we can

derive that ‖u‖ ≤ c, inft∈[ 1
2 ,1] u ≥ b, and q(Au) > b, which indicates that condition (iii)

holds.
Consequently, it follows from Lemma 2.8 that (1.1) has at least three solutions such that

0 < ‖u1‖ < a, b < inf
t∈[ 1

2 ,1]
u2, a < u3 with inf

t∈[ 1
2 ,1]

u3 < b.

�

Note that condition (iii) in Theorem 4.1 can be replaced by the following condition:

(
iii′

)
lim

u→∞
f (u)

u
≤ 1

L
for u ∈ P.

Corollary 4.2 If condition (iii) in Theorem 4.1 is replaced by (iii′), then the conclusion of
Theorem 4.1 also holds.

Proof of Corollary 4.2 From Theorem 4.1, we only need to prove that condition (iii′) implies
condition (iii). That is, if (iii′) holds, then there exists a number

c ≥ Lmax
{

max
u∈[0,c]

|f (u)|, b
}
,

such that f (u) ≤ c
L

for u ∈ [0, c].
On the contrary, suppose that for any c ≥ Lmax{maxu∈[0,c] |f (u)|, b}, there exists uc ∈

[0, c] such that f (uc) > c
L

. If we take cn > b (n = 1,2, . . .) with cn → ∞, there exists
un ∈ [0, cn] such that

f (un) >
cn

L
, (4.2)
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which implies

lim
n→∞f (un) = ∞. (4.3)

Since condition (iii′) holds, there exists τ > 0 such that

f (u) ≤ u

L
, u > τ. (4.4)

Hence, we have un ≤ τ . Otherwise, if un > τ , according to (4.4), we find

f (un) ≤ un

L
≤ cn

L
,

which yields a contradiction with (4.2).
Let W = maxu∈[0,τ ] f (u), so it has f (un) ≤ W (n = 1,2, . . .), which also contradicts

with (4.3). Consequently, the proof is complete. �

4.2 Arbitrary n Solutions

In this subsection, by using the fixed-point theorem generalized by Avery and Henderson
[19], the existence criteria for at least three or arbitrary n positive solutions of fractional
differential equation (1.1) are considered.

For u ∈ P , we define the nonnegative, increasing, continuous functionals γ1, β1 and α1

by

γ1(u) = β1(u) = inf
t∈[ 1

2 ,1]
u, α1(u) = sup

t∈[0,1]
u.

It is easily seen that

γ1(u) = β1(u) ≤ α1(u) for each u ∈ P.

According to (3.2), we further have

‖u‖ ≤ 1

γ
γ1(u) for all u ∈ P.

Now we present the following main result on three distinct positive solutions in this
subsection.

Theorem 4.3 Assume that there exist real numbers a′, b′, c′ such that 0 < a′ < b′ < γc′,
and f (u(θ(t))) satisfies the following three conditions

(i) f (u(θ(t))) < c′
M

for (t, u) ∈ [ 1
2 ,1] × [c′, 1

γ
c′];

(ii) f (u(θ(t))) > b′
N

for (t, u) ∈ [ 1
2 ,1] × [b′, 1

γ
b′];

(iii) f (u(θ(t))) < a′
L

for (t, u) ∈ [0,1] × [0, a′].
Then (1.1) has at least three distinct positive solutions u1, u2, u3 ∈ P (γ, c′) such that

0 < ‖u1‖ < a′ < ‖u2‖ and inf
t∈[ 1

2 ,1]
u2 < b′ < inf

t∈[ 1
2 ,1]

u3 < c′.
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Proof of Theorem 4.3 It suffices to prove that all the conditions of Lemma 2.9 hold with
respect to the operator A. By using a closely similar way to the derivation of (4.1), it is not
difficult to see that A : P (γ1, c) → P .

