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Abstract In this paper we establish a comparison theorem for stochastic differential de-
lay equations with jumps. An example is constructed to demonstrate that the comparison
theorem need not hold whenever the diffusion term contains a delay function although the
jump-diffusion coefficient could contain a delay function. Moreover, another example is es-
tablished to show that the comparison theorem is not necessary to be true provided that the
jump-diffusion term is non-increasing with respect to the delay variable.
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1 Introduction

For most of the practical cases, the dynamical systems will be disturbed by some stochastic
perturbation [13]. One type of stochastic perturbation is continuous and can be modeled by
stochastic integral w.r.t. the continuous martingale, e.g., Brownian motion. Non-Gaussian
random processes also play an important role in modelling stochastic dynamical systems
(see, e.g., Applebaum [2], Situ [13], Peszat and Zabczyk [12]). Typical examples of non-
Gaussian stochastic processes are Lévy processes and processes arising by Poisson random
measures. In [14], Woyczyński describes a number of phenomena from fluid mechanics,
solid state physics, polymer chemistry, economic science, etc., for which non-Gaussian Lévy
processes can be used as their mathematical model in describing the related probability
behaviour. On the other hand, control engineering intuition suggests that time-delays are
common in practical systems and are often the cause of instability and/or poor performance
[17]. Moreover, it is usually difficult to obtain accurate values for the delay and conservative
estimates often have to be used. The importance of time delay has already motivated by
several studies on the stability of stochastic diffusion with time delay (see, e.g., [3] and [9]).
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In the past few years, comparison theorems for two Stochastic Differential Equations
(SDEs) have received a lot of attention, for example, Anderson [1], Gal’cuk and Davis
[4], Ikeda and Watanable [5], Mao [6], O’Brien [8], Yamada [15], Yan [16] and references
therein. Recently, comparison theorem has made a great development that Peng and Zhu [11]
obtain a necessary and sufficient condition for comparison theorem of SDEs with jumps by
applying a criteria of “viability condition”, Peng and Yang [10] give a comparison theorem
for anticipated backward SDEs, and, for a class of Stochastic Differential Delay Equations
(SDDEs), Yang, Mao and Yuan [17] also establish a comparison theorem.

In this paper we shall establish a comparison theorem for SDDEs with jumps. It should
be pointed out that the approach of this paper is inspired by Peng and Yang [10], Peng
and Zhu [11] and Yang, Mao and Yuan [17]. We construct an example, which demonstrates
that the comparison theorem need not hold whenever the diffusion term contains a delay
function although the jump-diffusion coefficient could contain a delay function just as Ex-
ample 2.1 below shows. Moreover, another example, Example 2.3, is established to show
that the comparison theorem is not necessary to be true provided that the jump-diffusion
term is non-increasing w.r.t. the delay variable.

The organization of this paper goes as follows: In Sect. 2 we establish a comparison
theorem for two one-dimensional SDDEs with pure jumps; Similar comparison results are
given for SDDEs with compensation jump processes in Sect. 3.

2 Comparison Theorem for SDDEs with Pure Jumps

Let W(t), t ≥ 0, be a real-valued Wiener process defined on a certain probability space
(�, F ,P) equipped with a filtration {Ft }t≥0 satisfying the usual conditions (i.e., it is
right continuous and F0 contains all P-null sets), and N(·, ·) is a Poisson counting pro-
cess with characteristic measure λ on a measurable subset Y of [0,∞) with λ(Y) < ∞,
Ñ(dt, du) := N(dt, du) − λ(du)dt is a compensation martingale process. For given τ > 0
denote D([−τ,0];R) the space of all càdlàg paths from [−τ,0] into R with the norm
‖u‖ := sup−τ≤θ≤0 |u(θ)|, and L2

F0
([−τ,0];R) the family of F0-measurable D([−τ,0];R)-

valued random variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0} such that E‖ξ‖2 < ∞. Throughout this
paper, we assume that W(t) and N(dt, du) are independent.

