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Abstract The development of digital imaging (and its subsequent applications) has led to
consideration and investigation of topological notions that are well-defined in continuous
spaces, but not necessarily in discrete/digital ones. In this article, we focus on the classi-
cal notion of path. We establish in particular that the standard definition of path in alge-
braic topology is coherent w.r.t. the ones (often empirically) used in digital imaging. From
this statement, we retrieve, and actually extend, an important result related to homotopy-
type preservation, namely the equivalence between the fundamental group of a digital
space and the group induced by digital paths. Based on this sound definition of paths, we
also (re)explore various (and sometimes equivalent) ways to reduce a digital image in a
homotopy-type preserving fashion.

Keywords Topology · Digital imaging · Paths · Fundamental group · Homotopy-type
preservation

1 Introduction

Several different models have been proposed to deal with topological properties in finite
sets. The first works dedicated to this issue have been developed by Alexandroff [1] in 1937.
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After this first attempt, no other works have been proposed for approximately 30 years, and
we had to wait until the mid 60’s to see (simultaneous) new contributions in the mathematics
community [29, 36] and also in the computer science one [9, 34]. The rapid and important
rise of digital imaging, and the associated need of efficient image analysis tools for 2-D, and
later 3-D (and even 4-D) digital images have provided a strong motivation for the research
related to the definition of sound discrete/digital topological models. Indeed, in order to be
able to segment, process, or analyse digital images in various application fields, it is often
fundamental to be able to preserve, retrieve or integrate topological information.

In the mathematics community, after the pioneering works of Alexandroff, McCord [29]
firmly linked finite spaces with simplicial complexes, while Stong [36] undertook homeo-
morphism and homotopy type classifications. Many years later, at the end of the century, this
subject yielded new developments whose main goal was to classify simplicial complexes via
finite spaces [3, 10, 20, 31].

In the computer science community, works have essentially focused on specific—and
pragmatic—questions related to topology, namely the definition of a notion of adjacency
relation, and the induced notions of connectivity and arcs. These notions enable in particu-
lar to lead to high-level concepts of topology, such as homotopy, with natural applications
to “homotopy type-preserving” transformations of topological spaces/digital images. The
first—and very intuitive—solution to define an adjacency relation on Z

n is to consider that
two points are adjacent if there are neighbours in the n-D cubic grid (possibly enriched by
some well chosen sets of “diagonals”). This framework led—in order to avoid paradoxi-
cal intersections between objects—to the classical definition of dual adjacencies in digital
images [9, 33, 34]. In this approach, known as digital topology, no topology is however
actually defined and there are, in particular, no open/closed sets. To retrieve topological no-
tions, a possible way is to define continuous analogues of n-D digital images, assuming
that each point in such images physically corresponds to a unit n-cube of the Euclidean
space. Following this analogy, it becomes possible to justify the use of dual adjacencies
[32] and to define algebraic structures isomorphic to those used in topology [16, 22]. An
alternative way to deal with connectivity in digital pictures is to find a topology in Z

n, i.e.,
a family of subsets of Z

n (defined as open sets), leading to the desired adjacency relation
(in this framework, two points x, y are adjacent if the set {x, y} is connected). In [17], it is
proved that there is only one convenient solution—the product of Khalimsky lines [13]—for
defining such a framework, unfortunately this solution breaks the homogeneity of Z

n. (To
avoid this phenomenon, it is necessary to add points between those actually in the image,
which is equivalent to identify the points of a digital image with some cells of abstract cel-
lular complexes [15, 19].) All these topological models have found practical applications in
the context of digital image analysis, especially for the definition of “topology-preserving”
procedures (i.e., procedures enabling to modify a binary digital image without altering its
homotopy type), including reduction ones (used for skeletonisation or segmentation), see
e.g. [8].

The quite pragmatic motivations of the works on topological modelling of digital im-
ages can probably explain why most of the proposed definitions only aim at mimicking or
adapting the definitions of the classical topology to retrieve intuitive notions such as con-
nectivity and continuous deformation. Moreover, if the works of Alexandroff are relatively
well known in both (mathematics and computer science) communities, those of McCord
and Stong have visibly never been considered in the research related to topology in digi-
tal images. Consequently, it is generally believed that the classical definitions of topology
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cannot be “directly” embedded in the universe of digital images in a sound fashion1 (i.e.,
while preserving their correct and intrinsic properties). In particular, it seems that paths in
finite spaces have been quite systematically replaced by ad hoc definitions. This justifies to
carefully explore the relations between continuous paths and digital paths of finite spaces.

The purpose of this article is to study the consequences of the use of the general topology
standard definition of a path, namely a continuous function from [0,1], when working in a
digital space. We describe the images of such paths in a digital space and compare them
with the regular digital paths defined in the framework of the Khalimsky topology [14] or in
the equivalent framework of abstract cellular complexes [19]. We show that both definitions
lead to very close geometrical objects: our first main result (Theorem 2) states that under
each continuous path p, lies another continuous path which is a step function (for such
a path, we say a finite path), whose image is included in the image of p and which is
equal to p for at least one value of the parameter in each step interval. We also look at
homotopy equivalence between paths and describe their discrete counterparts that we call
deformations. We show that two finite paths with a same image are homotopically equivalent
and our second main theorem (Theorem 3) establishes that two finite paths with distinct
images are homotopically equivalent iff the image of one of them is a deformation of the
image of the other one. Then, we retrieve (and in fact, extend, since we do not suppose the
ambient space to be finite), without the need of high level preliminary results, the property
recently proved in algebraic topology [3] that the fundamental group of a digital space is
isomorphic to the group of digital paths equipped with the deformations. Since our model
is based on classical definitions, we have the possibility of reinvest any external result in
the field of image analysis and processing. In particular, we explore and compare some
tools devoted to the reduction of finite, or countable, spaces and which have counterparts in
continuous analogues embedded in the Euclidean space.

In order to do so, Sect. 2 first recalls background notions related to general topology and
partially ordered sets. (These notions enable to make this article globally self-contained,
and then more comprehensible for the reader.) In Sect. 3, we study in detail the paths in
digital images, i.e., the continuous functions of [0,1] → Z

n (where Z
n is interpreted from

the topological point of view mentioned above) and we justify why we can avoid to con-
sider the “functional side” of paths. In particular, we prove that the fundamental group of a
digital space is isomorphic to the “fundamental-like” group which is generally considered
in digital image analysis. Then, topological algebraic structures being well defined, we can
borrow any tool in the existing literature on countable/finite spaces for use in image analysis
and processing. Thereby, in Sect. 4, we study and confront various ways to make minimal
changes in a digital image while preserving, as far as possible, its topology. Concluding
remarks will be found in Sect. 5.

2 Background Notions

2.1 General Topology

In this subsection, we recall (without proof) some basic definitions and classical properties
of topology. The main purpose here is to introduce useful notations and to gather results
needed in the sequel of the article. The reader interested in proofs, or details on a particular

1In [21], Latecki writes “topology is basically not a finite concept and reduces to triviality whenever applied
to finite sets”.
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notion, can find them in any lecture book on general topology (for example, [30, 37]) or on
algebraic topology (for example, [11, 24, 25].

A space X satisfies the separation axiom T0 (or, shortly, is a T0-space) if for every pair
(x1, x2) (x1 �= x2) in X there is an open set of X which contains exactly one element of the
pair. That is, one can distinguish them from a topological viewpoint. The pair (x1, x2) satis-
fies this condition exactly if x1 does not belong to the closure of {x2} or x2 does not belong
to the closure of {x1}. If for every pair (x1, x2) (x1 �= x2), x1 does not belong to the closure
of {x2} and x2 does not belong to the closure of {x1}, that is, if for each x ∈ X, {x} is closed,
then X is a T1-space. Hausdorff spaces, or T2-spaces, like R

n equipped with the usual topol-
ogy, have a stronger property: any two distinct points have disjoint neighbourhoods. Note
that a T2-space is T1 and a T1-space is T0.

If Y is a subset of X, Y is a retract of X if there exists a continuous map, called a
retraction, r : X → Y such that r(y) = y for all y ∈ Y . A continuous map r : X×[0,1] → X

is a (strong) deformation retraction if, for every x in X and y in Y , we have r(x,0) = x,
r(x,1) ∈ Y and r(y,1) = y (and for every t in [0,1], r(y, t) = y). If such a map exists, Y is
a (strong) deformation retract of X.

When Y is not a subspace of X, there exists however a notion similar to that of retraction.
Two continuous maps f,g : X → Y are homotopic if there exists a continuous map, called
a homotopy, h : X × [0,1] → Y such that h(x,0) = f (x) and h(x,1) = g(x) for all x ∈ X.
The spaces X and Y are homotopy equivalent (or have the same homotopy type) if there
exist two continuous maps f : X → Y and g : Y → X, called homotopy equivalences, such
that g ◦ f is homotopic to the identity map idX and f ◦ g is homotopic to idY . If X and Y

are homeomorphic, they are homotopy equivalent: given a homeomorphism ϕ between X

and Y , ϕ and ϕ−1 are homotopy equivalences between X and Y . The converse is not true in
general (for example, a ball is homotopy equivalent—but not homeomorphic—to a point).
A topological space is contractible if it has the homotopy type of a single point.

Let X be a topological space. Two paths p,q in X are equivalent if they have the same
extremities (i.e., p(0) = q(0) and p(1) = q(1)) and are homotopic by an homotopy h such
that h(0, u) = p(0) = q(0) and h(1, u) = p(1) = q(1) for all u ∈ [0,1]. It is easy to check
that this relation on paths is actually an equivalence relation. We write [p] for the equiva-
lence class of p. If p,q are two paths in X such that p(1) = q(0) we can define the product
p · q by:

(p · q)(t) =
{

p(2t) if t ∈ [0, 1
2 ],

q(2t − 1) if t ∈ [ 1
2 ,1].