Firstly, assume that u ∈ ∂P (γ1, c
′), then we have γ1(u) = inft∈[ 1

2 ,1] u = c′. Inequality

(3.2) implies that ‖u‖ ≤ 1
γ
γ1(u) = 1

γ
c′, which gives c′ ≤ u ≤ 1

γ
c′, t ∈ [ 1

2 ,1].
Thus, it follows from condition (i) that

γ1(Au) = inf
t∈[ 1

2 ,1]
|Au|,

<

∫ 1

1
2

G(1, s)h(s)f
(
u
(
θ(s)

))
ds,

≤
∫ 1

1
2

G(1, s)h(s)
c′

M
ds,

< c′,

which implies γ1(Au) < c′ for u ∈ ∂P (γ1, c
′).

Secondly, for u ∈ ∂P (β1, b
′), we have β1(u) = inft∈[ 1

2 ,1] u = b′. Inequality (3.2) implies

that ‖u‖ ≤ 1
γ
β1(u) = 1

γ
b′, namely, b′ ≤ u ≤ 1

γ
b′, t ∈ [ 1

2 ,1]. By means of condition (ii), we
deduce

β1(Au) = inf
t∈[ 1

2 ,1]
|Au|,

=
∫ 1

1
2

min
t∈[ 1

2 ,1]
G(t, s)h(s)f

(
u
(
θ(s)

))
ds,

≥
∫ 1

1
2

γG(1, s)h(s)
b′

N
ds,

≥ b′

N
γ

∫ 1

1
2

G(1, s)h(s)ds,

= b′.

This means that β1(Au) > b′ for u ∈ ∂P (β1, b
′).

Finally, we show that P (α1, a
′) �= ∅ and α1(Au) < a′ for all u ∈ ∂P (α1, a

′). Since a′
2 ∈

P (α1, a
′), for u ∈ ∂P (α1, a

′), we have α1(u) = supt∈[0,1] u = a′, which gives 0 ≤ u ≤ a′ for
t ∈ [0,1]. According to condition (iii), we derive

α1(Au) = sup
t∈[0,1]

|Au|,

=
∫ 1

0
sup

t∈[0,1]
G(t, s)h(s)f

(
u
(
θ(s)

))
ds,

<

∫ 1

0
G(1, s)h(s)

a′

L
ds,

<
a′

L

∫ 1

0
G(1, s)h(s)ds,

= a′.
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Hence, conditions (i)–(iii) in Lemma 2.9 are satisfied. By virtue of assumptions (S1)
and (S2), we obtain that the solution of (1.1) does not vanish identically on any closed
subinterval of [0,1]. Consequently, (1.1) has at least three distinct positive solutions u1, u2

and u3, which belong to P(γ1, c
′) and satisfy

0 < ‖u1‖ < a′ < ‖u2‖ and inf
t∈[ 1

2 ,1]
u2 < b′ < inf

t∈[ 1
2 ,1]

u3 < c′.

Therefore, we have completed the proof. �

The following result can be considered as a corollary of Theorem 4.3.

Corollary 4.4 Assume that f satisfies the following two conditions:

(i) f0 = 0 and f∞ = 0;
(ii) there exists c0 > 0 such that f (u) >

γc0
N

for (t, u) ∈ [ 1
2 ,1] × [γ c0, c0].

Then (1.1) has at least three distinct positive solutions.

Proof of Corollary 4.4 According to condition (ii), letting b′ = γ c0, we have

f (u) > b′
N

for (t, u) ∈ [ 1
2 ,1] × [b′, b′

γ
],

which implies that condition (ii) of Theorem 4.3 is satisfied.
Choose a sufficiently small constant K1 > 0 such that

K1L = K1

(∫ 1

0
G(1, s)h(s)ds

)

< 1. (4.5)

Since f0 = 0, there exists another sufficiently small constant k1 > 0 such that

f (u) ≤ K1u for (t, u) ∈ [0,1] × [0, k1]. (4.6)

Without loss of generality, we suppose that k1 = a′ < b′. For 0 ≤ u ≤ a′, we have u ≤ k1.
Thus, it follow from (4.5) and (4.6) that

f (u) ≤ K1u ≤ K1a
′ <

a′

L
for 0 ≤ u ≤ a′.