Fix T > 0 and consider SDDE with jumps for t ∈ [0, T ]

dX(t) = f (X(t),X(t − τ), t)dt + g(X(t),X(t − τ), t)dW(t)

+
∫

Y

γ (X(t−),X((t − τ)−), t, u)Ñ(dt, du) (2.1)

with an initial condition X(θ) = ξ(θ) for any θ ∈ [−τ,0], where ξ ∈ D([−τ,0];R),
and X(t−) := lims↑t X(s). Let the maps f = f (x, y, t,ω), g = g(x, y, t,ω) and γ =
γ (x, y, t, u,ω) be given by

f,g : R × R × [0, T ] × � → R and γ : R × R × [0, T ] × Y × � → R,

and be predictable. As usual by writing f (x, y, t) we mean the map ω 	→ f (x, y, t,ω).
Analogously for g(x, y, t) and γ (x, y, t, u). We assume that f,g and γ satisfy local Lips-
chitz condition and linear growth condition. That is, for all n ∈ N there exists some positive
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constant Ln such that on [0, T ] × �

|f (x1, y1, t) − f (x2, y2, t)|2 + |g(x1, y1, t) − g(x2, y2, t)|2

+
∫

Y

|γ (x1, y1, t, u) − γ (x2, y2, t, u)|2λ(du)

≤ Ln(|x1 − x2|2 + |y1 − y2|2) (2.2)

for those x1, x2, y1, y2 ∈ R with |x1| ∨ |x2| ∨ |y1| ∨ |y2| ≤ n; and there exists an L > 0 such
that on [0, T ] × �

|f (x, y, t)|2 + |g(x, y, t)|2 +
∫

Y

|γ (x, y, t, u)|2λ(du) ≤ L(1 + |x|2 + |y|2) (2.3)

for any x, y ∈ R.
By the standard Banach fixed point theorem and truncation approach (see, e.g., [7, p. 57]),

the following existence and uniqueness result can be found.

Lemma 2.1 Under conditions (2.2) and (2.3), for an initial condition ξ ∈ L2
F0

([−τ,0];R),
(2.1) has a unique solution X(t) with property E sup−τ≤t≤T |X(t)|2 < ∞.

In order to state our main results, we need the following lemma.

Lemma 2.2 Consider two one-dimensional SDEs with jumps for any t ∈ [0, T ]

X1(t) = x1 +
∫ t

0
f1(X1(s), s)ds +

∫ t

0
g(X1(s), s)dW(s)

+
∫ t

0

∫
Y

γ1(X1(s−), s, u)N(ds, du) (2.4)

and

X2(t) = x2 +
∫ t

0
f2(X2(s), s)ds +

∫ t

0
g(X2(s), s)dW(s)

+
∫ t

0

∫
Y

γ2(X2(s−), s, u)N(ds, du). (2.5)

Let fi, g, γi, i = 1,2, be predictable and assume that there exists an L > 0 such that on
[0, T ] × �

|fi(x, t) − fi(y, t)|2 + |g(x, t) − g(y, t)|2 +
∫

Y

|γi(x, t, u) − γi(y, t, u)|2λ(du)

≤ L|x − y|2 (2.6)

for any x, y ∈ R with E sup0≤t≤T (|fi(0, t)|2 + |g(0, t)|2 + ∫
Y

|γi(0, t, u)|2λ(du)) < ∞ and
on [0, T ] × �

f1(x, t) ≥ f2(x, t) and γ1(x, t, u) ≥ γ2(x, t, u), λ(du) − a.e., for x ∈ R. (2.7)
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Assume further that on [0, T ] × �

x + γ1(x, t, u) ≤ y + γ1(y, t, u), λ(du) − a.e., whenever x ≤ y (2.8)

for any x, y ∈ R. Then we have

X1(t) ≥ X2(t), ∀t ∈ [0, T ], P − a.s. provided that x1 ≥ x2.