This product is well defined on equivalence classes by [p] · [q] = [p · q]. Let x be a point
of X. A loop at x is a path in X which starts and ends at x. The product of two loops at x is a
loop at x and the set π1(X,x) of equivalence classes of loops at x is a group for this product.
It is called the fundamental group of X (with basepoint x) or the first homotopy group
of X. If X is path-connected, the group π1(X,x) does not depend on the basepoint (i.e.,
for any points x, y ∈ X, π1(X,x) and π1(X,y) are isomorphic). Higher homotopy groups
are defined by replacing loops at x by continuous maps from [0,1]n to X that associate the
boundary of the n-cube to x. The product on such maps is then defined by gluing two faces
of the n-cubes:

p · q(t1, . . . , tn) =
{

p(2t1, t2, . . . , tn) if t1 ∈ [0, 1
2 ],

q(2t1 − 1, t2, . . . , tn) if t1 ∈ [ 1
2 ,1].

Conventionally, the set of path-connected components of X is denoted by π0(X,x), but it
has no group structure.
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Let X and Y be two topological spaces with base points x and y. A continuous map f :
X → Y is a weak homotopy equivalence if the morphisms fn : πn(X,x) → πn(Y, y) defined
by fn([p]) = [f ◦ p] are all bijective (f0 is just a bijection, not a morphism). Two spaces
X,Y are weakly homotopy equivalent if there is a sequence of spaces X0 = X,X1, . . . ,Xr =
Y (r � 1) such that there exist weak homotopy equivalences Xi−1 → Xi or Xi → Xi−1

for all i ∈ [1, r]. Hence, two weakly homotopy equivalent spaces X,Y have isomorphic
homotopy groups.

Two homotopy equivalent spaces are weakly homotopy equivalent (the converse is not
true in general but Whitehead’s theorem [39, 40] implies that it is true for all spaces that are
geometric realisations of simplicial or cubical complexes (see Sect. 4.1)).

2.2 Partially Ordered Sets

Because of their capacity to encompass all topological approaches on digital images, our
work is presented in the framework of posets (Partially Ordered SETS). For this reason, but
mainly to show how discrete spaces are concerned with continuity, this subsection on par-
tially ordered sets is more detailed than the previous one. We give proofs, as far as possible,
while we state properties with hypothesis close to our subject. Readers interested in more
general hypothesis may refer to [1, 2, 26, 27, 29, 36].

Let X be a set. A binary relation on X is a partial order if it is reflexive, antisymmetric,
and transitive. A partially ordered set, or poset, is a couple (X, �) where the relation �

is a partial order on X. The relation � defined on X by x � y if y � x is a partial order
on X called the dual order. We say that two points x, y in X are comparable if x� y or
y � x. We say that a poset is locally finite if for each point x in X, there are finitely many
points comparable with x (note that for many authors, locally finite means that each point
x has a finite neighbourhood). As an example, N equipped with the dual of the usual order
(i.e., with �) is not locally finite with the definition we use though each point n ∈ N has
a finite neighbourhood [0, n] (see Theorem 1 for the definition of the topology). If, for all
pairs (x, y) of elements of X, x and y are comparable, the relation � is a total order on X.
A chain in X is a totally ordered subset of X. A poset is finite-dimensional if there is an
integer n such that any chain in X has a cardinal less or equal than n + 1. The smallest
integer n having this property is called the dimension of X and we write n = dim(X).

We write x �y when x � y and x �= y and we set:

– x↑ = {y ∈ X | x � y} and x↑� = x↑ \ {x} = {y ∈ X | x �y};
– x↓ = {y ∈ X | y � x} and x↓� = x↓ \ {x} = {y ∈ X | y �x}.
If x and y are comparable, we write x � y; otherwise, we write x /� y. The set of points
comparable with a given point x is denoted x	 (x	 = x↓∪x↑) and x	� = x	 \{x} = x↓�∪x↑�.
A point x ∈ X is minimal if x↓ = {x} and maximal if x↑ = {x}. A point x ∈ X is the minimum
of X if x↑ = X and is the maximum of X if x↓ = X.

The Hasse diagram is the oriented graph of the covering relation defined by: y covers x

(x ≺ y) if x �y and there is no z such that x � z�y. Orienting all arcs from top to bottom,
this diagram offers good visual representations of (small) posets (see Fig. 8).

2.2.1 Topology in Posets

Let us forget for a while posets in order to define Alexandroff spaces. A topological space X

is an Alexandroff space if any intersection of open sets is an open set. In such a space, closed
sets satisfy the definition properties of open sets, namely, ∅,X are closed sets, any union and
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any intersection of closed sets is a closed set, so one can exchange open and closed sets. The
obtained topology is then called the dual topology. As any set has a closure, any element x

of an Alexandroff space has a smallest neighbourhood (an open set included in any open set
containing x), denoted by Ux , which is the closure of {x} for the dual topology. Conversely,
a topological space X in which each point has a smallest neighbourhood is an Alexandroff
space. Moreover, since for any open set V ⊆ X, we have V = ⋃

x∈V Ux , the set of smallest
neighbourhoods is a basis for the topology. When a topological set X has the T1-separation
property, each singleton is closed; thus an Alexandroff space with the T1-separation property
is totally disconnected. It is the reason why the only Alexandroff spaces worthy of interest
are non-T1. We call the T0-Alexandroff spaces A-spaces. McCord has proved in [29] that if
an Alexandroff space is not T0, the identification of the points that share the same smallest
neighbourhood give a homotopy equivalent quotient space which is T0.

Now let us go back to posets with the next theorem known as Alexandroff specialisation
theorem which establishes a canonical link between A-spaces and posets.

Theorem 1 [1] Let (X,U) be an A-space. The relation � defined on X by x � y if y ∈ Ux

is a partial order on X. Conversely, let (X, �) be a poset. The set U defined by U = {U ⊆
X | ∀x ∈ U,x↑ ⊆ U} is a topology on X, (X,U) is an A-space and, for all x ∈ X, Ux = x↑.

If Y is a subset of X, the topology associated to the poset (Y, �) is the topology induced
by the one associated to the poset (X, �). The dual topology of the topology associated to
the poset (X, �) is the topology associated to the dual order �.

From now on, posets will always be equipped with the topology U described in Theo-
rem 1.

The easy following property founds an interesting application when a continuous func-
tion, like a path, is defined from a compact subset of R

n, that is a closed bounded subset, to
a locally finite poset.

Property 1 Any compact locally finite poset is finite.

Proof Let X be a compact locally finite poset. Since X is compact, there exists a finite set
A ⊆ X such that (Ux)x∈A is a finite subcover of the open cover (Ux)x∈X . As X is locally
finite, each Ux is finite and, therefore, X = ⋃

x∈A Ux is finite. �

2.2.2 Continuity and Connectivity

Property 2 Let X,Y be posets. A function f : X → Y is continuous iff it is non-decreasing.

Proof [36] (Stong assumes X and Y to be finite, but he does not use it in his proof) Suppose
that f is continuous. Let x1 � x2 be two points in X. Since f −1(Uf (x1)) is an open set
containing x1, it includes x

↑
1 so x2 ∈ f −1(Uf (x1)) and f (x2) ∈ Uf (x1), that is f (x1)�f (x2).

Conversely, suppose that f is non-decreasing. For some y ∈ Y , take x ∈ f −1(Uy), which
means y � f (x). For any x ′ ∈ Ux , x � x ′, so y � f (x) � f (x ′) and x ′ ∈ f −1(Uy). Hence
Ux ⊆ f −1(Uy) for any x ∈ f −1(Uy). That is, f −1(Uy) is open. �

Let x, y ∈ X. We say that x, y are adjacent if the set {x, y} is connected. A sequence
(xi)

r
i=0 (r � 0) of points in X is an arc in X (from x0 to xr ) if for all i ∈ [1, r], xi−1 and

xi are distinct and adjacent. The integer r is the length of the arc (xi)
r
i=0. If for all xi ,
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1 � i � r − 1, xi−1 < xi ⇔ xi > xi+1, we say that the arc is minimal.2 If for all x, y ∈ X

there exists an arc in X from x to y, we say that X is arc-connected.

Property 3 Two points x, y ∈ X are adjacent iff x and y are comparable.

Proof Let S = {x, y} and suppose x, y are not comparable, that is x /∈ Uy and y /∈ Ux . Then,
Ux ∩ S = {x} and Uy ∩ S = {y} are disjoint open sets of S. Therefore, S is not connected.
If x, y are comparable, for example x�y, every open set containing x contains y, so it is
impossible to break S into two non-empty open sets. Thus S is connected. �

Lemma 1 Let X be a poset. If x and y are comparable, then there is a path from x to y.

Proof [36] (Stong assumes X and Y to be finite, but he does not use it in his proof) Suppose
x�y and let p : [0,1] → X be the function defined by p(t) = x if t � 1

2 and p(t) = y if
t > 1

2 . We claim that p is continuous, i.e., p is a path. To prove this assertion, it is sufficient
to prove that for any Uz, p−1(Uz) is open in [0,1]. If x, y /∈ Uz, then p−1(Uz) is empty and
thus is open. If x ∈ Uz, z � x � y so y ∈ Uz and p−1(Uz) = [0,1] is open. If x /∈ Uz and
y ∈ Uz, then p−1(Uz) =] 1

2 ,1] which is an open set of [0,1]. �

The material for the next property, and for its proof, is also in [36].

Property 4 Let X be a poset. The following statements are equivalent:
1. X is path-connected;
2. X is connected;
3. X is arc-connected.