This implies that condition (iii) of Theorem 4.3 holds.
Again, choose another sufficiently small K2 such that

K2

γ
M = K2

γ

(∫ 1

1
2

G(1, s)h(s)ds

)

< 1.

Since f∞ = 0, there exists a sufficiently large value k2 > 0 such that

f (u) ≤ K2u for u ≥ k2.

Without loss of generality, we may suppose k2 > b′
γ

and choose c′ = k2, and find

f (u) ≤ K2u ≤ K2
c′

γ
<

c′

M
for c′ ≤ u ≤ 1

γ
c′.
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This means that condition (i) of Theorem 4.3 holds.
Combining the above discussions, we obtain 0 < a′ < b′ < γc′. Hence, it follows from

Theorem 4.3 that (1.1) has at least three distinct positive solutions. �

Extending the idea in the proof of Theorem 4.3, we can prove the existence for multiple
positive solutions to (1.1) when conditions (i)–(iii) are modified and imposed appropriately
on f .

Theorem 4.5 Assume that there exist constant numbers a′
i , b

′
i , c

′
i such that

0 < a′
1 < b′

1 < γc′
1 < a′

2 < b′
2 < γc′

2 < a′
3 < · · · < a′

n, n ∈ N, (4.7)

where i = 1,2, . . . , n. Assume that f (u(θ(t))) satisfies the following three conditions:

(i) f (u(θ(t))) <
c′
i

M
for (t, u) ∈ [ 1

2 ,1] × [c′
i ,

1
γ
c′
i];

(ii) f (u(θ(t))) >
b′
i

N
for (t, u) ∈ [ 1

2 ,1] × [b′
i ,

1
γ
b′

i];
(iii) f (u(θ(t))) <

a′
i

L
for (t, u) ∈ [ 1

2 ,1] × [0, a′
i].

Then (1.1) has at least n distinct positive solutions.

Proof of Theorem 4.5 If n = 1, it follows from condition (iii) that

A : P a′
1
→ Pa′

1
⊂ P a′

1
.

This means that A has at least one fixed point u01 ∈ P a′
1

by the Schauder fixed point theorem.
If i = 2, it is clear that Theorem 4.3 holds with a′ = a′

1, b′ = b′
1 and c′ = c′

1. Then we can
obtain at least three positive solutions u11, u12 and u13 satisfying

0 < ‖u11‖ < a′
1 < ‖u12‖ and inf

t∈[ 1
2 ,1]

u12 < b′
1 < inf

t∈[ 1
2 ,1]

u13 < c′
1,

which implies that (1.1) has at least 2 distinct positive solutions.
Using the mathematical induction, when n = k − 1, we assume that (1.1) has at least

k − 1 distinct positive solutions, denoted by ui . It follows from the solution position and
local properties that

0 < inf
t∈[ 1

2 ,1]
ui < c′

k−1, i = 1,2, . . . , k − 1. (4.8)

When n = k, it is easy to see that Theorem 4.3 holds with a′ = a′
k, b′ = b′

k and c′ = c′
k .

So there exist at least three distinct positive solutions uk1, uk2 and uk3 satisfying

0 < ‖uk1‖ < a′
k < ‖uk2‖ and inf

t∈[ 1
2 ,1]

uk2 < b′
k < inf

t∈[ 1
2 ,1]

uk3 < c′
k. (4.9)

According to (4.7), (4.8) and (4.9), we have

ui �= uk3, i = 1,2, . . . , k − 1.

Hence, (1.1) has at least n distinct positive solutions. So the proof is completed. �

In terms of Lemma 2.10, we can obtain the following result by using the similar way as
to the proof of Theorem 4.3.
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Theorem 4.6 Assume that there exist positive numbers a′, b′, c′ such that a′ < b′ < γc′. In
addition, f (u(θ(t))) satisfies the following conditions:

(i) f (u(θ(t))) > c′
N

for (t, u) ∈ [ 1
2 ,1] × [c′, 1

γ
c′];

(ii) f (u(θ(t))) < b′
M

for (t, u) ∈ [ 1
2 ,1] × [b′, 1

γ
b′];

(iii) f (u(θ(t))) > a′
N

for (t, u) ∈ [0,1] × [0, a′].
Then (1.1) has at least three distinct positive solutions u1, u2, u3 ∈ P (γ, c′) such that

0 ≤ ‖u1‖ < a′ < ‖u2‖ and inf
t∈[ 1

2 ,1]
u2 < b′ < inf

t∈[ 1
2 ,1]

u3 < c′.

