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Abstract The paper deals with a class of semi-Markov control models with Borel state
and control spaces and possibly unbounded costs, where the holding times distribution F

depends on an unknown and possibly non-observable parameter which may change from
stage to stage. The system is modeled as a game against nature, which is a particular case
of a minimax control system. The objective is to show the existence of minimax strategies
under the discounted and average cost criteria.
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1 Introduction

The paper deals with semi-Markov control models (SMCMs) with Borel state and control
spaces, possibly unbounded costs, and distribution of the holding times partially known by
the controller, under discounted and average cost criteria.

The SMCMs are a class of continuous time stochastic control models where the distri-
bution of the random times between consecutive decision epochs (holding or sojourn times)
is arbitrary. Generally, such distribution depends on the state and the control selected by
the controller in each decision epoch, but in this paper we suppose that additionally it also
depends on an unknown and possibly non-observable parameter which may change from
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stage to stage. In this sense, the distribution of the holding times is partially known by the
controller.

In previous works the authors have studied a similar problem in which is assumed that
the holding time distribution is unknown, but with a density independent of the state-action
pairs (see [18, 19]). Under this assumption it was possible to apply standard schemes con-
sisting in the combination of statistical density estimation methods with control procedures
to construct optimal strategies. In general, when it is possible, the unknown component is
estimated from historical data using statistical methods. Then the optimal strategy is com-
puted assuming that such estimate is the true component, and then the well-known principle
of estimation and control, proposed in [15] and [20], is applied. However, in our model,
because the dependence on the state-action pairs, as well as the non-observability of the un-
known parameter, this standard approach is not possible to apply. Instead, we assume that,
at each stage, the only information owing the controller is that the parameter belongs to a
suitable set �. Hence, the controller is interested in select actions directed to minimize the
maximum cost generated on the corresponding set of parameters.

Specifically, in this paper we introduce a class of minimax semi-Markov control models,
known as games against nature, to study this semi-Markov optimal control problem. The
approach consists in supposing that the controller has an opponent, namely, the “nature”,
which, at each decision epoch, once the controller choose his/her action, the nature picks a
parameter from the set � which might depend on the current state of the system and on the
action selected. Thus, the goal of the controller is to minimize the maximum cost incurred
by the nature. That is, the controller must select actions guaranteeing the best performance
in the worst possible situation. Therefore, our main objective is to show the existence of
minimax strategies under both, the discounted and the average criteria.

Minimax control problems have been widely studied for Markovian systems under sev-
eral settings. For instance, in [1, 2, 8, 9, 14, 16] are considered particular classes of stochastic
minimax control systems to study inventory and queueing models. In addition, in [28] are
analyzed non-stationary minimax systems, while in [12, 21, 24] the continuous-time case is
treated. A general theory for discrete-time minimax control problems is presented in [6]. On
the other hand, SMCMs under discounted and average criteria typically are analyzed assum-
ing that all components of the model are known by the controller (see, for instance, [4, 5,
10, 11, 17, 22] and their references). To the best of our knowledge, minimax semi-Markov
control systems under our context have not been studied.

The paper is organized as follows. In Sect. 2 we present the semi-Markov control prob-
lem, whereas in Sect. 3 we introduce the minimax semi-Markov control model we will be
dealing with, and the main assumptions. Next, in Sect. 4 we describe the minimax criteria,
and Sects. 5 and 6 contain specific assumptions, preliminary results, and the main results of
the discounted and average minimax criteria, respectively. Finally, in Sect. 7, we present an
example of a class of semi-Markov inventory systems to illustrate our results.

2 The Semi-Markov Control Problem

Notation Given a Borel space X (that is, a Borel subset of a complete and separable metric
space) its Borel σ -algebra is denoted by B(X), and “measurable”, for either sets or functions,
means “Borel measurable”. Let X and Y be Borel spaces. Then a stochastic kernel Q(dx | y)

on X given Y is a function such that Q(· | y) is a probability measure on X for each fixed
y ∈ Y, and Q(B | ·) is a measurable function on Y for each fixed B ∈ B(X). We denote
by N (respectively N0) the set of positive (resp. nonnegative) integers; R (respectively R+)
denotes the set of real (resp. nonnegative real) numbers.
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Semi-Markov Control Model We consider the semi-Markov control model

SM = (X,A, {A(x) : x ∈ X} ,Q,F,D,d) (1)

satisfying the following conditions. The state space X and the action space A are both
Borel spaces. To each x ∈ X, we associate a nonempty measurable subset A(x) of A, whose
elements are the admissible controls (or actions) for the controller when the system is in
state x. The set

KA = {(x, a) : x ∈ X, a ∈ A(x)} (2)

of admissible state-action pairs is assumed to be a Borel subset of X×A. The transition law
Q(· | ·) is a stochastic kernel on X given KA, and F(· | x, a, θ) is the distribution function
of the holding time at state x ∈ X when the control a ∈ A(x) is chosen, which depends on
an unknown and possibly non-observable parameter θ belonging to a set �(x,a) specified
below. Finally, the cost functions D and d are possibly unbounded and measurable real-
valued functions on KA.

The model (1) has the following interpretation. At time of the nth decision epoch Tn, the
system is in the state xn = x and the controller chooses a control an = a ∈ A(x). Then the
system remains in the state x during a nonnegative random time δn+1 with distribution F ,
and the following happens: (1) an immediate cost D(x,a) is incurred; (2) the system jumps
to a new state xn+1 = y according to a transition law Q(· | x, a); and (3) a cost rate d(x, a)

is imposed until the transition occurs. Once the transition to state y occurs, the process is
repeated.

The decision epochs are Tn := Tn−1 + δn for n ∈ N, and T0 = 0, and the random variables
δn+1 = Tn+1 − Tn are called the sojourn or holding time at state xn.

According to the definition of the control model SM and its interpretation, the parameter
may change from stage to stage. Moreover, the one-stage cost, defined in terms of the cost
functions D and d, is a function c(x, a, θ), x ∈ X, a ∈ A(x), θ ∈ �(x,a). So, the optimal
control problem for the controller is to find a control strategy directed to minimize his/her
cost flow {c(xn, an, θn)}n∈N0 , xn ∈ X, an ∈ A(xn), θn ∈ �(xn, an), over an infinite horizon
using either a discounted or the average cost criterion. However, since in each decision
epoch the only information about the parameter θn is that it belongs to the set �(xn, an), the
standard procedures to solve the semi-Markov optimal control problem are not accessible to
the controller.