Proof 1 ⇒ 2 is true in any topological space. To prove 2 ⇒ 3, suppose X is connected and
take a point x ∈ X. By Proposition 3, it is straightforward to prove that the sets A of points
in X that are connected to x by an arc and its complement, X = B \ A, are open. As X is
connected and A �= ∅, B is empty and X is arc-connected. Finally to prove 3 ⇒ 1, suppose
X is arc-connected. From Lemma 1, we derive easily that X is path-connected. �

Observe that the above property means that the standard definition of paths and the digital
one lead to the same path-connected components.

2.2.3 Homotopy

Let f,g be two continuous maps from a topological space Y to X. We write f �g when
f (a)�g(a) for all a ∈ Y . It is straightforward that the relation � is a partial order on
C(Y,X), the set of continuous maps from Y to X. For some given x1, x2 ∈ X,y1, y2 ∈ Y ,
we set C(Y,X)� = {f ∈ C(Y,X) | f (y1) = x1, f (y2) = x2}. Unlike others authors [2, 25,
36], we do not use here the compact-open topology on continuous functions but the Alexan-
droff topology associated to the poset (C(Y,X),�).

2The definition of a path by Kovalevsky [19] in the framework of cellular complexes corresponds to the
definition of an arc given above while the definition of a digital path by Kong et al. [18] in the framework of
the Khalimsky topology corresponds to the definition of a minimal path above.
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Property 5 [36] Let X be a poset and Y any topological space. Let p,p′ ∈ C(Y,X) be
such that p′�p. Then, there is a homotopy h between p and p′ such that for all y ∈ Y ,
p(y) = p′(y) ⇒ ∀u ∈ [0,1], h(y,u) = p(y) = p′(y).

Proof Define h : Y × [0,1] → X by h(y, t) = p(y) if t < 1 and h(y,1) = p′(y). Let
Ux be some smallest neighbourhood for some x ∈ X. Then, h−1(Ux) = p−1(Ux) ×
[0,1[∪p′−1(Ux) × {1}. Now, y ∈ p′−1(Ux) ⇒ p′(y) ∈ Ux ⇒ p(y) ∈ Ux (for p′�p) ⇒ y ∈
p−1(Ux). Thus, p′−1(Ux) ⊆ p−1(Ux) and h−1(Ux) = p−1(Ux) × [0,1[∪p′−1(Ux) × [0,1].
As p,p′ are continuous, p−1(Ux) and p′−1(Ux) are open and, therefore, h−1(Ux) is open
which establishes the continuity of h. �

Corollary 1 Let X be a poset. If X has a maximum, or a minimum, then X is contractible.
In particular, for any x ∈ X, x↓ and x↑ are contractible.

Proof Let x be the minimum of X and ϕ the constant map that takes X onto {x}. The
function ϕ is non-decreasing and verifies ϕ� idX . Hence, thanks to Property 5, we derive
that {x} is a strong deformation retract of X. �

The following corollary is a direct consequence of the Property 5 (taking Y = [0,1]). It
is of first importance for our study of paths in posets.

Corollary 2 Let X be a poset and a, b be two points in X. Let p,p′ be two paths in X from
a to b such that p′�p. Then, p and p′ are equivalent.3

Property 6 Let X be a poset and Y a compact topological space. The connected compo-
nents ofC(Y,X) (resp. C(Y,X)�), equipped with the binary relation �, are the homotopy
equivalence classes of C(Y,X) (resp. C(Y,X)�).

Proof Suppose that f and g are in the same connected component of C(Y,X) (resp.
C(Y,X)�). From Properties 4 and 3 (applied to the poset C(Y,X) or C(Y,X)�), there exists a
sequence (qi)

r
i=0 (r � 1) of paths in C(Y,X) (C(Y,X)�) such that q0 = f , qr = g and, for all

i ∈ [1, r], qi−1, qi are comparable, and thus, thanks to Property 5, homotopic. Hence, f and
g are homotopic (from Property 5, we easily derive that, if f,g ∈ C(Y,X)�, there is a homo-
topy h such that for all t ∈ [0,1], h(., t) ∈ C(Y,X)�). Conversely, let h : Y × [0,1] → X be
a homotopy between some maps f and g of C(Y,X) (with h(yi, t) = xi for all t ∈ [0,1] and
i ∈ {1,2}). Define h� : [0,1] → C(Y,X) by (h�(t))(y) = h(y, t). It is clear that h�(0) = f

and h�(1) = g (and h�(t) ∈ C(Y,X)�). We want to prove that h� is continuous and is there-
fore a path from f to g. Let t be a point in the preimage h−1

� (Up) of some smallest neigh-
bourhood in C(Y,X). As h is continuous, for each y ∈ Y , there are open sets Vy ⊆ Y, Iy ⊆
[0,1] such that y ∈ Vy, t ∈ Iy and h(Vy ×Iy) ⊆ Up(y). Thanks to the compactness of Y , there
is a finite subset A of Y such that {Vy}y∈A is a finite cover of Y . Then I = ⋂

y∈A Iy is an
open neighbourhood of t and for all t ′ ∈ I, y ∈ Y , h(y, t ′) ∈ h(Vy, I ) ⊆ h(Vy, Iy) ⊆ Up(y)

hence t ′ ∈ h−1
� (Up) and I ⊆ h−1

� (Up). We can now conclude that h� is continuous and that
f,g are in the same (path-)connected component of C(Y,X) (C(Y,X)�). �

3See Sect. 2.
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As a particular case of Property 6, we obtain that the connected components of Πa,b , the
set of paths in X from a to b equipped with the binary relation �, are the equivalence classes
of Πa,b and from Property 4 we derive immediately the following corollary.

Corollary 3 Let X be a poset and a, b two points in X. Two paths p,p′ in X from a to b

are equivalent iff there exists a sequence (pi)
r
i=0 (r � 0) in Πa,b such that p0 = p,pr = p′

and, for all i ∈ [1, r], pi−1 and pi are comparable.

3 Paths and Arcs

The aim of Sect. 3 is to understand precisely how paths behave in a poset and to study the
link between their image and the arcs defined in Sect. 2.2.2. In the sequel of the article,
(X, �) is a poset (X need not to be finite nor, even, locally finite).

3.1 Finite Paths

We say that a function f : [0,1] → X is a step function if there exists finitely many intervals
(Ii)

r
i=0 (r ∈ N) such that f is constant on each interval Ii and [0,1] = ⋃r

i=0 Ii . If for all
i ∈ [1, r], sup(Ii−1) = inf(Ii) and f (Ii−1) �= f (Ii), we write f = ∑r

i=0 xi1Ii where {xi} =
f (Ii). Note that we use the notation f = ∑r

i=0 xi1Ii by analogy with mathematical analysis
but it is purely formal and there is no meaning behind this summation.

As a path in X is a continuous map from [0,1] to X and [0,1] is compact, the image
of a path p in a locally finite poset X is compact and therefore finite (Property 1). Nev-
ertheless, this does not mean that p is a step function. For example, let x�y be points in
X and consider the map p : [0,1] → {x, y} defined by p(0) = x, p(] 1

2r+1 , 1
2r

[) = {y} and
p([ 1

2r
, 1

2r−1 ]) = {x} for any positive integer r . The function p is a loop at x in X (continuity
of p is obvious since ∅, {y}, {x, y} are the only open sets in {x, y}) but this path goes through
x and y countably many times and it is even impossible to tell which is the second point
crossed by the path p. Observe that this path is greater than the constant path p0 : [0,1] →
{x} and less than p1 : [0,1] → X defined by p1(0) = x,p(]0, 1

2 [) = {y},p([ 1
2 ,1]) = {x} and

thus p is equivalent to p0 and p1 (Property 5).

Definition 1 (Finite path) A path p in X is a finite path if it is a step function p =∑r

i=0 xi1Ii . The sequence (Ii)
r
i=0 is called the intervals sequence of p and the sequence

(xi)
r
i=0 the track of p. A finite path is regular if there is no singleton in its intervals sequence.

A finite path is minimal if for all xi , 1 � i � r − 1, in the track of p, xi−1 < xi ⇔ xi > xi+1.

Proposition 1 The track of a finite path is an arc, and any arc is the track of a regular finite
path.

Proof Let p = ∑r

i=0 xi1Ii , (r � 0), be a finite path. If r = 0, it is obvious that χ is an arc.
If r � 1, take i ∈ [1, r]. The set {xi−1, xi} = p(Ii−1 ∪ Ii) is connected since Ii−1 ∪ Ii is
connected and p is continuous. Hence, χ is an arc.

Let χ = (xi)
r
i=0 (r � 0) be an arc. If r = 0, the constant path p defined by p([0,1]) = {x0}

has track χ . If r = 1, from Lemma 1 and its proof, there exists a regular path from x0 to x1.
If r � 2, the product p1 · · ·pr of regular paths pi from xi−1 to xi (1 � i � r) is a path with
track χ and it can easily be seen, from the very definition of this product, that a product of
regular paths is regular. �
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Lemma 2 A step function p = ∑r

i=0 xi1Ii is a finite path in X iff for all i ∈ [0, r − 1],
xi � xi+1 and xi � xi+1 ⇔ sup(Ii) ∈ Ii .

Proof Suppose p is continuous. Let i ∈ [0, r − 1]. By Proposition 1, xi � xi+1. If xi � xi+1,
then xi /∈ Uxi+1 (since xi �= xi+1 by convention when writing p = ∑r

i=0 xi1Ii ). So the open
set p−1(Uxi+1) includes the interval Ii+1 but not the interval Ii . Thus, inf(Ii+1) = sup(Ii) is
not in Ii+1, i.e., sup(Ii) ∈ Ii . If the inequality xi � xi+1 is false then xi+1 /∈ Uxi

and the open
set p−1(Uxi

) includes the interval Ii but not the interval Ii+1. So sup(Ii) is not in Ii . Hence,
the equivalence xi � xi+1 ⇔ sup(Ii) ∈ Ii holds. Conversely, suppose that there is some s � 0
such that any step function

∑r

i=0 xi1Ii with r � s is continuous when for all i ∈ [0, r − 1],
xi � xi+1 and xi � xi+1 ⇔ sup(Ii) ∈ Ii . Let p = ∑s+1

i=0 xi1Ii be a step function such that for
all i ∈ [0, s], xi � xi+1 and xi � xi+1 ⇔ sup(Ii) ∈ Ii . Indeed, for all i ∈ [0, s − 1], xi � xi+1

and xi � xi+1 ⇔ sup(Ii) ∈ Ii so the step function p′ = ∑s−1
i=0 xi1Ii +xs1Is∪Is+1 is continuous.