It follows from Theorem 4.3 that we can obtain the following corollary and theorem
immediately.

Corollary 4.7 Assume that f satisfies conditions

(i) f0 = ∞ and f∞ = ∞;
(ii) there exists c0 > 0 such that f (u) <

γ

M
c0 for (t, u) ∈ [ 1

2 ,1] × [γ c0, c0].
Then (1.1) has at least three distinct positive solutions.

Theorem 4.8 Suppose that there are positive numbers a′
i , b

′
i , c

′
i such that

a′
1 < b′

1 < γc′
1 < a′

2 < b′
2 < γc′

2 < a′
3 < · · · < a′

n, n ∈ N,

where i = 1,2, . . . , n. In addition, f (u(θ(t))) satisfies the following conditions:

(i) f (u(θ(t))) >
c′
i

N
for (t, u) ∈ [ 1

2 ,1] × [c′
i ,

1
γ
c′
i];

(ii) f (u(θ(t))) <
b′
i

M
for (t, u) ∈ [ 1

2 ,1] × [b′
i ,

1
γ
b′

i];
(iii) f (u(θ(t))) >

a′
i

N
for (t, u) ∈ [0,1] × [0, a′

i].
Then (1.1) has at least n distinct positive solutions.

4.3 Arbitrary 2n − 1 Solutions

In this subsection, the existence of at least three or arbitrary odd positive solutions to (1.1)
are established by using the Avery-Peterson fixed point theorem [14].

Define the nonnegative continuous convex functionals φ and β , concave functional λ and
functional ϕ on P by

φ(u) = sup
t∈[0,1]

u,

β(u) = sup
t∈[ 1

2 ,1]
u,

λ(u) = ϕ(u) = inf
t∈[ 1

2 ,1]
u.

Theorem 4.9 Suppose that there exist constants a∗, b∗, d∗ such that 0 < a∗ < b∗ < M
L

d∗,
and f satisfies the following conditions:
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(i) f (u(θ(t))) ≤ d∗
L

for all (t, u) ∈ [0,1] × [0, d∗];
(ii) f (u(θ(t))) > b∗

N
for all (t, u) ∈ [ 1

2 ,1] × [b∗, d∗];
(iii) f (u(θ(t))) < a∗

M
for all (t, u) ∈ [ 1

2 ,1] × [a∗, d∗].
Then (1.1) has at least three distinct positive solutions u1, u2, u3 such that

‖xi‖ ≤ d∗ for i = 1,2,3,

b∗ < inf
t∈[ 1

2 ,1]
u1, a∗ < inf

t∈[ 1
2 ,1]

u2 < b∗ with inf
t∈[ 1

2 ,1]
u3 < a∗.

Proof of Theorem 4.9 According to the definition of completely continuous operator A, it
suffices to prove that all the conditions of Lemma 2.11 hold with respect to operator A. For
all u ∈ P , we have λ(u) = ϕ(u) and ‖u‖ = φ(u). So inequality (2.3) holds in this case.

Firstly, we show that A : P (φ,d∗) → P (φ,d∗).
For arbitrary u ∈ P (φ,d∗), it follow from φ(u) = ‖u‖ ≤ d∗ and the assumption (i) that

‖Au‖ = max
t∈[0,1]

∫ 1

0
G(t, s)h(s)f

(
u
(
θ(s)

))
ds,

≤
∫ 1

0
G(1, s)h(s)f

(
u
(
θ(s)

))
ds,

≤ d∗

L

∫ 1

0
G(1, s)h(s)ds,

= d∗.

It remains to show that assumptions (i)–(iii) of Lemma 2.11 are satisfied with respect to
operator A.