3 Minimax Semi-Markov Control Model

In order to propose a reasonable solution, we model the semi-Markov control problem de-
scribed previously as a minimax system. In this case, we assume that the controller has an
opponent who selects the parameter θ in each decision epoch, which in turns determines the
holding time distribution F. To fix ideas, we consider a minimax control model of the form

MSM = (X,A,�,KA,K,Q,F,D,d), (3)

where X,A,Q,F,D,d, and KA are as (1) and (2), and � is the opponent action space
which is assumed to be a Borel space. The set K ∈ B(X × A × �) is the constraint set for
the opponent. Hence, for each (x, a) ∈ KA, we suppose that

�(x,a) := {θ ∈ � : (x, a, θ) ∈ K}
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is a nonempty measurable subset of � representing the set of admissible actions for the
opponent when the state is x ∈ X and the controller selects the action a ∈ A(x). According
to this setting, F(·|x, a, θ) is the distribution function of the holding time at state x ∈ X

when the control a ∈ A(x) is chosen and the opponent selects θ ∈ �(x,a). Furthermore, the
one-stage cost c is a possible unbounded and measurable real-valued function on K, which
is defined in terms of the cost functions D and d according to the optimality criterion studied
(see (5) and (12) below).

Therefore, the semi-Markov control problem can be seen as a game against the nature
defined by the minimax control model (3). Indeed, once the controller selects the action
an = a when the system is in the state xn = x, the opponent, the “nature”, picks a parameter
θn = θ ∈ �(x,a) and the system remains in the state x during the random time δn+1 with
distribution F(·|x, a, θ). Next, the system evolves according to the model (1). Now, since
the one-stage cost c(x, a, θ) depends on the parameter selected at each stage, the goal of the
controller is to minimize the maximum cost incurred by the nature.

Strategies The actions or controls applied by the controller as well as his/her opponent at
the decision epochs are selected according to rules known as control strategies defined as
follows.

Let H0 := X, H
′
0 := KA, and for n ∈ N let Hn := K

n × X and H
′
n := K

n × KA. Typical
elements of Hn and H

′
n are written as hn = (x0, a0, θ0, . . . , xn−1, an−1, θn−1, xn) and h′

n =
(hn, an), respectively. A strategy for the controller is a sequence π = {πn} of stochastic
kernels on A given Hn such that πn(A(xn)|hn) = 1 for all hn ∈ Hn and n ∈ N0. We denote
by �A the set of all strategies for the controller, and by FA the subset of all stationary
strategies. As usual, every stationary strategy π ∈ FA is identified with some measurable
function f : X → A such that πn(·|hn) is concentrated in f (xn) ∈ A(xn) for all hn ∈ Hn and
n ∈ N0, taking the form π = {f,f, . . .}. A strategy for the opponent is a sequence π ′ = {π ′

n}
of stochastic kernels on � given H

′
n such that π ′

n(�(xn, an)|h′
n) = 1 for all h′

n ∈ H
′
n and

n ∈ N0. We denote by �� the set of all strategies for the opponent, and by F� ⊂ �� the
set of all stationary strategies. Similarly, we identify a stationary strategy π ′ ∈ F� with
some measurable function g : X × A → � such that π ′

n(·|h′
n) is concentrated in g(xn, an) ∈

�(xn, an) for all h′
n ∈ H

′
n and n ∈ N0.

To conclude this section, we introduce the following two sets of conditions on the mini-
max semi-Markov model (3). The first one, Assumption 1, is a regularity condition ensuring
that in a bounded time interval there are at most a finite number of transitions of the process,
while in Assumption 2 we impose continuity and compactness conditions to guarantee the
existence of minimax selectors.

Assumption 1 There exist η > 0 and ε > 0 such that

F (η | x, a, θ) ≤ 1 − ε ∀(x, a, θ) ∈ K.

Assumption 2 (a) The cost functions D(x,a) and d(x, a) are lower semicontinuous (l.s.c.)
on KA. Moreover, there exist a continuous function W : X → [1,∞) and a positive constant
M0 such that

max {D(x,a), d(x, a)} ≤ M0W(x) ∀(x, a) ∈ KA.

(b) The transition law Q is weakly continuous, that is, for each continuous and bounded
function u : X → R, the function

(x, a) 	−→
∫

X

u (y)Q(dy | x, a)
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is continuous on KA.
(c) The function

(x, a) 	−→
∫

X

W (y)Q(dy | x, a)

is continuous on KA.
(d) The multifunction x → A(x) is upper semi-continuous (u.s.c.), and the set A(x) is

compact for each x ∈ X.
(e) The multifunction (x, a) → �(x,a) is l.s.c., and for each (x, a) ∈ KA, �(x, a) is a

σ -compact set.

We denote by BW the normed linear space of all measurable functions u : X → R with
norm

‖u‖W := sup
x∈X

|u (x)|
W (x)

< ∞, (4)

and by LW the subspace of l.s.c. functions in BW .

Remark 1 (a) As is well-known, the Assumption 2(b) can be substituted by the following
equivalent condition: For each l.s.c. and bounded below function u : X → R, the function

(x, a) 	−→
∫

X

u (y)Q(dy | x, a)

is l.s.c. on KA.
(b) It is easy to prove that LW is a closed subset of BW . Hence, due to BW is a Banach

space, we have that LW is a complete subspace of BW .

4 Minimax Criteria

To study the discounted criterion, we assume that the costs are continuously discounted. That
is, for a discount factor α > 0, a cost C incurred at time t is equivalent to a cost C exp(−αt)

at time 0. Then we define the one-stage cost for the discounted criterion as

c(x, a, θ) := D(x,a) + d(x, a)

∫ ∞

0

∫ t

0
exp(−αs)dsF (dt | x, a, θ), (x, a, θ) ∈ K. (5)

Furthermore, for (x, a, θ) ∈ K, let

βα(x, a, θ) :=
∫ ∞

0
exp(−αs)F (ds | x, a, θ) (6)

and

τα(x, a, θ) := 1 − βα(x, a, θ)

α
.