Let U be an open set in X. If xs, xs+1 /∈ U , or xs, xs+1 ∈ U , then p−1(U) = p′−1(U) is open.
If xs ∈ U and xs+1 /∈ U then necessarily the inequality xs � xs+1 is false which implies
that sup(Is) /∈ Is . Thus, Is+1 is closed and p−1(U) = p′−1(U) \ Is+1 is open. If xs /∈ U and
xs+1 ∈ U then, since xs and xs+1 are comparable, xs � xs+1 and, by hypothesis, sup(Is) ∈ Is .
Thus, Is+1 is open and p−1(U) = p′−1(U) ∪ Is+1 is open. As in each case the preimage of
an open set is open, p is continuous. Observing that, if s = 0, the map p is constant and
therefore, continuous, we may conclude by induction. �

Theorem 2 is the main result of Sect. 3.1. It states that any path p in a poset is equivalent
to a finite path, the track of which is “very close” to the image of p. Thus, it is a first link
between the continuous notion of path and the discrete one of arc.

Theorem 2 For all x, y ∈ X and any path p from x to y, there exists a minimal regular
finite path from x to y, p′�p, the track of which is included in the image of p. Moreover, in
any interval I in the interval sequence of p′, there is an element t such that p′(t) = p(t).

Proof Let p be a path from x to y in X. For each t ∈ [0,1], p−1(Up(t)) is open and con-
tains t . Let Jt be the connected component of p−1(Up(t)) containing t (Jt is an open interval).
Since [0,1] is compact and the family (Jt )t ∈ [0,1] is an open cover of [0,1], there exists a
finite subset A of [0,1], such that (Jt )t ∈ A covers [0,1]. If, for some t, t ′ ∈ A, Jt ∩ Jt ′ �= ∅
and p(t)�p(t ′), we remove t ′ from A and we replace Jt by Jt ∪ Jt ′ so we can suppose
that Jt ∩ Jt ′ �= ∅ ⇒ p(t) /� p(t ′) (observe that it implies that t cannot belong to Jt ′ ). Let
A′ be a subset of A such that A′ is a minimal cover of [0,1] (for any strict subset B of
A′, (Jt )t ∈ B does not cover [0,1]). Let (ti)

r
i=0 be the (strictly) ordered sequence of reals

in A′ (where r is the cardinal of A′ minus one). From the hypothesis on A′, we derive
that the sequences (inf(Jti ))

r
i=0 and (sup(Jti ))

r
i=0 are strictly ordered, Jti−1 ∩ Jti �= ∅ for all

i ∈ [1, r] and Jti−1 ∩ Jti+1 = ∅ for all i ∈ [1, r − 1] . Finally, for each i = 1, . . . , r , we choose
a real wi in Jti−1 ∩ Jti and we set w0 = −∞, wr+1 = +∞, p(w0) = x, p(wr+1) = y. Ob-
serve that for any i = 1, . . . , r , p(ti−1)�p(wi) and p(ti)�p(wi). We set Jw0 = {0} ∪ [0,

t0
2 [,

Jwr+1 = {1}∪] tr+1
2 ,1] and, for i ∈ [1, r], if Jwi

� Jti−1 ∩ Jti , we change Jwi
to any open

interval J such that wi ∈ J ⊂ J ⊂ Jwi
∩ Jti−1 ∩ Jti . We define p′ : [0,1] → p([0,1]) by:

p′(t) =
{

p(wi) if t ∈ Jwi
(0 � i � r + 1),

p(ti) if t ∈ [sup(Jwi
), inf(Jwi+1)] (0 � i � r).

Since [sup(Jwi
), inf(Jwi+1)] ⊂ Jti and, for all t ∈ [0,1] and u ∈ Jt , p(t) � p(u), we have

straightforwardly p′�p. Furthermore, p′ is a step function. We have stated above that, for
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any i ∈ [1, r], p(ti−1)�p(wi) and p(ti)�p(wi). So, in order to prove the minimality of p′

and, thanks to Lemma 2, its continuity, we still need to look at the extremities, that is, to
compare p(w0) with p(t0) and p(tr ) with p(wr+1). If p(t0) = x, then p′(t) = p(t0) = x on
[0, inf(J1)], otherwise 0 ∈ Jt0 so p(t0)�p(w0). Similarly, if p(tr ) = y, then p′(t) = p(tr ) =
y on [sup(Jtr ),1], otherwise 1 ∈ Jtr so p(tr )�p(wr+1). Now, we are able to conclude that
p′ is a minimal finite path from x to y. As for any i ∈ [1, r], Jwi

⊂ Jti−1 ∩ Jti , we have
∅ ⊂] sup(Ji−1), inf(Ji+1)[⊂ [sup(Jwi

), inf(Jwi+1)] and p′ is regular. As wi ∈ Jwi
and ti ∈

[sup(Jwi
), inf(Jwi+1)] (for ti /∈ Jti−1 ∩ Jti and ti /∈ Jti ∩ Jti+1 ), in any interval I in the interval

sequence of p′, there is an element t such that p′(t) = p(t). �

There is no hope to find in the general case finite paths greater than a given path. For
instance, consider the poset X = {x, y, z} where x�y, x�z. Let p : [0,1] → X be the func-
tion defined by p(t) = x if t belongs to the Cantor set C (i.e., t has a ternary numeral with no
“1”), p(t) = y if t /∈ C and the first “1” in a ternary numeral of t is in odd position (starting
from point), p(t) = z if t /∈ C and the first “1” in a ternary numeral of t is in even position.
The map p is continuous because p−1({y}) =] 1

3 , 2
3 [∪] 1

27 , 2
27 [∪] 7

27 , 8
27 [∪] 19

27 , 20
27 [∪] 25

27 ,
26
27 [∪ · · · is open and p−1({z}) =] 1

9 , 2
9 [∪] 7

9 , 8
9 [∪ · · · is open. However any open set of [0,1]

containing 0, contains real numbers with ternary numerals the first “1” of which is in even,
or odd, position. Thus, a finite path greater than p should have a value near 0 greater than y

and z. Such a value does not exist in X. Moreover, observe that, for any integer n, we can
find a subset of Z

n isomorphic to X.
The two following technical results will be needed in the proof of Proposition 3 and

Theorem 3.

Lemma 3 For all x, y ∈ X and any paths p1,p2,p3 from x to y such that p1�p2 and
p3�p2, there are three finite paths from x to y, p′

1�p1,p
′
2�p2,p

′
3�p3, such that p′

1�p′
2

and p′
3�p′

2.

Proof The proof of Lemma 3 is close to the proof of Theorem 2. However we need to
make some changes in the proof of the theorem. For all t ∈ [0,1], we now define Jt as an
interval containing t and included in p−1

1 (Up1(t)) ∩ p−1
2 (Up2(t)) ∩ p−1

3 (Up3(t)). The finite set
A′ is such that (Jt )t ∈ A′ is a minimal cover of [0,1] and the sequences (ti)

r
i=0, (wi)

r
i=0 are

defined as in the proof of Theorem 2. Observe that it is no longer possible to assume that
ti−1, ti /∈ Jti−1 ∩ Jti and therefore, it may happen that p(ti−1) = p(wi) or p(ti) = p(wi). The
maps p′

k , k ∈ {1,2,3}, are defined by:

p′
k(t) =

{
pk(wi) if t ∈ Jwi

(0 � i � r + 1),

pk(ti) if t ∈ [sup(Jwi
), inf(Jwi+1)] (0 � i � r).

Of course, we still have p′
k�pk for each k ∈ {1,2,3} and the proof of continuity for the three

maps need not to be changed (except that we replace p(ti−1)�p(wi) and p(ti)�p(wi) by
p(ti−1)�p(wi) and p(ti)�p(wi)). �

Lemma 4

– Let p be a finite path. There is a regular path p′ with same track as p such that p′ � p.
– Let p1 � p2 be two finite paths. There are two regular paths p′

1 �p1,p
′
2 �p2 with same

tracks as p1 and p2 such that p′
1 � p′

2.
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Proof Let p be a non-regular finite path. Let u ∈ [0,1] such that {u} is an interval of the
intervals sequence of p and I, J be the intervals before and after {u} in this sequence (if
u = 0 or u = 1, we set I = ∅ or J = ∅). We denote by x the point in X such that p(u) = x.
Since p is continuous, there is a real ε > 0 such that p(]u − ε,u + ε[) ⊆ Ux and we can
choose ε such that ]u − ε,u[∩[0,1] ⊆ I, ]u,u + ε[∩[0,1]) ⊆ J . Set pε

x : [0,1] → X, the
function defined by pε

x(t) = x if t ∈ [u − ε
2 , u + ε

2 ] and pε
x(t) = p(t) otherwise. Clearly,

we have pε
x � p and, from Lemma 2, we derive that pε

x is a finite path (since p is itself a
finite path) which has the same track as p. This way, we can remove all singletons from the
intervals sequence of p, resulting in a regular path p′ � p with same track than p.