Secondly, we verify that condition (i) of Lemma 2.11 is true. Let u ≡ kb∗ with k = L
M

.
From the definitions of L, M and β(u), respectively, it is easy to see that u = kb∗ > b∗ and
β(u) = kb∗. According to b∗ < M

L
d∗, we get φ(u) = kb∗ < d∗. Hence, we have

{
u ∈ P

(
φ,β,λ, b∗, kb∗, d∗) : λ(x) > b∗} �= ∅.

For any u ∈ P (φ,β,λ, b∗, kb∗, d∗), we have b∗ ≤ u ≤ d∗ for all t ∈ [ 1
2 ,1]. According to

assumption (ii), it gives

λ(Au) =
∫ 1

1
2

inf
t∈[ 1

2 ,1]
G(t, s)h(s)f

(
u
(
θ(s)

))
ds,

≥
∫ 1

1
2

γG(1, s)h(s)
b∗

N
ds,

= b∗,

which implies that condition (i) of Lemma 2.11 is true.
Thirdly, we show that condition (ii) of Lemma 2.11 holds. For any u ∈ P (φ,λ, b∗, d∗)

with β(Au) > kb∗, we have b∗ ≤ u ≤ d∗ for t ∈ [ 1
2 ,1], and

λ(Au) =
∫ 1

1
2

inf
t∈[ 1

2 ,1]
G(t, s)h(s)f

(
u
(
θ(s)

))
ds,
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≥
∫ 1

1
2

γG(1, s)h(s)
b∗

N
ds,

= b∗.

This implies that condition (ii) of Lemma 2.11 is satisfied.
Finally, we check on condition (iii) of Lemma 2.11. Clearly, since ϕ(0) = 0 < a∗, we

have 0 /∈ R(φ,ϕ, a∗, d∗). If u ∈ R(φ,ϕ, a∗, d∗) with ϕ(u) = inft∈[ 1
2 ,1] u = a∗, this yields

a∗ ≤ u ≤ d∗ for all t ∈ [ 1
2 ,1]. Hence, we have

λ(Au) = inf
t∈[ 1

2 ,1]

∫ 1

1
2

G(t, s)h(s)f
(
u
(
θ(s)

))
ds,

≤
∫ 1

1
2

G(t, s)h(s)f
(
u
(
θ(s)

))
ds,

<

∫ 1

1
2

G(1, s)h(s)
a∗

M
ds,

= a∗.

Consequently, all the conditions of Lemma 2.11 are fulfilled. The proof is completed. �

Note that condition (i) in Theorem 4.9 can be replaced by the following condition (i′):

lim
u→∞

f (u)

u
≤ 1

L
for t ∈ [0,1].

The proof is similar to that of Corollary 4.2.

Theorem 4.10 Suppose that there exist constants a∗
i , b

∗
i , d

∗
i such that

0 < a∗
1 < b∗

1 <
M

L
d∗

1 < a∗
2 < b∗

2 <
M

L
d∗

2 < a∗
3 < · · · < a∗

n, n ∈ N,

where i = 1,2, . . . , n. In addition, f satisfies the following conditions:

(i) f (u(θ(t))) ≤ d∗
i

L
for all (t, u) ∈ [0,1] × [0, d∗

i ];
(ii) f (u(θ(t))) >

b∗
i

N
for all (t, u) ∈ [0,1] × [b∗

i , d
∗
i ];

(iii) f (u(θ(t))) <
a∗
i

M
for all (t, u) ∈ [ 1

2 ,1] × [a∗
i , d

∗
i ].

Then (1.1) has at least 2n − 1 positive solutions.

Proof of Theorem 4.10 If n = 1, we find from condition (iii) that A : P a∗
1

→ Pa∗
1

⊂ P a∗
1
,

which means that A has at least one fixed point u01 ∈ P a∗
1

by the Schauder fixed point
theorem.