Hence, it is easy to see that the one-stage cost (5) takes the form

c(x, a, θ) = D(x,a) + τα(x, a, θ)d(x, a), (x, a, θ) ∈ K. (7)



140 F. Luque-Vásquez et al.

For a fixed α > 0, and for each pair of strategies (π,π ′) ∈ �A × �� and initial state
x ∈ X, we define the total expected discounted cost as

V (x,π,π ′) := Eππ ′
x

[ ∞∑
n=0

exp(−αTn)c(xn, an, θn)

]
, (8)

where Eππ ′
x denotes the expectation operator with respect to the probability measure P ππ ′

x

induced by (π,π ′) ∈ �A ×��, given x0 = x (for the construction of P ππ ′
x see, for instance,

[3]).
Let

V ′(x,π) := sup
π ′∈��

V (x,π,π ′), x ∈ X, π ∈ �A.

Then, the discounted minimax semi-Markov control problem to the controller is to find a
strategy π∗ ∈ �A such that

V ′(x,π∗) = inf
π∈�A

V ′(x,π) = inf
π∈�A

sup
π ′∈��

V (x,π,π ′) =: V ∗(x), x ∈ X. (9)

In this case, the strategy π∗ is said to be discounted minimax, whereas V ∗ is the discounted
optimal value function.

On the other hand, to define the average cost criterion, we first define the mean holding
time in state x ∈ X, when the controller and the opponent select a ∈ A(x) and θ ∈ �(x,a),

respectively, as

τ (x, a, θ) :=
∫ ∞

0
tF (dt | x, a, θ), (x, a, θ) ∈ K. (10)

Then, for each x ∈ X and (π,π ′) ∈ �A ×��, we define the long-run expected average cost
by

J (x,π,π ′) := lim sup
n→∞

Eππ ′
x [∑n−1

k=0 c(xk, ak, θk)]
Eππ ′

x [∑n−1
k=0 τ(xk, ak, θk)]

, (11)

where

c (x, a, θ) := D (x,a) + τ (x, a, θ) d (x, a) , (x, a, θ) ∈ K, (12)

is the one-stage cost for the average criterion.
Defining

J ′(x,π) := sup
π ′∈��

J (x,π,π ′), x ∈ X, π ∈ �A, (13)

the average minimax semi-Markov control problem to the controller is to find a strategy
π∗ ∈ �A such that

J ′(x,π∗) = inf
π∈�A

J ′(x,π) = inf
π∈�A

sup
π ′∈��

J (x,π,π ′) := J ∗(x), x ∈ X. (14)

The strategy π∗ is said to be average minimax and J ∗ is the average optimal value function.
Our objective is to show the existence of discounted and average minimax strategies for

the semi-Markov model (3).
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5 Discounted Cost Criterion

In this section we analyze the minimax discounted cost criterion defined by (5)–(9).
From (6), using properties of the conditional expectation, we can write the performance

index (8) as

V (x,π,π ′) = Eππ ′
x

[
c(x0, a0, θ0) +

∞∑
n=1

n−1∏
k=0

βα(xk, ak, θk)c(xn, an, θn)

]
,

x ∈ X, (π,π ′) ∈ �A × ��. (15)

A first consequence of Assumptions 1 and 2 is the following.

Lemma 1 Under Assumptions 1 and 2(a) we have:

(a) ρα := sup(x,a,θ)∈K
βα(x, a, θ) < 1;

(b) For all (x, a, θ) ∈ K, and some constant M1 > 0,

|c(x, a, θ)| ≤ M1W(x).

Proof (a) Integrating by parts in (6), from Assumption 1, for each (x, a, θ) ∈ K,

βα(x, a, θ) :=
∫ ∞

0
exp(−αt)F (dt | x, a, θ) = −

∫ ∞

0
F(t | x, a, θ)d (exp(−αt))

= α

{∫ η

0
exp(−αt)F (t | x, a, θ)dt

+
∫ ∞

η

exp(−αt)F (t | x, a, θ)dt

}

≤ (1 − ε)
(
1 − e−αη

) + e−αη < 1, 0 < η < ∞.

Hence, ρα := sup(x,a,θ)∈K
βα(x, a, θ) < 1.

(b) Observe that from part (a), τα(x, a, θ) ≤ 1/α for all (x, a, θ) ∈ K. Then, from As-
sumption 2(a), part (b) follows easily from (7) with M1 := (1 + 1/α)M0. �

Note that Assumption 2 (see Lemma 1(b)) allows an unbounded one-stage cost function
c(x, a, θ) provided that it is majorized by the “bounding” function W. However, to state
our main result, we need to impose a condition to limit its growth. Moreover, we need a
continuity condition on the holding time distribution.

Assumption 3 (a) There exists a positive constant b such that

1 ≤ b < ρ−1
α ,

and for all (x, a) ∈ KA ∫
X

W(y)Q(dy | x, a) ≤ bW(x), (16)

where W is the function in Assumption 2.
(b) For each t ≥ 0, F (t | x, a, θ) is continuous in K.
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Remark 2 (a) Observe that for all x ∈ X, n ∈ N0, and (π,π ′) ∈ �A × ��, (16) yields

Eππ ′
x

[
W (xn+1)

] ≤ bEππ ′
x [W (xn)] ,

which in turns implies

Eππ ′
x

[
W (xn+1)

] ≤ bnW (x) . (17)

Therefore, from (15) and Lemma 1, for each x ∈ X, and (π,π ′) ∈ �A × ��,

∣∣V (x,π,π ′)
∣∣ ≤ Eππ ′

x

∣∣∣∣∣c (x0, a0, θ0) +
∞∑

n=1

ρn
αc(xn, an, θn)

∣∣∣∣∣

≤ M1W (x)

∞∑
n=0

(bρα)
n = M1W (x)

1 − bρα

.

Then,

‖V ∗‖W ≤ M1

1 − bρα

. (18)

(b) From Assumption 3(b), the function βα(x, a, θ) in (6) is continuous on K, and in ad-
dition, from Assumption 2(a) the cost function c(x, a, θ) at (7) is l.s.c. on KA and continuous
in θ .

For u ∈ BW and (x, a, θ) ∈ K, we define

Hα(u, x, a, θ) := c(x, a, θ) + βα(x, a, θ)

∫
X

u(y)Q(dy | x, a)

and

Tαu(x) := inf
a∈A(x)

sup
θ∈�(x,a)

Hα(u, x, a, θ). (19)

Lemma 2 If Assumptions 1, 2, and 3 hold, then:

(a) The operator Tα is a contraction with modulus bρα < 1.