Let p1 � p2 be two finite paths. Thanks to the first part of the proof, we know there is a
regular path p′

1 �p1 �p2. We slightly modify the above construction of p′ in order to get
p′

1 �p′
2. Let u ∈ [0,1] such that {u} is an interval of the intervals sequence of p2 and I2, J2

be the intervals before and after {u} in this sequence (if u = 0, or u = 1, we set I2 = ∅ or
J2 = ∅). Set x = p(u). Take ε > 0 such that p(]u − ε,u + ε[) ⊆ Ux , ]u − ε,u[∩[0,1] ⊆
I, ]u,u + ε[∩[0,1]) ⊆ J and either ]u − ε,u] or [u,u + ε[ is included in an interval of
the intervals sequence of p′

1 (such a choice is possible since p′
1 is regular). Suppose, for

example, that [u,u + ε[ is included in an interval of the intervals sequence of p′
1 (the other

case is similar) and, therefore, u �= 1, J �= ∅, and there is a point y � x (since p′
1�p2) in

X such as p′
1([u,u + ε[) = {y}. Set pε

x : [0,1] → X, the function defined by pε
x(t) = x if

t ∈ [u,u + ε
2 ] and pε

x(t) = p2(t) otherwise. As above, we have p′
2 continuous and p′

2 �p2.
Moreover, we have also p′

1 �p′
2. Doing successively this construction for all singletons in

the intervals sequence of p2, we obtain a regular path p′
2 with same track as p2 and such

that p′
1 �p′

2 �p2. �

3.2 Arcs

Theorem 2 means that every path in a poset is homotopic to a finite path, the image of which
is an arc. Processing digital images, one usually either just look at images of paths, that is
at arcs, and ignore the functional definition or link arcs with paths in continuous analogs. In
this subsection we focus our attention on relations between arcs and paths in the poset itself.

We can think of a track (of a finite path) as a map from the set of finite paths onto arcs
(Proposition 1). Obviously this map is not injective. The next proposition gives some light
upon this point.

Proposition 2 Two finite paths in X with same track are equivalent.

Proof Let p = ∑r

i=0 xi1Ii and p′ = ∑r

i=0 xi1Ji
be two paths in X with same track (r is a non

negative integer). For each i = 0, . . . , r , we denote αi, βi (α′
i , β

′
i ) the lower and upper bound

of Ii (Ji ). Thanks to Lemma 2, we know that, for each i = 0, . . . , r , intervals Ii and Ji have
the same form: αi ∈ Ii ⇔ α′

i ∈ Ji and βi ∈ Ii ⇔ β ′
i ∈ Ji . For all u ∈ [0,1], we denote Ki,u

the interval with the same form as Ii, Ji and the bounds of which are (1 − u)αi + uα′
i and

(1 − u)βi + uβ ′
i . It follows again from Lemma 2 that the step function pu = ∑r

i=0 xi1Ki,u
is

a finite path. Let h : [0,1] × [0,1] → X be the function defined by h(t, u) = pu(t). We have
h(t,0) = p(t) and h(t,1) = p′(t) for all t ∈ [0,1]. It can be seen that for any open set U ,
h−1(U) is an union of open trapezoid in [0,1]× [0,1], the bases of which are p−1(U)×{0}
and p′−1(U) × {1}. Hence, h is continuous: p and p′ are equivalent. �

Now a new question arises: it is not difficult to see that the converse of the previous
proposition is false (i.e. unless X is a singleton, there are in X equivalent finite paths which
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Fig. 1 (a) An arc χ . The arrows
give the ordering of the sequence.
(b), (c) Two elementary
stretching of χ

have distinct tracks), but when two finite paths are homotopic, what about their tracks? To
go further, we need to introduce the elementary modification on arcs that is illustrated on
Fig. 1 (see also [7, 17]).

Definition 2 (Stretching) An arc χ = (xi)
r
i=0 (r � 2) is an elementary stretching of an arc

χ ′ if for some j ∈ [1, r − 1], χ ′ = (xi)
r
i=0,i �=j or xj−1 = xj+1 and χ ′ = (xi)

r
i=0,i �=j−1,i �=j .

An arc χ is a deformation of an arc χ ′ if there is a sequence (χi)
s
i=0 of arcs in X such that

χ0 = χ,χs = χ ′ and for any i ∈ [1, s], either χi is an elementary stretching of χi−1 or χi−1

is an elementary stretching of χi .

We will also call elementary stretching the transformation between an arc and an el-
ementary stretching of this arc. Observe that if χ = (xi)

r
i=0 is an elementary stretching

of χ ′ = (xi)
r
i=0,i �=j , necessarily the three points xj−1, xj , xj+1 are mutually comparable.

Barmak and Minian in [3] use a similar notion which leads to the same deformations:
an arc χ = (xi)

r
i=0 (r � 2) is close to an arc χ ′ if for some j � k � j ′ in [1, r − 1],

χ ′ = (xi)
r
i=0,i /∈[j,j ′] and xj� · · ·�xk� · · ·�xj ′ or xj� · · ·�xk� · · ·�xj ′ .

Proposition 3 Let p,p′ be two finite paths with tracks χ,χ ′. If χ ′ is a deformation of χ ,
then p and p′ are equivalent.

Proof Let p and p′ be two finite paths in X with tracks χ,χ ′. Since a deformation is a
sequence of elementary stretchings and homotopy is an equivalence relation, it is sufficient
to prove the result for an elementary stretching. So we assume that χ ′ is an elementary
stretching of χ and, thanks to Lemma 4, we can also assume that p and p′ are regular.
We set p = ∑r

i=0,i �=j xi1Ii or
∑r

i=0,i �=j−1,i �=j xi1Ii andp′ = ∑r

i=0 xi1Ji
(2 � r and 1 � j �

r −1). If xj−1�xj�xj+1 or xj+1�xj�xj−1, we set p1(t) = p(t) if t ∈ ⋃
i �=j Ji and p1(Jj ) =

{xj−1}. Otherwise (xj�xj−1 and xj�xj+1, or xj−1�xj and xj+1�xj ), let α and β be the
lower bound and the upper bound of Jj (α �= β since p′ is regular) and γ = α+β

2 . We set
p1(t) = p(t) if t ∈ ⋃

i �=j Ji , p1(t) = xj−1 if t ∈ [α,γ [, p1(t) = xj+1 if t ∈]γ,β] and p1(γ ) =
xj−1 if xj−1 �xj+1, p1(γ ) = xj+1 ifxj+1�xj−1 (see Fig. 2). In any case, we can derive from
Lemma 2 that p1 is a path. Since the tracks of p1 and p are the same, p1 and p are equivalent.
Moreover, it can easily be seen that p1�p′ or p′�p1. Thus p1 and p′ are equivalent and, by
transitivity, p and p′ are equivalent. �

We can now state that the notion of deformation is the discrete counterpart of the contin-
uous notion of homotopy equivalence.
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Fig. 2 (a) Case
xj+1�xj �xj−1 (case
xj−1�xj �xj+1 is similar).
(b) Case xj �xj−1, xj �xj+1
(case xj−1�xj , xj+1�xj is
similar with an open interval Jj ).
Note that in this case, it could
happen that xj−1 = xj+1

Theorem 3 Two finite paths p,p′ in X with tracks χ �= χ ′ are equivalent iff χ is a defor-
mation of χ ′.

Proof Let p and p′ be two distinct finite equivalent paths in X from point a to point b and
Πa,b be the poset of paths in X from a to b. Since p and p′ are equivalent, there is a path from
p to p′ in Πa,b (Proposition 6) and, thus, there is an arc in Πa,b from p to p′ (Property 4). Of
course we can suppose that this arc is minimal (otherwise we delete the superfluous paths).
Moreover, we claim that we can build a minimal arc in Πa,b from p to p′, the elements
of which are all finite. Suppose that P = (pi)

r
i=0 (r � 2) is a minimal arc in Πa,b from p

to p′, the k first elements of which are finite (1 � k � r − 1). Case 1: pk�pk−1. Since P is
minimal, we have pk�pk+1. We derive from Theorem 2 that there is a finite path q in Πa,b

such that q�pk . Thus, the sequence P ′ = (qi)
r
i=0 where qk = q and qi = pi otherwise, is a

minimal arc in Πa,b from p to p′, the k + 1 first elements of which are all finite. Case 2:
pk−1�pk , and thus pk+1�pk . Thanks to Lemma 3, we know there exist three finite paths
q, q ′, q ′′ such that q�pk−1, q

′�pk, q
′′�pk+1 and q�q ′, q ′′�q ′. If pk+1 �= p′ or q ′′ = p′ we

set P ′ = (qi)
r
i=0 where qk−1 = q, qk = q ′, qk+1 = q ′′ and qi = pi otherwise. Then, P ′ is a

minimal arc in Πa,b from p to p′, the k + 2 first elements of which are finite. If pk+1 = p′
and q ′′ �= p′ we set P ′ = (qi)

r+1
i=0 where qi = pi if i � k − 2, qk−1 = q, qk = q ′, qk+1 = q ′′

and qr+1 = p′. Then, P ′ is a minimal arc in Πa,b from p to p′, the elements of which are all
finite. This way, we build iteratively an arc in Πa,b from p to p′, the elements of which are
all finite.