Proof By Lemma 2.1, both (2.4) and (2.5) have unique solutions, respectively. Applying the
Tanaka-type formula [13, Theorem 152, p. 120], we have for any t ∈ [0, T ]

(X2(t) − X1(t))
+

= (x2 − x1)
+ +

∫ t

0
IA[f2(X2(s), s) − f1(X1(s), s)]ds

+
∫ t

0
IA[g(X2(s), s) − g(X1(s), s)]dW(s)

+
∫ t

0

∫
Y

[ (X2(s−) − X1(s−) + γ2(X2(s−), s, u) − γ1(X1(s−), s, u))+

− (X2(s−) − X1(s−))+]N(ds, du)

≤
∫ t

0
IA[(f1(X2(s), s) − f1(X1(s), s)) + (f2(X2(s), s) − f1(X2(s), s))]ds

+
∫ t

0
IA[g(X2(s), s) − g(X1(s), s)]dW(s)

+
∫ t

0

∫
Y

IA(γ1(X2(s−), s, u) − γ1(X1(s−), s, u))N(ds, du)

+
∫ t

0

∫
Y

[ (X2(s−) − X1(s−) + γ1(X2(s−), s, u) − γ1(X1(s−), s, u)

+ γ2(X2(s−), s, u) − γ1(X2(s−), s, u))+ − (X2(s−) − X1(s−))+

− IA(γ1(X2(s−), s, u) − γ1(X1(s−), s, u))]N(ds, du),

in which A := {X2(s) − X1(s) > 0} and the second inequality is due to x1 ≥ x2. Taking
expectations, together with (2.7), we obtain

E(X2(t) − X1(t))
+

≤ E

∫ t

0
IA[f1(X2(s), s) − f1(X1(s), s)]ds

+ E

∫ t

0

∫
Y

IA(γ1(X2(s), s, u) − γ1(X1(s), s, u))λ(du)ds

+ E

∫ t

0

∫
Y

[ (X2(s) − X1(s) + γ1(X2(s), s, u) − γ1(X1(s), s, u))+

− (X2(s) − X1(s))
+ − IA(γ1(X2(s), s, u)

− γ1(X1(s), s, u))]λ(du)ds,
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where we have replaced X1(s−) with X1(s) because this will not have any effect on the
Lebesgue integrals involved. On the other hand, thanks to (2.8), it follows that

E

∫ t

0

∫
Y

[(X2(s) − X1(s) + γ1(X2(s), s, u) − γ1(X1(s), s, u))+ − (X2(s) − X1(s))
+

− IA(γ1(X2(s), s, u) − γ1(X1(s), s, u))]λ(du)ds ≤ 0.

Hence, taking into account (2.6) yields

E(X2(t) − X1(t))
+ ≤ (1 + λ

1
2 (Y))L

1
2 E

∫ t

0
I{X2(s)−X1(s)>0}|X2(s) − X1(s)|ds

= (1 + λ
1
2 (Y))L

1
2 E

∫ t

0
(X2(s) − X1(s))

+ds.

This, in addition to Gronwall’s inequality, implies E(X2(t) − X1(t))
+ = 0 and then yields

X2(t) ≤ X1(t), t ∈ [0, T ], P − a.s., due to the fact that (X2(t) − X1(t))
+ is a nonnegative

random variable for fixed t , as required. �

Remark 2.1 Peng and Zhu [11, Theorem 3.1] obtain a necessary and sufficient condition of
comparison theorem for two one-dimensional SDEs driven by compensation jump processes
such that

X1(t) = x1 +
∫ t

0
f1(X1(s), s)ds +

∫ t

0
g1(X1(s), s)dW(s)

+
∫ t

0

∫
Y

γ1(X1(s−), s, u)Ñ(ds, du) (2.9)

and

X2(t) = x2 +
∫ t

0
f2(X2(s), s)ds +

∫ t

0
g2(X2(s), s)dW(s)

+
∫ t

0

∫
Y

γ2(X2(s−), s, u)Ñ(ds, du). (2.10)

The main result is as follows: x1 ≥ x2 ⇒ X1(t) ≥ X2(t), P − a.s., if and only if

f1(x, t) ≥ f2(x, t), g1(x, t) = g2(x, t), γ1(x, t, u) = γ2(x, t, u), λ(du) − a.e.

as well as (2.8) holds. For (2.4) and (2.5) which are driven by pure jump processes, we
consider a comparison result in Lemma 2.2, where it is not necessary to impose γ1 = γ2.
Clearly, (2.4) and (2.5) can be easily transformed to (2.9) and (2.10), respectively. However,
we shall use this lemma to establish a comparison theorem for SDDEs driven by jump
processes.