(b) Tα maps LW into itself.
(c) For each u ∈ LW, there exists f ∗ ∈ FA such that

Tαu(x) = sup
θ∈�(x,f ∗)

Hα(u, x,f ∗, θ), x ∈ X.

Proof (a) Let u,u′ ∈ BW . Then, from definition of the norm ‖ · ‖W in (4), Lemma 1(a) and
Assumption 3(a), we have

Hα(u, x, a, θ) ≤ Hα(u
′, x, a, θ) + βα(x, a, θ)

∫
X

∣∣u (y) − u′ (y)
∣∣Q(dy | x, a)

≤ Hα(u
′, x, a, θ) + bρα

∥∥u − u′∥∥
W

W (x) ∀ (x, a, θ) ∈ K,

which implies (see (19))

Tαu(x) ≤ Tαu
′(x) + bρα‖u − u′‖WW (x) ∀x ∈ X.
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Thus,

Tαu(x) − Tαu
′(x) ≤ bρα

∥∥u − u′∥∥
W

W (x) ∀x ∈ X. (20)

A similar argument shows that

Tαu
′(x) − Tαu(x) ≤ bρα

∥∥u − u′∥∥
W

W (x) ∀x ∈ X. (21)

Hence, combining (20) and (21) we obtain

∥∥Tαu − Tαu
′∥∥

W
≤ bρα

∥∥u − u′∥∥
W

,

which proves the part (a).
(b) Let u ∈ LW , and we define

Ĥ (u, x, a) := sup
θ∈�(x,a)

Hα(u, x, a, θ), (x, a) ∈ KA.

To prove the part (b) it is sufficient to show:

(i) |Ĥ (u, x, a)| ≤ M̂W(x), for all (x, a) ∈ KA and some constant M̂ < ∞; and
(ii) Ĥ is l.s.c. on KA.

Indeed, from (19), the relation (i) yields

|Tαu (x)| ≤ M̂W (x) ∀x ∈ X,

which implies

‖Tαu‖W < ∞. (22)

Now, if (ii) holds, from (i), we have that the function

(x, a) 	→ Ĥ (u, x, a) + M̂W (x) (23)

is nonnegative and l.s.c. on KA. Hence, from Assumption 2(d) and due to a well-known
result is [25], (see also [7], Proposition D.5), we deduce that

H (u,x) := inf
a∈A(x)

{
Ĥ (u, x, a) + M̂W (x)

}

= Tαu (x) + M̂W (x) (24)

is a l.s.c. function on X. Then, by the continuity of W(·), we obtain that

Tαu (x) = H (u,x) − M̂W (x)

is a l.s.c. function on X. This fact together (22) implies that Tα maps LW into itself.
To conclude the proof of part (b), we prove the points (i) and (ii).
Let u ∈ LW . From (4), Lemma 1(b) and Assumption 3(a), the point (i) easily follows

with M̂ := M1 + bρα‖u‖W .
On the other hand, observe that

|u (x)| ≤ ‖u‖W W (x) , x ∈ X.
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Thus, by the continuity of W(·), the function

v (x) := u (x) + ‖u‖W W (x) ,

is nonnegative and l.s.c., which implies that (see Remark 1(a))
∫

X
v(y)Q(dy | x, a) is a l.s.c.

function on KA. Hence, from Assumption 2(c),
∫

X

u(y)Q(dy | x, a) =
∫

X

v(y)Q(dy | x, a) − ‖u‖W

∫
X

W(y)Q(dy | x, a)

is l.s.c. on KA. Therefore (see Remark 2(b)), Hα(u, x, a, θ) is l.s.c. on K.
Now, let {(xj , aj )} ⊂ KA be a sequence converging to (x, a) ∈ KA, and θ ∈ �(x,a)

be arbitrary. Then, since �(x,a) is σ -compact (see Assumption 2(e)), there exists θj ∈
�(xj , aj ) such that θj → θ . Hence,

lim inf
j→∞

Ĥ (u, xj , aj ) = lim inf
j→∞

sup
θ∈�(xj ,aj )

Hα(u, xj , aj , θ)

≥ lim inf
j→∞

Hα(u, xj , aj , θj )

≥ Hα(u, x, a, θ),

where the last inequality is from the lower semi-continuity of Hα . Since θ was arbitrarily
chosen, we have

lim inf
j→∞

Ĥ (u, xj , aj ) ≥ Ĥ (u, x, a),

which implies that Ĥ is l.s.c. on KA. This completes the proof of part (b).
(c) From the nonnegativity and lower semi-continuity of the function defined in (23), and

Assumption 2(d), standard arguments on the existence of minimizers (see, for instance, [23,
25]) imply that there exists f ∗ ∈ FA such that

inf
a∈A(x)

{
Ĥ (u, x, a) + M̂W (x)

}
= Ĥ (u, x,f ∗) + M̂W (x) .

Thus, combining this relation with (24) we obtain the part (c). �

Remark 3 Since Tα is a contraction operator which maps LW into itself (see Lemma 2) and
LW ⊂ BW is complete (see Remark 1(b)), from Banach’s Fixed Point Theorem, there exists
a unique function ũ ∈ LW such that for all x ∈ X,

ũ (x) = Tαũ (x) , (25)

and ∥∥T n
α u − ũ

∥∥
W

≤ (bρα)
n ‖u − ũ‖W ∀u ∈ LW, n ∈ N0. (26)

For each n ∈ N, x ∈ X, and (π,π ′) ∈ �A × ��, we define the n-stage expected dis-
counted cost as (see (15))

V n(x,π,π ′) :=
⎧⎨
⎩

Eππ ′
x [c(x0, a0, θ0)], n = 1

Eππ ′
x [c(x0, a0, θ0) + ∑n−1

j=1

∏j−1
k=0 βα(xk, ak, θk)c(xj , aj , θj )], n ≥ 2.
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In addition, we define the sequence {vn} in LW as v0 = 0, and for n ∈ N,

vn(x) = Tαvn−1(x), x ∈ X.

Now, we state our first main result as follows

Theorem 1 If Assumptions 1, 2 and 3 hold, then:

(a) The optimal value function (9) is the unique solution in LW satisfying

V ∗(x) = TαV
∗(x), x ∈ X.