Therefore, to prove that the track of p is a deformation of the track of p′ it is suffi-
cient to do so for two finite and comparable paths, say p1 and p′

1. Moreover, thanks to
Lemmas 4 and 2, we can easily build two comparable regular (finite) paths from a to b,
q = ∑r

i=0 xi1Ii �q ′ = ∑s

j=0 yj 1Jj
, with same tracks as p1 and p′

1 and such that the inter-
vals Ii (0 � i � r) have no common bounds with the intervals Jj (0 � j � s). Thus, we
denote (αi)

r+s+1
i=0 the strictly increasing sequence the elements of which are the bounds of

the intervals Ii and Jj : α0 = 0, αr+s+1 = 1, for each 1 � i � r + s either q or q ′, but not
both, change its value on αi and no others changes occur. For each i ∈ [1, r + s] and each
j ∈ [1, r + s] we define the step functions qi and q ′

j by qi(t) = q ′(t) if t < α
i
, q(t) other-

wise and q ′
j (t) = q ′(t) if t <

αj +αj+1
2 , q(t) otherwise. In particular, q1 = q and q ′

r+s = q ′
(since q ′(0) = q(0) and q ′(1) = q(1)). We denote by χi and χ ′

j the tracks of qi and q ′
j
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Fig. 3 (a) qk is a stretching of
q ′
k

(depending on

q(α+
k

) = q ′(αk) or not, we use
one of the two cases in the
definition of elementary
stretchings). (b) qk = q ′

k
. (c) q ′

k
is a stretching of qk . (d) If
q ′(α+

k
) �= q(αk), q ′

k
is a

stretching of qk , otherwise
qk = q ′

k

(i, j ∈ [1, r + s]). From Lemma 2, we easily derive that the step functions qi and q ′
j are

finite paths from a to b. We want now to prove that, for all i ∈ [1, r + s], either χk (χk+1) is
equal to χ ′

k or is a stretching of χ ′
k or the converse. The proof consists in checking the 2 × 4

configurations relative to qk and q ′
k and to q ′

k and qk+1. These 8 configurations are depicted
in Figs. 3 and 4 which clearly establish that in any case we have equality or stretching. Note
that in Figs. 3 and 4 we denote by f (t−) and f (t+) the values taken by a finite path f on
some intervals ]t − ε, t[, ]t, t + ε[ where ε > 0 is small enough to assume that f is constant
on these intervals.

The converse part of the proof is given by Proposition 3. �

To go further in the parallelism between paths and arcs, homotopies and deformations, we
will now study the arc product defined by (x0, . . . , xr ).(y0, . . . , ys) = (x0, . . . , xr , y1, . . . , ys).
More formally:

Definition 3 (Arcs product) Let χ1 = (xi)
r
i=0 and χ2 = (yi)

s
i=0 (r, s � 0) be two arcs such

that xr = y0. The arc product is defined by χ1.χ2 = (zi)
r+s
i=0 where zi = xi if i � r and

zi = yi−r if i � r .



182 L. Mazo et al.

Fig. 4 (a) q ′
k

= qk+1. (b) If

q ′(αk) �= q(α−
k+1), q ′

k
is a

stretching of qk+1, otherwise
q ′
k

= qk+1. (c), (d) q ′
k

= qk+1

Let x be a point in X. It is easy to check that being a deformation or equal is an equiv-
alence relation in the set of arcs in X from x to x. We write [χ ] for the equivalence class
of an arc χ and we denote by ρ(X,x) the set of equivalence classes. It is not more difficult
to verify that the arc product is well defined on classes by [χ1].[χ2] = [χ1.χ2] and ρ(X,x)

equipped with the arc product is a group (the identity element of which is [(x)] and the
inverse of [(xi)

r
i=0] is [(xi)

0
i=r ]).

Theorem 4 Let x ∈ X. The fundamental group π1(X,x) of X with basepoint x is isomor-
phic to the group ρ(X,x).

Proof By Theorem 2 we know that there are finite paths in any class of π1(X,x) and by
Theorem 3, we may define a map ϕ : π1(X,x) → ρ(X,x) by ϕ([p]) = [χ ] where χ is the
track of any finite path equivalent to p. From Proposition 3, we derive that ϕ is injective and
from Proposition 1, ϕ is surjective. Finally, ϕ is a morphism since we can easily see that the
track of a product of two finite paths is the product of the tracks of these finite paths. �

Remark 1 Barmak and Minian in [3] have proved the same result in a different way and in
the frame of finite spaces. They establish an isomorphism between ρ(X,x) and a group of
loops composed with edges of the simplicial complex K(X) associated to X (see Sect. 4.1),
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then invoke an isomorphism between the edge-paths group of K(X) and the fundamental
group of its geometric realisation |K(X)| (see Sect. 4.1) described by Spanier [35] and
conclude thanks to the weak homotopy equivalence between |K(X)| and X established by
McCord (see Sect. 4.1).

4 Reduction

In this section, we are interested in retractions, or more general decreasing transformations,
that minimally alter the topology of a poset and the topology of a continuous analogue. In
particular, we will visit minimal modifications of such sets that do not change homotopy
type. But before thinking at transformations, we present in Sect. 4.1 the way we embed a
digital image in a poset and how the continuous analogue of the digital image is defined.

4.1 Complexes

Complexes are topological sets whose combinatorial organisation provide a way to link
digital images, namely subspaces of Z

n, with the continuous Euclidean space R
n.

4.1.1 Simplicial Complexes

Simplicial complexes are among the simplest combinatorial structures. They are commonly
used in the field of geometric modelling.

An abstract simplicial complex is a set K of non-empty subsets, called simplices, of a
set V , such that each non-empty subset of a simplex is a simplex. The elements of V are
called vertices. Each vertex must belong to at least one simplex. A non-empty (proper) sub-
set of a simplex is a (proper) face of the given simplex. For in this section we focus on digital
images, we assume that the simplices of a complex are finite and that their cardinalities are
bounded. Thus, we can define the dimension of a simplex which is its number of vertices
minus one and the dimension of a complex which is the maximum of the dimensions of its
simplices.

In R
n, a set of points are geometrically independent if any k-hyperplane (k � n) contains

no more than k + 1 of them. The (geometric) simplex spanned by a set of geometrically
independent points is the convex hull of these points which are the vertices of the geometric
simplex. A k-face of a simplex is a simplex spanned by k vertices of the simplex. A (geo-
metric) simplicial complex K is a set of simplices in R

n such that any face of a simplex in
K is a simplex in K and any intersection of two simplices in K is a simplex in K . The faces
of the complex are the faces of its simplices. The vertices of the complex are the vertices
of its simplices. Note that the vertices of a complex need not be geometrically independent.
The geometric realisation |K| of the complex K is the union of its simplices equipped with
the topology the closed sets of which are the sets that intersect each simplex in a closed set
of R

n. Because a union of closed sets is not always a closed set, this topology could be dif-
ferent from the usual topology on R

n. But here, as K is locally finite, i.e. any vertex belongs
to finitely many simplices, this topology is the usual topology on R

n. The open simplices of
|K| are the interiors of its k-faces (k � 1) and its 0-faces. Each point x in |K| belongs to a
unique open simplex spanned by some vertices v1, . . . , vk (k � 1) and there exists a unique
k-uple (b1, . . . , bk) in [0,1]k such that x = ∑k

i=0 bivi . Let f be a function between the set
of vertices of two complexes K and K ′, the function |K(f )| which associates to each point
x = ∑k

i=0 bivi in |K| the point y of |K ′| defined by y = ∑k

i=0 bif (vi) is the simplicial map
associated to f . This map is continuous.
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A realisation of an abstract simplicial complex K is a geometric simplicial complex
whose vertices are in one to one correspondence with the vertices of K and whose simplices
are spanned by the images of the simplices of K . Any abstract simplicial complex K of
dimension n can be realised in R

2n+1 [12].
There is a narrow link between posets and simplicial complexes discovered by Alexan-

droff [1]. Let X be a poset. The points in X are the vertices of a simplicial complex K(X)

the simplices of which are the (finite) chains of X (see Fig. 6). Conversely, it is plain that the
simplices of a given simplicial complex K , equipped with the inclusion relation, is a locally
finite poset denoted X(K). Note that K(X(K)) is not equal to K but to a simplicial complex
called the barycentric subdivision of the complex K . These correspondences are not only
algebraic and the topologies on the poset and the geometric realisation of the complex are
concerned as well. The following theorem due to McCord gives the key-properties of the
map ϕX : |K(X)| → X which associates to each point in the geometric realisation of K(X),
the highest element of the unique open simplex it belongs to (remember that a simplex of
K(X) is a chain).

Theorem 5 (McCord [29]) Let X be a poset. There is a weak homotopy equivalence ϕX :
|K(X)| → X. Furthermore, one can associate to each continuous map f : X → Y between
two posets the simplicial map |K(f )| such that the following diagram is commutative:

X
f

Y

|K(X)|

ϕX

|K(f )|
|K(Y )|

ϕY

Observe that, as we have proved that the fundamental group π1(X,x) of a poset X with
basepoint x is isomorphic to the group ρ(X,x) of its arcs from x to x (for any x ∈ X),
Theorem 5 gives by transitivity an isomorphism between ρ(X,x) and the fundamental group
of the geometric realisation of K(X).

4.1.2 Cubical Complexes

In digital images, grids are often cubical ones, so it is interesting in image analysis to replace
simplices in complexes by n-cubes.