If i = 2, it is clear that Theorem 4.3 holds with a∗ = a∗
1 , b∗ = b∗

1 and d∗ = d∗
1 . Then we

can obtain at least three positive solutions u11, u12 and u13 which satisfy

‖u1i‖ ≤ d∗
1 for i = 1,2,3,

b∗
1 < inf

t∈[ 1
2 ,1]

u11, a∗
1 < inf

t∈[ 1
2 ,1]

u12 < b∗
1 with inf

t∈[ 1
2 ,1]

u13 < a∗
1 .



Existence Theory for an Arbitrary Order Fractional Differential Equation 103

So (1.1) has at least three distinct positive solutions.
By the mathematical induction, assume that when n = k − 1, (1.1) has at least 2k − 3

positive solutions, denoted by ui . It follows from the solution position and local properties
that

‖ui‖ < d∗
k−1, i = 1,2, . . . , k − 1. (4.10)

When n = k, it is easy to see that Theorem 4.9 holds with a′ = a′
k, b′ = b′

k and c′ = c′
k .

So there exist at least three positive solutions uk1, uk2 and uk3 satisfying

‖uki‖ ≤ d∗
k for i = 1,2,3,

b∗
k < inf

t∈[ 1
2 ,1]

uk1, a∗
k < inf

t∈[ 1
2 ,1]

uk2 < b∗
k with inf

t∈[ 1
2 ,1]

uk3 < a∗
k .

(4.11)

By virtue of (4.10) and (4.11), we have

ui �= uk1 �= uk2, i = 1,2, . . . , k − 1.

Consequently, (1.1) has at least 2k − 1 distinct positive solutions. �

5 Examples

In this section, we give two examples to illustrate our main results.

Example 5.1 Consider the fractional differential equation with deviating arguments

⎧
⎪⎨

⎪⎩

Dα
0+u(t) + �(α)(1 − t)f (u(θ(t))) = 0, t ∈ (0,1), n − 1 < α ≤ n,

u(i)(0) = 0, i = 0,1,2, . . . , n − 2,

[Dβ

0+u(t)]t=1 = 0, 1 ≤ β ≤ n − 2,

(5.1)

where θ(t) = tν for (t, ν) ∈ (0,1) × (0,∞) and

f (u) =
{

u3 for u ∈ [0,1],
eu−1 for u ∈ (1,+∞).

It is easy to find that f0 = 0 and f∞ = ∞. By virtue of Theorem 3.1, we have that fractional
differential equation (5.1) has at least positive solution.

Example 5.2 Consider the following fractional differential equation with deviating argu-
ments

⎧
⎪⎪⎨

⎪⎪⎩

D
7
2
0+u(t) + �( 7

2 )(1 − t)f (u(θ(t))) = 0, t ∈ (0,1),

u(0) = u(1)(0) = 0,

[D2
0+u(t)]t=1 = 0,

(5.2)

where θ(t) = tν for (t, ν) ∈ (0,1) × (0,∞) and

f (u) =

⎧
⎪⎨

⎪⎩

2 for u ∈ [0,1),

p(u) for u ∈ [1,2],
195 for u ∈ (2,∞).
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Here p(u) is continuous and p(1) = 2, p(2) = 195.
Note that α = 7

2 and β = 2. A direct calculation gives

N = γ

∫ 1

1
2

G(1, s)h(s)ds ≈ 0.1768
∫ 1

1
2

(1−s)
1
2 ds−0.1768

∫ 1

1
2

(1−s)
5
2 ds ≈ 3.7207×10−2,

and

L ≈ 0.3910.

If we take a = 1, b = 2 and c = 100, then we find that 0 < a < b < N
L
c and

f (u) <
a

L
= 1

0.3910
≈ 2.625 for u ∈ [0,1],

f (u) >
b

N
= 2

3.7207 × 10−2
≈ 53.753 for u ∈ [2,100],

and

f (u) <
c

L
= 100

0.17778
≈ 262.5 for u ∈ [0,100].

It follows from Theorem 4.1 that fractional differential equation (5.2) has at least three
distinct positive solutions such that

0 < ‖u1‖ < 1, 2 < inf
t∈[ 1

2 ,1]
u2, 1 < u3 with inf

t∈[ 1
2 ,1]

u3 < 2.