(b) For each n ∈ N,

∥∥vn − V ∗∥∥
W

≤ M1
(bρα)

n

1 − bρα

.

(c) There exists f ∗ ∈ FA such that

V ∗(x) = sup
θ∈�(x,f ∗(x))

{
c(x,f ∗(x), θ) + βα(x,f ∗(x), θ)

∫
X

V ∗(y)Q(dy | x,f ∗(x))

}
,

and moreover f ∗ is a discounted cost minimax strategy for the controller, that is,

V ∗(x) = sup
π ′∈��

V (x,f ∗,π ′).

Proof (a)–(b) First observe that vn = T n
α v0 for all n ∈ N0. Then, taking u = v0 in (26) we

have

‖vn − ũ‖W ≤ (bρα)
n ‖ũ‖W ∀n ∈ N0.

Therefore, from (18) and (25), the parts (a) and (b) of the theorem will be proved if we show
that ũ = V ∗.

Let f ∈ FA be a selector such that (see Lemma 2(c))

ũ (x) = sup
θ∈�(x,f (x))

Hα(ũ, x, f (x) , θ), x ∈ X.

Then,

ũ (x) ≥ c(x,f, θ) + βα(x,f, θ)

∫
X

ũ(y)Q(dy | x,f ) ∀x ∈ X, θ ∈ �(x,f (x)) . (27)

Now, let π ′ ∈ �� be an arbitrary strategy for the opponent and {(xn, f (xn), θn)} be a se-
quence of state-actions corresponding to application of the strategies f and π ′. Then, iterat-
ing inequality (27), a straight forward calculation yields,

ũ (x) ≥ Ef π ′
x

⎡
⎣c(x0, f, θ0) +

n−1∑
j=1

j−1∏
k=0

βα(xk, f, θk)c(xj , f, θj )

⎤
⎦

+
n−1∏
k=0

βα(xk, f, θk)E
f π ′
x

[
ũ (xn)

]
.
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That is,

ũ (x) ≥ V n
(
x,f,π ′) +

n−1∏
k=0

βα(xk, f, θk)E
f π ′
x

[
ũ (xn)

] ∀x ∈ X. (28)

Observe that from (17), we have that

n−1∏
k=0

βα(xk, f, θk)E
f π ′
x

[|ũ (xn)|
] ≤ (bρα)

n ‖ũ‖W W (x) , x ∈ X.

Hence, letting n → ∞ in (28) we obtain

ũ (x) ≥ V
(
x,f,π ′) ∀x ∈ X,π ′ ∈ ��, (29)

which implies

ũ (x) ≥ sup
π ′∈��

V
(
x,f,π ′) ∀x ∈ X. (30)

Therefore,

ũ (x) ≥ V ∗ (x) ∀x ∈ X. (31)

On the other hand, since the functions c and βα are continuous in θ (see Remark 2(b)),
from (25), Assumption 2(e), and by applying a suitable Measurable Selection Theorem (see
[23]), for every ε > 0, there exists g : KA → �, with g(x, a) ∈ �(x,a), such that

ũ (x) = inf
a∈A(x)

{
c(x, a, g) + βα(x, a, g)

∫
X

ũ(y)Q(dy | x, a)

}
+ ε

≤ c(x, a, g) + βα(x, a, g)

∫
X

ũ(y)Q(dy | x, a) + ε ∀x ∈ X, a ∈ A(x). (32)

Let π ∈ �A be an arbitrary strategy. Then, similarly as in (28), iterating (32) we get

ũ (x) ≤ V n(x,π,g) +
n−1∏
k=0

βα(xk, ak, g)Eπg
x

[
ũ (xn)

] + ε

1 − ρα

∀x ∈ X.

Thus, (see (29)), letting n → ∞ we have

ũ (x) ≤ V (x,π,g) . (33)

Then, since

V (x,π,g) ≤ sup
g∈F�

V (x,π,g) ≤ sup
π ′∈��

V
(
x,π,π ′) ∀x ∈ X,

and π ∈ �A is arbitrary, (33) implies

ũ (x) ≤ inf
π∈�A

sup
π ′∈��

V (x,π,π ′) = V ∗ (x) ∀x ∈ X,

which combined with (31) yield ũ = V ∗.



Semi-Markov Control Processes Partially Known 147

(c) The existence of f ∗ ∈ FA follows from the part (a) and Lemma 2(c). In addition,
applying similar arguments as the proof of part (a) (see (30)) we have

V ∗ (x) := inf
π∈�A

sup
π ′∈��

V
(
x,π,π ′) ≥ sup

π ′∈��

V
(
x,f ∗,π ′) ∀x ∈ X.

Therefore

V ∗ (x) = sup
π ′∈��

V (x,f ∗,π ′) ∀x ∈ X,

that is, f ∗ is a minimax strategy. �

6 Average Cost Criterion

To analyze the average minimax semi-Markov control problem defined by (10)–(14), we
need to impose continuity and boundedness conditions on the mean holding time. That is, it
is necessary the existence of positive constant m and M satisfying

m ≤ τ (x, a, θ) ≤ M ∀(x, a, θ) ∈ K. (34)

The first inequality in (34) is a consequence of Assumption 1 because for all (x, a, θ) ∈ K,

τ (x, a, θ) ≥
∫ ∞

η

tF (dt | x, a, θ) ≥ ηε =: m.

Hence,

inf
(x,a,θ)∈K

τ (x, a, θ) ≥ m. (35)

The second inequality together the continuity condition is given in the next assumption.

Assumption 4 (a) There exists a positive constant M such that for all (x, a, θ) ∈ K,

τ (x, a, θ) ≤ M.

(b) The function τ(x, a, θ) is continuous on K.

Observe that from Assumptions 2(a) and 4(a), the one-stage cost function (12) satisfies,
for some constant M2 > 0,

|c(x, a, θ)| ≤ M2W(x) ∀(x, a, θ) ∈ K. (36)

Furthermore, because the asymptotic analysis for the average criterion, we need to im-
pose the following ergodicity condition.

Assumption 5 There exist a probability measure μ on X, an u.s.c. function φ : KA → [0,1],
and a constant γ ∈ (0,1), such that

(a) Q(D | x, a) ≥ φ (x, a)μ(D), for all (x, a) ∈ KA and D ∈ B(X).
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(b)
∫

X
W(y)Q(dy | x, a) ≤ γW(x) + φ (x, a)

∫
X

W(y)μ(dy), where

μ(W) :=
∫

X

W (y)μ(dy) < ∞.