In the work [17], where comparison theorem of one-dimensional stochastic hybrid delay
systems is studied, a very suggestive example (Example 3.3 in [17]) shows that comparison
theorem need not hold whenever diffusion terms contain a delay function. While for stochas-
tic delay systems with jumps, the following example demonstrates that the jump-diffusion
terms could contain a delay function.
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Example 2.1 Consider the following two one-dimensional SDDEs with jumps

{
X(t) = c + ∫ t

0

∫ ∞
0 γ (u)X((s − τ)−)Ñ(ds, du), t ∈ [0, T ];

X(θ) = c, θ ∈ [−τ,0)
(2.11)

and {
Y (t) = ∫ t

0

∫ ∞
0 γ (u)Y ((s − τ)−)Ñ(ds, du), t ∈ [0, T ];

Y (θ) = 0, θ ∈ [−τ,0)
(2.12)

where c < 0 is a constant. We further assume that

γ (u) > 0, u ∈ (0,∞) (2.13)

and

τ

∫ ∞

0
γ (u)λ(du) < 1. (2.14)

For any t ∈ [0, τ ]

X(t) = c

(
1 +

∫ t

0

∫ ∞

0
γ (u)Ñ(ds, du)

)

= c

(
1 +

∫ t

0

∫ ∞

0
γ (u)N(ds, du) −

∫ t

0

∫ ∞

0
γ (u)λ(du)ds

)
. (2.15)

By (2.13), combining the definition of Poisson stochastic calculus, it follows that for t ∈
[0, τ ] ∫ t

0

∫ ∞

0
γ (u)N(ds, du) ≥ 0

and

−
∫ t

0

∫ ∞

0
γ (u)λ(du)ds ≥ −

∫ τ

0

∫ ∞

0
γ (u)λ(du)ds = −τ

∫ ∞

0
γ (u)λ(du).

Hence, together with (2.14), in (2.15) X(t) ≤ 0 while Y (t) ≡ 0 for t ∈ [0, τ ]. As a conse-
quence, we could derive the following comparison result: the solutions X(t) of (2.11) and
Y (t) of (2.12) obey the property that for t ∈ [0, τ ]

X(t) ≤ Y (t), P − a.s.

Motivated by [17, Example 3.3] we can also establish an example to show that, for
stochastic delay systems with jumps, comparison theorem need not hold if diffusion term
contains a delay function.

Example 2.2 Consider the following two one-dimensional equations

{
X(t) = c + ∫ t

0 X(s − τ)dW(s) − ∫ t

0 X((s − τ)−)dN(s), t ∈ [0, T ];
X(θ) = c, θ ∈ [−τ,0)
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and {
Y (t) = ∫ t

0 Y (s − τ)dW(s) − ∫ t

0 Y ((s − τ)−)dN(s), t ∈ [0, T ];
Y (θ) = 0, θ ∈ [−τ,0)

where c < 0 is a constant, N is a Poisson process, independent of Brownian motion W .
Clearly, for any t ∈ [0, τ ], Y (t) ≡ 0 while

X(t) = c(1 + W(t) − N(t)).

Noting that N(t) ≥ 0 and the relation

{ω ∈ � : W(t) < −1} ⊆ {ω ∈ � : 1 + W(t) − N(t) < 0},
hence

P{ω ∈ � : 1 + W(t) − N(t) < 0} ≥ P{ω ∈ � : W(t) < −1} > 0,

since W obeys the normal distribution. This, together with c < 0, yields

P{ω ∈ � : X(t,ω) > 0} > 0.

Consequently, we could conclude that comparison theorem need not hold if diffusion
coefficient contains a delay function. What’s more, the following example shows that if the
jump-diffusion coefficients are not increasing w.r.t. the delay variables, comparison theorem
also need not hold.

Example 2.3 Consider the following two one-dimensional equations

{
X(t) = c − 2

∫ t

0 X((s − τ)−)dN(s), t ∈ [0, T ];
X(θ) = c, θ ∈ [−τ,0)

(2.16)

and {
Y (t) = −2

∫ t

0 I{Y((s−τ)−)<0}Y ((s − τ)−)dN(s), t ∈ [0, T ];
Y (θ) = 0, θ ∈ [−τ,0),

where c < 0 is a constant and N is a Poisson process with intensity λ.