References

1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equa-
tions. Elsevier, Amsterdam (2006)

2. Kilbas, A.A., Trujillo, J.J.: Differential equations of fractional order: methods, results and problems. I.
Appl. Anal. 78, 153–192 (2001)

3. Lakshmikantham, V., Leela, S., Vasundhara Devi, J.: Theory of Fractional Dynamic Systems. Cambridge
Academic Publishers, Cambridge (2009)

4. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
5. Sabatier, J., Agrawal, O.P., Machado, J.A.T.: Advances in Fractional Calculus: Theoretical Develop-

ments and Applications in Physics and Engineering. Springer, Dordrecht (2007)
6. Bai, Z.B., Lü, H.: Positive solutions for boundary value problem of nonlinear fractional differential

equation. J. Math. Anal. Appl. 311, 495–505 (2005)
7. Kaufmann, E.R., Mboumi, E.: Positive solutions of a boundary value problem for a nonlinear fractional

differential equation. Electron. J. Qual. Theory Differ. Equ. 2008(3), 1–11 (2008)
8. Goodrich, C.S.: Existence of a positive solution to a class of fractional differential equations. Appl. Math.

Lett. 23, 1050–1055 (2010)
9. Krasnosel’skii, M.: Positive Solutions of Operator Equations. Noordhoff, Groningen (1964)

10. Leggett, R.W., Williams, L.R.: Multiple positive fixed points of nonlinear operators on ordered Banach
spaces. Indiana Univ. Math. J. 28, 673–688 (1979)

11. Jankowski, T.: Positive solutions for fourth-order differential equations with deviating arguments and
integral boundary conditions. Nonlinear Anal. 73, 1289–1299 (2010)

12. Yan, J.R.: Oscillation of first-order impulsive differential equations with advanced argument. Comput.
Math. Appl. 42, 1353–1363 (2001)

13. Wang, G.: Boundary value problems for systems of nonlinear integro-differential equations with deviat-
ing arguments. J. Comput. Appl. Math. 234, 1356–1363 (2010)

14. Avery, R.I., Peterson, A.: Three positive fixed points of nonlinear operators on ordered Banach spaces.
Comput. Math. Appl. 42, 313–422 (2001)



Existence Theory for an Arbitrary Order Fractional Differential Equation 105

15. Avery, R.I., Henderson, J.: Two positive fixed points of nonlinear operator on ordered Banach spaces.
Commun. Appl. Nonlinear Anal. 8, 27–36 (2001)

16. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
17. Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985)
18. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, San Diego

(1988)
19. Ren, J.L., Ge, W., Ren, B.X.: Existence of three solutions for quasi-nonlinear boundary value problems.

Acta Math. Appl. Sin. 21, 353–358 (2005)
20. Su, Y.H.: Multiple positive pseudo-symmetric solutions of p-Laplacian dynamic equations on time

scales. Math. Comput. Model. 49, 1664–1681 (2009)
21. Li, S.B., Su, Y.H., Feng, Z.: Positive solutions to p-Laplacian multi-point BVPs on time scales. Dyn.

Partial. Differ. Equ. 7, 45–64 (2010)
22. Su, Y.H., Feng, Z.: Positive solutions to the singular p-Laplacian BVPs with sign-changing nonlinearities

and higher-order derivatives in Banach spaces on time scales. Dyn. Partial. Differ. Equ. 8, 149–171
(2011)


	Existence Theory for an Arbitrary Order Fractional Differential Equation with Deviating Argument
	Abstract
	Introduction
	Some Lemmas
	Single or Twin Solutions
	The Case of i0=1 and iinfty=1
	The Case i0=0 and iinfty=0
	The Case i0=1 and iinfty=0 or i0=0 and iinfty=1
	The Case i0=0 and iinfty=2 or i0=2 and iinfty=0

	Triple or Multiple Solutions
	Three Solutions
	Arbitrary n Solutions
	Arbitrary 2n-1 Solutions

	Examples
	References