(c)
∫

X
φ(x,f (x))μ(dx) > 0 for each f ∈ FA.

An important consequence of Assumption 5 is that for each f ∈ FA, the Markov chain
defined by Q(· | ·, f ) is μ-irreducible and positive Harris recurrent, which is proved in [27].

Let f ∈ FA, and Qn(· | ·, f ) the n-step transition kernel associated to f. Then, by As-
sumption 5(b),

∫
X

W (y)Qn (dy | x,f ) ≤ γ nW(x) + (1 + γ + · · · + γ n−1)μ(W) ≤
(

1 + μ(W)

1 − γ

)
W(x),

and this implies that for all function v ∈ BW,

lim
n→∞

1

n

∫
X

v (y)Qn (dy | x,f ) = 0. (37)

The main result for the average criterion is stated as follows.

Theorem 2 Suppose that Assumptions 1, 2, 4 and 5 hold. Then, there exist a constant j ∗,
a function h∗ ∈ LW, and a stationary strategy f ∗ ∈ FA such that for all x ∈ X,

h∗(x) = inf
a∈A(x)

sup
θ∈�(x,a)

{
c(x, a, θ) − j ∗τ (x, a, θ) +

∫
X

h∗(y)Q(dy | x, a)

}

= sup
θ∈�(x,f ∗(x))

{
c(x,f ∗(x), θ) − j ∗τ(x,f ∗(x), θ) +

∫
X

h∗(y)Q(dy | x,f ∗(x))

}
.

Furthermore, j ∗ is the optimal average cost, and f ∗ is an average minimax strategy, that is,
for all x ∈ X,

j ∗ = sup
π ′∈��

J (x,f ∗,π ′)

= inf
π∈�A

sup
π ′∈��

J (x,π,π ′).

The proof of the Theorem 2 is based in a data transformation introduced in [26] and
applied by several authors to semi-Markov control models (see, for instance, [4, 5]). We
introduce this procedure in our context as follows.

Let τ be a real number such that

0 < τ < m, (38)

(see (35)). Define the function ĉ : K → R and the stochastic kernel Q̂ on X given K by

ĉ (x, a, θ) := c (x, a, θ)

τ (x, a, θ)
, (39)
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and

Q̂(B|x, a, θ) := τ

τ (x, a, θ)
Q(B|x, a) +

(
1 − τ

τ (x, a, θ)

)
δx(B), (40)

where δx(·) is the Dirac measure concentrated at x.

Then, the cost function ĉ and the stochastic kernel Q̂ define the minimax Markov control
model

(X,A,�,KA,K, Q̂, ĉ). (41)

Hence, our approach consists in to analyze the minimax control problem corresponding to
the model (41) whose solution proves the Theorem 2. To this end, we need the following
results.

Lemma 3 If Assumptions 1, 2, and 4 hold, then Assumption 2(b), (c) and relation (36) are
satisfied when c, Q, and KA are replaced by ĉ, Q̂, and K, respectively.

Proof First we will prove that the transition law Q̂ is weakly continuous. Let u : X → R be
a continuous and bounded function, then from (40) we have

∫
X

u (y) Q̂ (dy | x, a, θ) = τ

τ (x, a, θ)

∫
X

u (y)Q(dy|x, a) +
(

1 − τ

τ (x, a, θ)

)
u(x).

Thus, by (35) and Assumptions 2(a) and 4(b), we conclude that the function

(x, a, θ) 	→
∫

X

u (y) Q̂ (dy | x, a, θ)

is continuous on K. Similarly, we prove that the function

(x, a, θ) 	→
∫

X

W (y) Q̂ (dy | x, a, θ)

is continuous on K.
Finally, from (35) and (36),

∣∣ĉ (x, a, θ)
∣∣ = |c (x, a, θ)|

τ (x, a, θ)
≤ M∗W (x) ∀ (x, a, θ) ∈ K,

where M∗ := M2
m

. �

The model (41) satisfies Assumption 5, mutatis mutandi, according to the follow-
ing result.

Lemma 4 Under Assumptions 1, 2, 4, and 5, there exist a probability measure μ on X, an
u.s.c. function φ̂ : K →[0,1], and a constant γ̂ ∈ (0,1), such that

(a) Q̂(D | x, a, θ) ≥ φ̂ (x, a, θ)μ(D), for all (x, a, θ) ∈ K and D ∈ B(X).
(b)

∫
X

W(y)Q̂(dy | x, a, θ) ≤ γ̂W(x) + φ̂(x, a, θ)
∫

X
W(y)μ(dy), where

∫
X

W (y)μ(dy) < ∞.
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(c)
∫

X
φ̂(x, f (x), θ)μ(dx) > 0 for each f ∈ FA.

Proof Let

φ̂ (x, a, θ) := τ

τ (x, a, θ)
φ(x, a), (x, a, θ) ∈ K,

γ̂ := 1 − τ

M
(1 − γ ),

and we consider the probability measure μ in Assumption 5.
Observe that from (38) and Assumption 4, φ̂ : K →[0,1] and 0 < γ̂ < 1 hold true. There-

fore:

(a) Assumption 5(a) yields

Q̂ (D | x, a, θ) ≥ φ̂ (x, a, θ)μ (D) ∀(x, a, θ) ∈ K, D ∈ B(X);

(b) from Assumption 5(b) we obtain

∫
X

W (y) Q̂ (dy | x, a, θ) ≤ γ̂W (x) + φ̂ (x, a, θ)

∫
X

W (y)μ(dy);

and finally,
(c) from Assumption 5(c) we conclude that

∫
X

φ̂(x, f (x), θ)μ (dx) > 0. �

As a consequence of Lemma 4, we can state the following result for the minimax Markov
model (41) borrowed from Theorem 5.2 in [6], (see also [13, 14, 16]).