By (2.16) it is easy to see that for any t ∈ [0, τ ]
X(t) = c(1 − 2N(t)).

In what follows we intend to show

P{ω ∈ � : X(t,ω) > 0} > 0. (2.17)

Indeed, noting that

{1 − 2N(t) < 0} = {N(t) ≥ 1},
we have

P{1 − 2N(t) < 0} = 1 − e−λt > 0 whenever 0 < t < τ,
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which further gives (2.17). Although

−2y ≤ −2yI{y<0} and c < 0,

we cannot deduce that

X(t) ≤ Y (t), P − a.s.

due to (2.17) and Y (t) ≡ 0, t ∈ [0, T ].
Based on the previous discussion, now we state a comparison theorem for SDDEs driven

by pure jump processes. In the proof, Lemma 2.2 is used.

Theorem 2.1 Consider two one-dimensional SDDEs with pure jumps for any t ∈ [0, T ]
⎧⎪⎪⎨
⎪⎪⎩

dX1(t) = f1(X1(t),X1(t − τ), t)dt + g(X1(t), t)dW(t)

+ ∫
Y

γ (X1(t−),X1((t − τ)−), t, u)N(dt, du)

X1(t) = ξ1(t), t ∈ [−τ,0],
(2.18)

and ⎧⎪⎪⎨
⎪⎪⎩

dX2(t) = f2(X2(t),X2(t − τ), t)dt + g(X2(t), t)dW(t)

+ ∫
Y

γ (X2(t−),X2((t − τ)−), t, u)N(dt, du)

X2(t) = ξ2(t), t ∈ [−τ,0].
(2.19)

Let fi, g, γ, i = 1,2, be predictable and, for x1, x2, y1, y2, x, y ∈ R, assume that there exists
an L > 0 such that on [0, T ] × �

|fi(x1, y1, t) − fi(x2, y2, t)|2 +
∫

Y

|γ (x1, y1, t, u) − γ (x2, y2, t, u)|2λ(du)

≤ L(|x1 − x2|2 + |y1 − y2|2) (2.20)

and

|g(x, t) − g(y, t)|2 ≤ L|x − y|2 (2.21)

with the property that E sup0≤t≤T (|fi(0,0, t)|2 + |g(0, t)|2 + ∫
Y

|γ (0,0, t, u)|2λ(du)) < ∞.
For x, y, z ∈ R, assume further that on [0, T ] × �

f1(x, y, t) ≥ f2(x, y, t) (2.22)

and

x + γ (x, z, t, u) ≤ y + γ (y, z, t, u), λ(du) − a.e. whenever x ≤ y. (2.23)

Moreover, we suppose that f2 and γ is nondecreasing with respect to the second variable,
that is, on [0, T ] × �, for x, y, z ∈ R

f2(x, y, t) ≥ f2(x, z, t) and γ (x, y, t, u) ≥ γ (x, z, t, u), λ(du) − a.e., whenever y ≥ z.

(2.24)
Then we have that for ξ1, ξ2 ∈ L2

F0
([−τ,0];R)

X1(t) ≥ X2(t), t ∈ [0, T ], P − a.s., provided that ξ1(t) ≥ ξ2(t), P − a.s.
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Proof The proof is motivated by that of [17, Theorem 3.4]. Under conditions (2.20) and
(2.21), both (2.18) and (2.19) have unique solutions X1(t), t ∈ [0, T ] and X2(t), t ∈ [0, T ],
respectively. Now consider SDDE with pure jumps for any t ∈ [−τ, T ]

⎧⎪⎪⎨
⎪⎪⎩

dX3(t) = f2(X3(t),X1(t − τ), t)dt + g(X3(t), t)dW(t)

+ ∫
Y

γ (X3(t−),X1((t − τ)−), t, u)N(dt, du)

X3(t) = ξ2(t), t ∈ [−τ,0].
Noting by (2.22) that f1(x,X1(t − τ), t) ≥ f2(x,X1(t − τ), t), together with ξ1(t) ≥
ξ2(t),P − a.s., for t ∈ [−τ,0], we conclude by Lemma 2.2 that X1(t) ≥ X3(t), t ∈ [−τ, T ],
P − a.s. Next consider SDDE with pure jumps