We set F
1
0 = {{a} | a ∈ Z} and F

1
1 = {{a, a + 1} | a ∈ Z}. A subset f of Z

n which is the
Cartesian product of m elements of F

1
1 and n − m elements of F

1
0 is a face or an m-face (of

Z
n), m is the dimension of f , and we write dim(f ) = m. We denote by F

n
m the set composed

of all m-faces of Z
nand by F

n the set composed of all faces of Z
n. Let f ∈ F

n be a face.
The set {g ∈ F

n | g ⊆ f } is a cell and any union of cells is an abstract cubical complex.
The geometric cubical complexes are defined in the same manner, except we change the
definition of F

1
1 by setting F

1
1 = {[a, a + 1] | a ∈ Z}. The geometric realisation |K| of a

geometric cubical complex K is the union of its faces (see Fig. 5).
The points in a digital image are often a measure of a physical quantity on a piece of

the Euclidean space. Then, the abstract cellular complex framework—and in particular the
cubical complexes—enable to model the adjacency relations between these pieces of the
Euclidean space in a topologically sound manner. Furthermore, as an abstract cellular com-
plex (equipped with the inclusion) is a poset, Theorem 5 ensures that this complex is weakly
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Fig. 5 (a) An abstract (cubical) cell C composed of one 2-face, four 1-faces and four 0-faces. The four small
black squares represent four points in Z

n mutually 8-adjacent. (b) The geometric (cubical) cell gC which is
the realisation of C. (c) The geometric realisation |gC| of gC

Fig. 6 (a) An abstract cubical
2-cell f which models a digital
point of Z

2. (b) The Hasse
diagram of X(f ). (c) The
simplicial complex K(X(f )).
(d) The geometric realisation of
K(X(f ))

homotopy equivalent to its geometric realisation (more precisely, to the geometric realisa-
tion of the associated simplicial complex—see Fig. 6) which is a conceivable representation
of the tessellation of the Euclidean space captured by the measure device. We say that this
geometric realisation is the continuous analogue of the digital image. The second part of
Theorem 5 says that any continuous transformations of the complex image has an equiva-
lent on the continuous analogue compatible with the weak homotopy equivalence.

4.1.3 Collapses

Whitehead has defined elementary transformations on complexes as follows. Let X be a
complex and (x, y) a pair of faces in X such that x is the only face of X including y. Then,
(x, y) is a free pair, and the set Y = X \{x, y} is an elementary collapse of X, or X is an ele-
mentary expansion of Y . If a set Y is obtained from X by a sequence of elementary collapses
(a sequence of elementary collapses and expansions), then Y is a collapse of X (X and Y

are simple-homotopy equivalent) and one write X ↘ Y (X�↘Y ). A set is collapsible if it
collapses onto a singleton.

If Y is a collapse of X then |Y | is a strong deformation retract of |X| (and thus, |X| and
|Y | are homotopy equivalent) [38]. Figure 7 illustrates this property.
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Fig. 7 (a) A complex X.
(d) A complex Y which is an
elementary collapse of X.
(b)–(c) Two steps in a strong
deformation retraction of |X|
onto |Y |

4.2 Unipolar Points

In the 60’s, Stong [36] introduced the notion of (co)linear points in order to classify finite
spaces with respect to homotopy type. More recently, May [27] called them beat points
and Bertrand [6] unipolar points. We keep this last designation. In the same article, and for
the same goal, Stong also defined the core of a finite space (see Definition 5) which is the
smallest subset of X homotopic to X. Most results in this subsection were first established
in Stong’s article for finite spaces. Most of his proofs can be easily adapted to posets so we
do not recall them.

Definition 4 (Unipolar point) Let X be a poset.

– A point x ∈ X is down unipolar if there is y�x such that z�x implies z � y (i.e. x↓� =
y↓).

– A point x ∈ X is up unipolar if it is down unipolar for the dual order on X.
– A point is unipolar if it is either down unipolar or up unipolar.

Proposition 4 Let X be a poset. A point x ∈ X is unipolar iff X\{x} is a strong deformation
retract of X.

Proof The “only if” part of this proof is in [36]. The “if” part is original and rely on our
Theorem 2.

Let us assume that Y = X \ {x} is a strong deformation retract of X. Thus, there is an
homotopy h : X × [0,1] → X such that h(z, t) = z for all (z, t) ∈ Y × [0,1] and h(x,0) =
x,h(x,1) �= x. The map h(x, .) : [0,1] → X is a path in X from x to h(x,1) so, following
Theorem 2, we denote p = ∑r

i=0 xi1Ii (r � 1), with p �h(x, .), a regular finite path from
x to h(x,1) with property that in any interval I of the interval sequence of p, there is an
element t such that p(t) = h(x, t). Let t1 ∈ I1 verifying p(t1) = h(x, t1) = x1 which is an
element of Y comparable to x (Proposition 1). The map h(., t1) : X → X is continuous and,
therefore, non-decreasing (Property 2) so for any y ∈ Y , y�x ⇒ y � x1 and x �y ⇒ x1 � y

(since h(., t1) is the identity map on Y ). As x1 is comparable to x, we derive that x is
unipolar. �

Definition 5 (Core) Let Y ⊆ X. We say that Y is a core of X if it has no unipolar point and
it is a strong deformation retract of X.

Property 7
1. Any finite poset has a core and two cores of the same poset are homeomorphic.
2. Two finite posets are homotopy equivalent iff they have homeomorphic cores.

Observe in particular that Property 7 implies that one can greedily remove the unipolar
points of a finite poset in order to obtain a core which will be homeomorphic to any other
core of the same poset. In particular, when the poset is contractible, we have the corollary
below.
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Fig. 8 Left: a subset X of F
n.

Right: its Hasse diagram. The
1-face x is up unipolar and the
2-face y is down unipolar.
Neither x in X \ {y} or y in
X \ {x} are unipolar

Corollary 4 If X is finite and contractible, there is a sequence (xi)
r
i=0(r � 0) of points in X

such that X = {xj }r
j=0 and, for all i ∈ [1, r], xi is unipolar in {xj }i

j=0. Furthermore, if x ∈ X

is unipolar, we can choose xr = x.

Proof The fact that X is contractible means that X is homotopy equivalent to a point. Since
X is finite, X has a core and any core of X is a singleton (Property 7). It is not difficult to
see that it implies that one can greedily construct a sequence (xi)

r
i=0 (r � 0) of points in X

such that X = {xj }r
j=0 and, for all i ∈ [1, r], xi is unipolar in {xj }i

j=0. �

Bertrand [6] has established that down (or up) unipolar points can be deleted in parallel,
that is, if x �= y are down unipolar points in X then y is down unipolar in X \ {x}. It is
no longer true for unipolar points (forgetting “down”) as shown by the example of Fig. 8.
Nevertheless, we can state the next proposition.

Proposition 5 If x �= y are unipolar points then either (a) y is unipolar in X \ {x} or (b),
for one order on X (� or �), x is down-unipolar and covers y, for the other order y is
down-unipolar and covers x and the map ϕ : X \ {x} → X \ {y} defined by ϕ(z) = z if z �= y

and ϕ(y) = x is an homeomorphism.

Proof Let x �= y be unipolar points in X. If x and y are not comparable, it is easy to see that
y is unipolar in X \ {x} since Definition 4 only involves comparable points. If x and y are
comparable, we can set x�y. If y is up-unipolar, y is unipolar in X \ {x} since Definition 4
applied to y only involves points z such that y � z. We suppose now that y is down unipolar
and we denote z the maximum of y↓�. Hence, for any t ∈ X, t �y ⇔ t � z (1). If x �= z,
obviously this inference is true for any t ∈ X \ {x} and y is unipolar in X \ {x}. If x = z

and x is down unipolar, we use the result established in [6]. If x = z and x is up unipolar,
necessarily y is the minimum of x↑�: for any t ∈ X, x � t ⇔ y � t (2). We define ϕ : X \
{x} → X \ {y} by ϕ(t) = t if t �= y and ϕ(y) = x. Trivially, ϕ is a bijection and from (1)
and (2) we derive that ϕ and ϕ−1 are non-decreasing, that is, continuous. �

4.3 Simple Points

Simple points were first introduced by Bertrand in [6] in order to perform topologically
sound thinning algorithms in posets. They have been used by Barmak and Minian [5] to
define a collapse operation in posets which corresponds actually to the collapse operation in
complexes associated to posets. The proofs of Property 8 and Theorem 6, which are out of
scope of this paper, can be found in [5].
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Fig. 9 X is the subset of F
2 depicted in (a) and x is the 2-face in X (note that X = x↓). The face x is simple

since x↓�, depicted in (b), is clearly contractible. But X \ {x} = x↓� is not a retraction of X, for a retraction,
as any continuous function, preserves connectivity and it is impossible to find an image for x in x↓�, while
leaving unchanged the other points in X, without disconnecting some connected subset of X

Definition 6 (Simple point)

A point x ∈ X is down simple (in X) if x↓� is contractible.
A point x ∈ X is up simple (in X) if x↑� is contractible.
A point is simple (in X) if it is either down simple or up simple.

Observe that unipolar points are simple points since if x ∈ X is a down (up) unipolar
point, x↓� (x↑�) has a maximum (minimum) and is therefore contractible (Corollary 1). We
saw previously (Proposition 4) that the removal of a unipolar point is a strong deformation
retraction. It is no longer true for simple points. See Fig. 9 for a counterexample where
the removal of a simple point is not even a retraction. Nevertheless, Property 8 states that
homotopy groups are not changed by such a deletion and, furthermore, Theorem 6 ensure
that this deletion corresponds to a deformation retract on the continuous analogue.

Property 8 [5] Let X be a finite poset. Let x ∈ X be a simple point. Then, the inclusion
i : X \ {x} → X is a weak homotopy equivalence.

Theorem 6 (Barmak and Minian [5]) Let X be a finite poset. Let x ∈ X be a simple point
and K(X), K(X \ {x}) the simplicial complexes associated to X and X \ {x}. Then, K(X) ↘
K(X \ {x}).

From an algorithmic point of view, simple points have good properties since they can
be deleted in parallel. Obviously, if x, y are two points in X with dim(x) = dim(y), there
is no need to know whether x has been deleted from X or not to decide if y↓�, or x↑� is
contractible. Moreover, as we have seen above, the decision on the contractibility can be
greedily performed. Thus, a topology-preserving thinning procedure consists of repeating
until stability the removal of the k-dimensional simple points for k = 0 to n. Figure 10 gives
an example of the result of such a procedure when applied to a 2D-picture. A detailed study
of algorithms quite similar to the previous scheme can be found in [23].