Proposition 1 Under Assumptions 1, 2, 4, and 5, there exist a constant ĵ , a function ĥ ∈ LW ,
and a stationary policy f̂ ∈ FA such that for all x ∈ X,

ĵ + ĥ (x) = inf
a∈A(x)

sup
θ∈�(x,a)

{
ĉ(x, a, θ) +

∫
X

ĥ(y)Q̂(dy | x, a, θ)

}
(42)

= sup
θ∈�(x,f̂ )

{
ĉ(x, f̂ , θ) +

∫
X

ĥ(y)Q̂(dy | x, f̂ , θ)

}
. (43)

6.1 Proof of Theorem 2

From (42), we have that for each (x, a) ∈ KA,

ĵ + ĥ (x) ≤ sup
θ∈�(x,a)

{
ĉ(x, a, θ) +

∫
X

ĥ(y)Q̂(dy | x, a, θ)

}
.

Observe that from Assumption 3(b) and (40), the function

θ 	−→
∫

X

ĥ(y)Q̂(dy | x, a, θ)
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is continuous for all (x, a) ∈ KA. Then, for every ε > 0, from Assumption 2(e) and by
applying a suitable Measurable Selection Theorem, there exists g ∈ F� such that

ĵ + ĥ (x) ≤ ĉ(x, a, g) +
∫

X

ĥ(y)Q̂(dy | x, a, g) + ε/M ∀(x, a) ∈ KA. (44)

Thus, by (39), (40), and Assumption 4(a) we obtain,

ĵ τ (x, a, g) ≤ c(x, a, g) +
∫

X

τ ĥ(y)Q(dy | x, a) − τ ĥ(x) + ε,

which implies

h∗(x) ≤ c(x, a, g) − j ∗τ(x, a, g) +
∫

X

h∗(y)Q(dy | x, a) + ε, (45)

with j ∗ := ĵ and h∗(·) := τ ĥ(·). Since ε is arbitrary, we have

h∗(x) ≤ sup
θ∈�(x,a)

{
c(x, a, θ) − j ∗τ(x, a, θ) +

∫
X

h∗(y)Q(dy | x, a)

}
∀(x, a) ∈ KA,

and therefore,

h∗(x) ≤ inf
a∈A(x)

sup
θ∈�(x,a)

{
c(x, a, θ) − j ∗τ(x, a, θ) +

∫
X

h∗(y)Q(dy | x, a)

}
∀x ∈ X. (46)

Now, from (43) there is f̂ ∈ FA such that for all x ∈ X,

ĵ + ĥ (x) = sup
θ∈�(x,f̂ )

{
ĉ(x, f̂ , θ) +

∫
X

ĥ(y)Q̂(dy | x, f̂ , θ)

}
.

Then, for all x ∈ X and θ ∈ �(x, f̂ ),

ĵ + ĥ (x) ≥ ĉ(x, f̂ , θ) +
∫

X

ĥ(y)Q̂(dy | x, f̂ , θ),

which yields (similarly as (45))

h∗(x) ≥ c(x, f̂ , θ) − j ∗τ(x, f̂ , θ) +
∫

X

h∗(y)Q(dy | x, f̂ ).

Since θ is arbitrary in �(x, f̂ ), we have

h∗(x) ≥ sup
θ∈�(x,f̂ )

{
c(x, f̂ , θ) − j ∗τ(x, f̂ , θ) +

∫
X

h∗(y)Q(dy | x, f̂ )

}
,

and this implies that

h∗(x) ≥ inf
a∈A(x)

sup
θ∈�(x,a)

{
c(x, a, θ) − j ∗τ(x, a, θ) +

∫
X

h∗(y)Q(dy | x, a)

}
. (47)
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Combining (46) and (47) we obtain

h∗(x) = inf
a∈A(x)

sup
θ∈�(x,a)

{
c(x, a, θ) − j ∗τ(x, a, θ) +

∫
X

h∗(y)Q(dy | x, a)

}
, x ∈ X. (48)

In addition, observe that the definitions of the function h∗ ∈ LW and the constant j ∗, together
Proposition 1 and Assumption 4(b) show the existence of f ∗ ∈ FA such that for all x ∈ X

h∗(x) = sup
θ∈�(x,f ∗)

{
c(x,f ∗, θ) − j ∗τ(x,f ∗, θ) +

∫
X

h∗(y)Q(dy | x,f ∗)
}

. (49)

Finally, to conclude we prove that j ∗ is the optimal average cost and f ∗ is an average
minimax strategy. From (49), for all θ ∈ �(x,f ∗), x ∈ X,

h∗(x) ≥ c(x,f ∗, θ) − j ∗τ(x,f ∗, θ) +
∫

X

h∗(y)Q(dy | x,f ∗). (50)

Hence, if π ′ ∈ �� is an arbitrary strategy, iteration of (50) yields

h∗(x) ≥ Ef ∗π ′
x

[
n−1∑
k=0

c(xk, ak, θk)

]
−j ∗Ef ∗π ′

x

[
n−1∑
k=0

τ(xk, ak, θk)

]
+Ef ∗π ′

x

[
h∗(xn)

]
, n ∈ N,

(51)
which in turn implies

j ∗ ≥ E
f ∗π ′
x [∑n−1

k=0 c(xk, ak, θk)] + E
f ∗π ′
x [h∗(xn)] − h∗(x)

E
f ∗π ′
x [∑n−1

k=0 τ(xk, ak, θk)]
, (52)

where

Ef ∗π ′
x [h∗(xn)] =

∫
X

h∗(y)Qn(dy | x,f ∗).

Then, noting that (see Assumption 4(a) and (37))

nm ≤ Ef ∗π ′
x

[
n−1∑
k=0

τ(xk, ak, θk)

]
≤ nM

and

E
f ∗π ′
x [h∗(xn)]

n
→ 0 as n → ∞,

and by taking lim sup as n → ∞ in (52), it follows that (see (11))

j ∗ ≥ J (x,f ∗,π ′). (53)

Since π ′ is arbitrary we obtain

j ∗ ≥ sup
π ′∈��

J (x,f ∗,π ′) ≥ inf
π∈�A

sup
π ′∈��

J (x,π,π ′). (54)

On the other hand, from (48), for all (x, a) ∈ KA,

h∗(x) ≤ sup
θ∈�(x,a)

{
c(x, a, θ) − j ∗τ(x, a, θ) +

∫
X

h∗(y)Q(dy | x, a)

}
.
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Then, (see (44)), for ε > 0 there is g ∈ F� such that

h∗(x) ≤ c(x, a, g(x, a)) − j ∗τ(x, a, g(x, a)) +
∫

X

h∗(y)Q(dy | x, a) + ε.