⎧⎪⎪⎨
⎪⎪⎩

dX4(t) = f2(X4(t),X3(t − τ), t)dt + g(X4(t), t)dW(t)

+ ∫
Y

γ (X4(t−),X3((t − τ)−), t, u)N(dt, du)

X4(t) = ξ2(t), t ∈ [−τ,0],
which could be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX4(t) = [f2(X4(t),X1(t − τ), t) + (f2(X4(t),X3(t − τ), t)

− f2(X4(t),X1(t − τ), t))]dt

+ g(X4(t), t)dW(t) + ∫
Y
[γ (X4(t−),X1((t − τ)−), t, u)

+ (γ (X4(t−),X3((t − τ)−), t, u)

− γ (X4(t−),X1((t − τ)−), t, u))]N(dt, du)

X4(t) = ξ2(t), t ∈ [−τ,0].
Recalling X1(t) ≥ X3(t), t ∈ [−τ, T ], P−a.s., by (2.24) and Lemma 2.2, X3(t) ≥ X4(t), t ∈
[−τ, T ], P − a.s. In what follows, repeating the previous procedure we can get the sequence

X1(t) ≥ X3(t) ≥ X4(t) ≥ X5(t) ≥ · · · ≥ Xn(t) ≥ · · ·, P − a.s., (2.25)

where Xn(t) satisfies the following equation

⎧⎪⎪⎨
⎪⎪⎩

dXn(t) = f2(Xn(t),Xn−1(t − τ), t)dt + g(Xn(t), t)dW(t)

+ ∫
Y

γ (Xn(t−),Xn−1((t − τ)−), t, u)N(dt, du)

Xn(t) = ξ2(t), t ∈ [−τ,0].
In what follows we intend to show that Xn(t) is a Cauchy sequence, which has a unique
limit X(t), and X(t) = X2(t), t ∈ [0, T ]. Denote by L2

Ft
([0, T ];R) the space of R-valued

Ft -adapted stochastic processes with E
∫ T

0 |v(t)|2dt < ∞, equipped with the norm

‖v‖−β :=
(

E

∫ T

0
|v(s)|2e−βsds

) 1
2

,

where β is a positive constant to be determined. Obviously, the norm ‖v‖−β is equiva-

lent to the original one ‖v‖ := (E
∫ T

0 |v(t)|2dt)
1
2 for v ∈ L2

Ft
([0, T ];R). For simplicity, set
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X̄n(t) := Xn(t) − Xn−1(t), n ≥ 4. Applying Itô’s formula we find for any t ∈ [0, T ]

E(e−βt |X̄n(t)|2)

= E

∫ t

0
−βe−βs |X̄n(s)|2ds + E

∫ t

0
e−βs[2X̄n(s)(f2(Xn(s),Xn−1(s − τ), s)

− f2(Xn−1(s),Xn−2(s − τ), s)) + |g(Xn(s), s) − g(Xn−1(s), s)|2]ds

+ E

∫ t

0

∫
Y

e−βs
[
2X̄n(s−)

(
γ (Xn(s−),Xn−1((s − τ)−), s, u)

− γ (Xn−1(s−),Xn−2((s − τ)−), s, u)
)

+
∣∣∣γ (Xn(s−),Xn−1((s − τ)−), s, u) − γ (Xn−1(s−),Xn−2((s − τ)−), s, u)

∣∣∣2]

× N(ds, du).

This, together with (2.20) and (2.21), yields that

E(e−βt |X̄n(t)|2)

≤ E

∫ t

0
−βe−βs |X̄n(s)|2ds + E

∫ t

0
e−βs[2L|X̄n(s)|2 + L|X̄n−1(s)|2

+ 2L
1
2 (1 + (λ(Y))

1
2 )|X̄n(s)|(|X̄n(s)| + |X̄n−1(s)|)]ds

≤ (−β + 2L + 3L
1
2 (1 + (λ(Y))

1
2 ))E

∫ t

0
e−βs |X̄n(s)|2ds

+ (L + L
1
2 (1 + (λ(Y))

1
2 ))E

∫ t

0
e−βs |X̄n−1(s)|2ds.