4.4 Free Pairs and Unipolar/Simple Points

In order to perform thinning on a complex, it is usual to do collapses but, viewing this
complex as a poset, it is possible to remove unipolar or simple points. So we want to compare
these three ways to reduce a complex. Hence, in this subsection, X is a cubical complex
(included in F

n) and accordingly, for any face x ∈ X, x↓ is the cell {y ∈ F
n | y ⊆ x}.

Lemma 5 Let 0 � k � m � n and x ∈ X such that dim(x) = m. Let y ∈ x↓ be a k-face.
1. There exist exactly m − k faces in x↓ of dimension (k + 1) which include y.
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Fig. 10 Left: the original image.
Right: a skeleton obtained by the
parallel removal of simple points
of same dimension until stability

2. Let x1, x2 be two (m − 1)-faces in x↓ such that x = x1 ∪ x2 and y intersects both x1

and x2. If k �= 0, there exists in y↓ exactly one (k − 1)-face which is included in (or equal
to) x1 and one (k − 1)-face which is included in (or equal to) x2.

Proof If k = m, Lemma 5 is trivial. Suppose now that m > k. Without loss of generality, we
can assume that x = ∏n

i=1 Ii where Ii ∈ F
1
1 if i � m, Ii ∈ F

1
0 otherwise (see Sect. 4.1.2) and

y = ∏n

i=1 Ji where ∅ ⊂ Ji ⊂ Ii if i � m − k and Ji = Ii otherwise.
1. It is plain that the only (k + 1)-faces included in x and including y are the m − k faces

zj , 1 � j � m − k defined by zj = ∏n

i=1 Ki with Ki = Ji if i �= j and Kj = Ij .
2. Since y intersects both x1 and x2, there exists j ∈ [m− k + 1,m] such that x1 = ∏n

i=1 K1
i

and x2 = ∏n

i=1 K2
i with K1

i = K2
i = Ii if i �= j , ∅ ⊂ K1

j ⊂ Ij and K2
j = Ij \ K1

j . There-
fore, the only (k−1)-face z included in y and in x1 (resp. x2) is z = ∏n

i=1 Li with Li = Ji

if i �= j and Lj = K1
i (resp. Lj = K2

i ). �

An easy consequence of Lemma 5, is that the boundary x↓� of a cell x↓ in F
n is not

contractible since for any k-face y in x↓�, there exist at least two (k + 1)-faces including y,
except if y is maximal in x↓�, and two (k − 1)-faces included in y, except if y is minimal in
x↓�, and therefore x↓� has no unipolar point. So, x↓� is not contractible (Corollary 4).

Corollary 5 The boundary x↓� of a cell x↓ in F
n is not contractible.

Lemma 6 Let x, y ∈ X, x�y, be two faces with dim(x) = dim(y) − 1. Then, y↓� \ {x} is
contractible.

Proof We set m = dim(y) and Y = y↓� \ {x}. If m = 1, Lemma 6 is trivial (Y is a singleton).
Suppose now that m � 2. We denote x ′ the face opposite to x in y↓ : x ′ = y \ x. We will
shrink Y to {x ′}, removing unipolar points from Y . First, we remove the faces in x↓� in
decreasing order relatively to their dimension. For any (m − 2)-face z in x↓ we derive from
Lemma 5 that there are two (m − 1)-faces in y↓ including z, one of which is x. Hence, z is
up unipolar in Y and, thanks to Propositions 4 and 5, we deduce that the set Y1 = {z ∈ Y | z /∈
x↓ or dim(z) < m − 2} is a strong deformation retract of Y . Since, according to Lemma 5,
any (m − k)-face in x↓� is included in exactly one (m − k + 1)-face in y↓ \ x↓, we can
inductively remove all faces of x↓ from Y with the same argumentation as above. Hence,
Z = Y \ x↓ is a strong deformation retract of Y . In a second step, we are going to prove
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Fig. 11 Cores of the set
y↓� \ {x} when y is a 3-face and
x is (a): a 1-face; (b): a 0-face

that the faces in Z \ x ′↓ are successively down unipolar if we remove them in an increasing
order w.r.t. their dimension. Note that, since x ′ = y \ x, there is no 0-face in Z \ x ′↓. So,
suppose we have removed all faces in Z \ x ′↓ of dimension less than k (1 � k � m − 1) and
let z be a k-face in Z \ x ′↓. Lemma 5 ensures that there exists in z↓ exactly one (k − 1)-face
in Z1 = Z \ {t ∈ Z \ x ′↓ | dim(t) < k} (which belongs to x ′↓) so z is down unipolar in Z1.
Hence, we can inductively prove that x ′↓ is a strong deformation retract of Y . As any cell is
contractible (Corollary 1), we are done. �

Remark 2 The previous lemma becomes false if we omit the hypothesis dim(x) = dim(y)−
1 and if dim(y) � 3. Indeed, when the dimension m of y is greater than 2, for any face x ∈ y↓
with 0 < dim(x) < m − 1, the set Y = y↓� \ {x} has no unipolar point (any k-face z in y↓�

covers 2k faces and is covered by m − k faces (Lemma 5), hence any k-face, k ∈ [1,m − 1]
in Y covers at least 2 faces and any k-face, k ∈ [0,m − 2] in Y is covered by at least 2
faces). Therefore, Y is its proper core and is not contractible. Such a set Y is depicted in
Fig. 11(a) for m = 3 and dim(x) = 1. When dim(x) = 0, it is easy to check that the removal
of unipolar points in Y leads to pick off the 1-faces of y↓ including x and stops after these
m steps showing a core of Y (see Fig. 11(b). Thus, Y is not contractible.

Proposition 6 Let X be a cubical complex.
(a) If x ∈ X is unipolar, then x is up simple and there exists y ∈ X such as (y, x) is a free

pair.
(b) If x ∈ X is simple, there exist y, z ∈ x↑� such as (y, z) is a free pair.
(c) If (x, y) is a free pair, y is up unipolar and x is down simple in X \ {y}.

Proof
(a) Let x ∈ X be a unipolar point. Since X is a complex, x↓ ⊆ X and thus, x cannot be down

unipolar (for a m-face in a cubical complex covers 2m faces). So, x is up unipolar, i.e.
x↑� has a minimum (denoted y) and is therefore contractible (Corollary 1). Hence, x is
up simple. Moreover, dim(y) = dim(x) + 1 (for X is a complex) and, y being the only
face in x↑� with this dimension, we deduce from Lemma 5(a) that it does not exist any
face z ∈ x↑� such that dim(z) > dim(y). Thus, (y, x) is a free pair in X.

(b) Let x ∈ X be a simple face. Then, x↑� is contractible (for x↓� is not contractible: Corol-
lary 5). Hence, either x↑� is a singleton or there is a face y unipolar in x↑� (Corollary 4).
If x↑� is a singleton {y}, (y, x) is a free pair. Otherwise, we derive from the previous
part of this proof that there is a face z in x↑� such that (z, y) is a free pair in x↑� and
thus in X.
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(c) Let (x, y) be a free pair. The face x is the only face iny↑� so y is up unipolar and, since
X is a complex, dim(y) = dim(x) − 1. Moreover, thanks to Lemma 6, we conclude that
x is down simple in X \ {y} (for x↓� ∩ (X \ {y}) = x↓� \ {y}). �

4.5 w-simple Points

The example of Fig. 11 puts in evidence the need of a weaker condition on points to be
deleted when processing the reduction of a digital image. The following definition of a w-
simple point (“w” stands for “weak”) and their properties are due to Barmak and Minian [4]
who call them γ -points. Bertrand in [6] defines a quite similar notion.

Definition 7 A point x of a poset is a w-simple point, or simply a w-point, if the poset x	�

is homotopically trivial, i.e. if it is connected and all its homotopy groups are trivial.

Property 9 gives several ways to prove that an element of a finite poset is a w-point and
Property 10 ensures that the deletion of a w-point does not modify the homotopy groups.

Property 9 Let X and Y be finite posets. Then x	� is homotopically trivial if x↓� or x↑� is
homotopically trivial.

Property 10 Let X be a finite poset. Let x ∈ X be a w-simple point. Then, the inclusion
i : X \ {x} → X is a weak homotopy equivalence.

Last, Theorem 7 states that, when deleting a w-point in a finite poset, the homotopy type
of the continuous analogue keeps unchanged.

Theorem 7 Let X be a finite poset and let x ∈ X be a w-simple point. Then |K(X \ {x})|
and |K(X)| are simple-homotopy equivalent.

In a 3D-image X, the cost to decide whether the set x	� is homotopically trivial is not ex-
pensive. Indeed, K(x	�) is a 2-dimensional simplicial complex and it is enough to compute
its connected components and its Euler characteristic. Moreover, the scheme proposed for
the deletion of simple points is still valid (same dimensional w-simple points can be remove
in parallel). An example of the use of this scheme on a 3-D image is given in Fig. 12.

Fig. 12 Reduction by w-points
removal in 3D-space. Left: a
hollow pinched torus with five
little holes. Right: The same torus
after the removal of w-points
until stability
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5 Conclusion

We have studied the links between the standard notion of path in a topological space and
the notion of path in a graph (here, the Hasse diagram) and showed that there are closer
that it could be thought. In particular, they lead to the same fundamental group. It is a new
validation of the use of posets, such as Khalimsky spaces or complexes, to analyse or process
digital images. In a further work not yet published [28], we will study the relations between
the digital paths, and the digital fundamental groups in Z

n, as defined by [16], and the paths
and fundamental groups in F

n. Anyway, we hope we have succeeded to convince the reader
that continuity is also a rich concept when applied to discrete or finite spaces. Though such
notions as Jordan curves, surfaces, manifolds, which involve homeomorphisms, i.e. one-
to-one correspondences with pieces of R

n, cannot be used as-is in finite spaces and must
be adapted, standard topology offers a set of tools usable in finite spaces and useful links
between finite spaces and continuous analogues.
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