If π is an arbitrary policy in �A, then by applying similar arguments as (51)–(53), and using
the fact (see (35))

Eπg
x

[
n−1∑
k=0

τ(xk, ak, θk)

]
≥ nm, n ∈ N,

we have

h∗(x) ≤ Eπg
x

[
n−1∑
k=0

c(xk, ak, θk)

]
− j ∗Eπg

x

[
n−1∑
k=0

τ(xk, ak, θk)

]
+ Eπg

x

[
h∗(xn)

] + nε,

which in turn yields

j ∗ ≤ J (x,π,g) ≤ sup
π ′∈��

J (x,π,π ′).

Since π is arbitrary, we obtain

j ∗ ≤ inf
π∈�A

sup
π ′∈��

J (x,π,π ′). (55)

Finally, combining (54) and (55) we have

j ∗ = sup
π ′∈��

J (x,f ∗,π ′) = inf
π∈�A

sup
π ′∈��

J (x,π,π ′),

and this completes the proof of Theorem 2.

7 Example: A Semi-Markov Inventory System

Consider an inventory-production system in which the demand of the product (immediately
met), occurs at epochs T1, T2, . . . such that δn := Tn − Tn−1 (n = 1,2, . . . , T0 = 0) is a
random variable. The state variable xn represents the stock level at the epoch Tn after the
demand is met. The control or action variable an is the quantity ordered or produced in the
beginning of the epoch Tn. The demand at epoch Tn is represented by ξn which are assumed
to be no negatives i.i.d. random variables. According to this description, the evolution of the
inventory process on the decision epochs Tn is given by the equation

xn+1 = (xn + an − ξn+1)
+, n = 0,1,2, . . . ,

where x0 is known.
To illustrate our assumptions, we fix the components of the semi-Markov control mod-

els (1) and (3) as follows. The state space as well as the controller and opponent actions
spaces are X = [0,∞), A = A(x) = [0, a∗], and � = �(x,a) = [θ1, θ2] ⊂ R, for all x ∈ X,

a ∈ A, and some a∗ > 0, θ1, θ2 ∈ R, respectively. We assume that the holding times have
exponential distribution depending of an unknown parameter θ ∈ [θ1, θ2], as is stated in the
following condition.
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Assumption 6 There are positive numbers h1, h2 with h1 < h2 and a continuous function
h : K →[h1, h2] such that F(t | x, a, θ) = 0 for t < 0 and

F(t | x, a, θ) = 1 − e−h(x,a,θ)t t ≥ 0.

We impose the following condition on the demand.

Assumption 7 The random variable ξ1 has a continuous bounded density g and

E(a∗ − ξ1) < 0.

Observe that the transition law Q takes the form

Q(B | x, a) =
∫

R

1B[(x + a − s)+]g(s)ds, B ∈ B([0,∞)). (56)

Furthermore, for q ≥ 0 we define

�(q) := E(exp(q(a∗ − ξ)).

Then, �(0) = 1, and from Assumption 7, � ′(0) = E(a∗ −ξ) < 0. Hence, there exists q0 > 0
such that λ0 := �(q0) < 1.

We define the weight function W : [0,∞) → [1,∞) as

W(x) := exp(q0x), x ∈ [0,∞),

and we take the cost functions D and d satisfying the Assumption 2(a).
Now, we will proceed to verify the Assumptions 1, 2, 3, 4, and 5.
Under Assumption 6, the regularity condition imposed in Assumption 1 is satisfied. In-

deed, fix η > 0 and let ε = exp(−h2η). Then

F(η | x, a, θ) = 1 − e−h(x,a,θ)η ≤ 1 − e−h2η = 1 − ε.

Assumption 2(b), (c) follow from the continuity of g and the fact that

∫ ∞

0
v(y)Q(dy | x, a) = v(0)P (x + a ≤ ξ) +

∫ x+a

0
v(x + a − s)g(s)ds

and
∫ ∞

0
W(y)Q(dy | x, a) = W(0)P (x + a ≤ ξ) + expq0(x + a)

∫ x+a

0
exp(−q0s)g(s)ds.

(57)
Moreover, Assumption 2(d), (e) trivially hold since the multifunctions x 	−→ A(x) and
(x, a) 	−→ �(x,a) are constants.

To verify Assumption 3(a), we fix a discount factor α > 0 such that α > 2h2 − h1. Then
from (57)

∫ ∞

0
W(y)Q(dy | x, a) ≤ 1 + exp(q0x)

∫ ∞

0
exp(q0(a − s))g(s)ds

≤ 1 + λ0 exp(q0x) ≤ 2 exp(q0x). (58)
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On the other hand,

βα(x, a, θ) :=
∫ ∞

0
exp(−αs)h(x, a, θ) exp(−h(x, a, θ)s)ds

= h(x, a, θ)

α + h(x, a, θ)
≤ h2

α + h1
,

which in turns implies

ρα := sup
(x,a,θ)∈K

βα(x, a, θ) <
1

2
. (59)

Therefore, defining b := 2, the relations (58) and (59) yield Assumption 3(a). The continuity
of F(t | x, a, θ) on K for each t ∈ R, follows from the continuity of h on K.

In addition, Assumption 4 holds because

τ (x, a, θ) =
∫ ∞

0
tF (dt | x, a, θ) = 1

h(x, a, θ)
≤ 1

h1
=: M.

To verify Assumption 5, define μ(·) = δ0(·), the Dirac measure concentrated at x = 0,

φ(x, a) := P (x + a − ξ ≤ 0) and γ = λ0. Then, φ is continuous on K and Assumption 5(a)
follows from (56). To verify Assumption 5(b), note that from (57) and the fact that W(0) =
μ(W), we obtain

∫ ∞

0
W(y)Q(dy | x, a) = φ(x, a)μ(W) + exp(q0x)

∫ ∞

0
exp(q0(a − q0s))g(s)ds

≤ exp(q0x)

∫ ∞

0
exp(q0(a

∗ − s))g(s)ds + φ(x, a)μ(W)

= γW(x) + φ(x, a)μ(W).

Finally, for all f ∈ F,
∫

X

φ(x,f (x))μ(dx) = φ(0, f (0)) = P (f (0) − ξ ≤ 0) ≥ P (a∗ − ξ ≤ 0) > 0,

which proves Assumption 5(c).
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