Letting

β = 4L + 5L
1
2 (1 + (λ(Y))

1
2 ),

we then have −β + 2L + 3L
1
2 (1 + (λ(Y))

1
2 ) < 0 and

(L + L
1
2 (1 + (λ(Y))

1
2 ))/(β − (2L + 3L

1
2 (1 + (λ(Y))

1
2 ))) = 1

2
.

Hence

E

∫ t

0
e−βs |X̄n(s)|2ds ≤ 1

2
E

∫ t

0
e−βs |X̄n−1(s)|2ds,

which implies by induction arguments that

E

∫ t

0
e−βs |X̄n(s)|2ds ≤ 1

2n−4
E

∫ t

0
e−βs |X̄4(s)|2ds.

This gives that X̄n(t) is a Cauchy sequence in L2
Ft

([0, T ];R) with the norm ‖ · ‖−β . Thus
Xn(t) is also a Cauchy sequence and has a unique limit denoted by X(t) ∈ L2

Ft
([0, T ];R),

which is a complete norm space under the norm ‖ · ‖−β . Next we show X2(t) = X(t) by the
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uniqueness. In fact, by (2.20)

E

∫ T

0
e−βt

∣∣∣∣
∫ t

0
[f2(Xn(s),Xn−1(s − τ), s) − f2(X(s),X(s − τ), s)]ds

∣∣∣∣
2

dt

≤ LT E

∫ T

0

∫ t

0
e−β(t−s)e−βs(|Xn(s) − X(s)|2 + |Xn−1(s) − X(s)|2)dsdt

≤ LT 2
E

∫ T

0
e−βs(|Xn(s) − X(s)|2 + |Xn−1(s) − X(s)|2)ds

→ 0 as n → ∞,

and, according to Itô’s isometry

E

∫ T

0
e−βt

∣∣∣∣
∫ t

0

∫
Y

[γ (Xn(s−),Xn−1((s − τ)−), s, u)

− γ (X(s−),X((s − τ)−), s, u)]N(ds, du)

∣∣∣∣
2

dt

≤ CE

∫ T

0
e−βt

∫ t

0

∫
Y

|γ (Xn(s),Xn−1(s − τ), s, u)

− γ (X(s),X(s − τ), s, u)|2λ(du)dsdt

≤ LCT E

∫ T

0
e−βs(|Xn(s) − X(s)|2 + |Xn−1(s) − X(s)|2)ds

→ 0 as n → ∞,

where C := 2(1 + T λ(Y)), and, carrying out similar arguments,

E

∫ T

0
e−βt

∣∣∣∣
∫ t

0
[g(Xn(s), s) − g(X(s), s)]dW(s)

∣∣∣∣
2

dt → 0 as n → ∞.

As a consequence, we can conclude that X satisfies

⎧⎪⎪⎨
⎪⎪⎩

dX(t) = f2(X(t),X(t − τ), t)dt + g(X(t), t)dW(t)

+ ∫
Y

γ (X(t−),X((t − τ)−), t, u)N(dt, du)

X(t) = ξ2(t), t ∈ [−τ,0].

By the uniqueness of solution of (2.19), we conclude that X(t) = X2(t) and the desired
assertion is complete by recalling (2.25). �

Remark 2.2 [17] established an example to show that condition (2.22) is vital for the com-
parison theorem for SDDEs. By Example 2.3, we could conclude that, if the jump diffusion
γ is nonincreasing in second variable, namely, delay term, comparison theorem might not
be available. Therefore condition (2.24) is natural. For (2.23), we can refer to Situ [13] and
Peng and Zhu [11] for more details.
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Remark 2.3 By carrying out the techniques of stopping times, the derived comparison theo-
rem can be extend to the case in which Lipschitz condition is replaced by the Carathéodory-
type condition [13, p. 292].

3 Comparison Theorem for SDDEs with Compensation Jump Processes

In the last section we established a comparison theorem for SDDEs with pure jump pro-
cesses. To make the content more comprehensive, in this part we aim to discuss the compar-
ison problems for SDDEs with compensation jump process.

Consider two one-dimensional SDDEs with jumps for any t ∈ [0, T ]
⎧⎪⎪⎨
⎪⎪⎩

dX1(t) = f1(X1(t),X1(t − τ), t)dt + g(X1(t), t)dW(t)

+ ∫
Y

γ (X1(t−),X1((t − τ)−), t, u)Ñ(dt, du)

X1(t) = ξ1(t), t ∈ [−τ,0],
(3.1)

and ⎧⎪⎪⎨
⎪⎪⎩

dX2(t) = f2(X2(t),X2(t − τ), t)dt + g(X2(t), t)dW(t)

+ ∫
Y

γ (X2(t−),X2((t − τ)−), t, u)Ñ(dt, du)

X2(t) = ξ2(t), t ∈ [−τ,0].
(3.2)

Noting that Ñ(dt, du) = N(dt, du) − λ(du)dt , (3.1) and (3.2) are equivalent to

⎧⎪⎪⎨
⎪⎪⎩

dX1(t) = [f1(X1(t),X1(t − τ), t) − ∫
Y

γ (X1(t),X1(t − τ), t, u)λ(du)]dt

+ g(X1(t), t)dW(t) + ∫
Y

γ (X1(t−),X1((t − τ)−), t, u)N(dt, du)

X1(t) = ξ1(t), t ∈ [−τ,0],

and
⎧⎪⎪⎨
⎪⎪⎩

dX2(t) = [f2(X2(t),X2(t − τ), t) − ∫
Y

γ (X2(t),X2(t − τ), t, u)λ(du)]dt

+ g(X2(t), t)dW(t) + ∫
Y

γ (X2(t−),X2((t − τ)−), t, u)N(dt, du)

X2(t) = ξ2(t), t ∈ [−τ,0],

respectively.
Applying comparison theorem, Theorem 2.1, we can derive the following comparison

results for stochastic delay systems with compensation jump processes.

Theorem 3.1 Let conditions (2.20)–(2.23) hold. Moreover, we suppose that f2 − γ and γ

is non-decreasing with respect to the second variable, that is, on [0, T ] × �, for x, y, z ∈ R

f2(x, y, t) −
∫

Y

γ (x, y, t, u)λ(du) ≥ f2(x, z, t) −
∫

Y

γ (x, z, t, u)λ(du) (3.3)

and

γ (x, y, t, u) ≥ γ (x, z, t, u), λ(du) − a.e. (3.4)
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whenever y ≥ z. Then we have for ξ1, ξ2 ∈ L2
F0

([−τ,0];R)

X1(t) ≥ X2(t), t ∈ [0, T ], P − a.s., provided that ξ1(t) ≥ ξ2(t), P − a.s.

Example 3.1 Consider two one-dimensional SDDEs with jumps

⎧⎪⎪⎨
⎪⎪⎩

dX1(t) = f1(X1(t),X1(t − τ), t)dt + g(X1(t), t)dW(t)

+ ∫
Y

ρ(u)f2(X1(t−),X1((t − τ)−), t)Ñ(dt, du)

X1(t) = ξ1(t), t ∈ [−τ,0],
and ⎧⎪⎪⎨

⎪⎪⎩

dX2(t) = f2(X2(t),X2(t − τ), t)dt + g(X2(t), t)dW(t)

+ ∫
Y

ρ(u)f2(X2(t−),X2((t − τ)−), t)Ñ(dt, du)

X2(t) = ξ2(t), t ∈ [−τ,0],
where f1, f2, g satisfy conditions (2.20)–(2.22) and ξ1(t) ≥ ξ2(t), P − a.s., for
ξ1, ξ2 ∈ L2

F0
([−τ,0];R).

In what follows, we further assume that ρ > 0,
∫

Y
ρ(u)λ(du) < 1 and

f2(x, y, t) ≥ f2(x, z, t) whenever y ≥ z. (3.5)

By Theorem 3.1, to show that X1(t) ≥ X2(t), t ∈ [−τ, T ], P − a.s., it is sufficient to check
conditions (2.23), (3.3) and (3.4). By (3.5) and ρ > 0, it is easy to see that conditions (2.23)
and (3.4) hold. On the other hand, recalling

∫
Y

ρ(u)λ(du) < 1, we have

f2(x, y, t) −
∫

Y

ρ(u)λ(du)f2(x, y, t) =
(

1 −
∫

Y

ρ(u)

)
f2(x, y, t),

and, combining (3.5), condition (3.3) is also true.
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