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Abstract We use the self-similar tilings constructed in (Pearse in Indiana Univ. Math J.
56(6):3151–3169, 2007) to define a generating function for the geometry of a self-similar
set in Euclidean space. This tubular zeta function encodes scaling and curvature properties
related to the complement of the fractal set, and the associated system of mappings. This
allows one to obtain the complex dimensions of the self-similar tiling as the poles of the
tubular zeta function and hence develop a tube formula for self-similar tilings in R

d . The
resulting power series in ε is a fractal extension of Steiner’s classical tube formula for convex
bodies K ⊆ R

d . Our sum has coefficients related to the curvatures of the tiling, and contains
terms for each integer i = 0,1, . . . , d − 1, just as Steiner’s does. However, our formula also
contains a term for each complex dimension. This provides further justification for the term
“complex dimension”. It also extends several aspects of the theory of fractal strings to higher
dimensions and sheds new light on the tube formula for fractals strings obtained in (Lapidus
and van Frankenhuijsen in Fractal Geometry, Complex Dimensions and Zeta Functions:
Geometry and Spectra of Fractal Strings, 2006).
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1 Introduction

The main result of this paper is a tube formula for a certain class of fractal sets. Here, a tube
formula for a bounded set A ⊆ R

d is an explicit expression for the d-dimensional volume of
the inner ε-neighborhood of A, i.e.,

VA(ε) = vold{x ∈ A ..
. dist(x, ∂A) ≤ ε}. (1.1)

Such formulas have myriad applications to geometry and have roots in the results of Steiner
(when A is convex) and Weyl (when A is a smooth manifold). In order to explain how our
result is an extension of these classical formulas, and how it is related to the development
of a notion of curvature for fractal sets, we give a brief encapsulation of Steiner’s theorem.
Here, the Minkowski sum of two subsets A and B of R

d is denoted by A+B = {x ∈ R
d

..

.
x =

a + b for a ∈ A,b ∈ B}. Then, if Bk is the closed k-dimensional unit ball in R
d , one can

denote the outer ε-neighborhood of a set A ⊆ R
d by

A + εBd = {x ∈ R
d

..
. dist(x,A) ≤ ε}.

Theorem 1.1 (Steiner’s formula) If A ⊆ R
d is convex and compact, then the d-dimensional

volume of A + εBd is given by

vold(A + εBd) =
d∑

k=0

μk(A)vold-k(B
d−k)εd−k, (1.2)

where μk is the renormalized k-dimensional intrinsic volume.

Note that this formula is simply a polynomial in ε; the coefficients are constants de-
termined by the curvature of A (and the unit ball). Up to some normalizing constant, the
k-dimensional intrinsic volume is the same thing as the (d − k)th Quermassintegral (from
Minkowski’s theory of mixed volumes). The valuation μk can be defined via integral geom-
etry as the average measure of orthogonal projections to (d − k)-dimensional subspaces; see
[16, Chap. 7]. For now, we note that (up to a multiplicative constant), there is a correspon-
dence

μ0 ∼ Euler characteristic, μd−1 ∼ surface area,

μ1 ∼ mean width, μd ∼ volume,

see [37, Sect. 4.2] for further details.
When A is sufficiently regular (i.e., when its boundary is a C2 surface), these coefficients

can be given in terms of curvature tensors, and in fact Steiner’s tube formula coincides
with the one obtained by Weyl in [40]. In [4], Federer unified the tube formulas of Steiner
(for convex bodies, as described in [37, Chap. 4]) and of Weyl (for smooth submanifolds,
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as described in [9] and [40]) and extended these results to sets of positive reach.1 It is
worth noting that Weyl’s tube formula for smooth submanifolds of R

d is expressed as a
polynomial in ε with coefficients defined in terms of curvatures (in the classical sense) that
are intrinsic to the submanifold [40]. See [1, Sects. 6.6–6.9] and the book [9]. Federer’s tube
formula has since been extended in various directions by a number of researchers in integral
geometry and geometric measure theory, including [6, 7, 36–38, 42, 43], and most recently
(and most generally) in [13]. The books [9] and [37] contain extensive endnotes with further
information and many other references.

Note that (1.2) gives the volume of the set of points which are within ε of A, including
the points of A. If we denote the exterior ε-neighborhood of A by

Aext
ε := {x ∈ R

d \ A ..
. dist(x,A) ≤ ε}, (1.3)

then it is immediately clear that omitting the d th term gives

vold(A
ext
ε ) =

d−1∑

k=0

Ck(A)εd−k (1.4)

with Ck(A) = μk(A)vold-k(B
d−k). These coefficients Ck(A) are called the total curvatures

of A and they are key geometric invariants. Even more importantly, Ck(A) can be localized
and understood as the curvature measures described in [4] and [37, Chap. 4]. In this case,
for a Borel set β ⊆ R

d , one has

vold{x ∈ Aext
ε ..

.
p(x,A) ∈ β} =

d−1∑

k=0

Ck(A,β)εd−k (1.5)

where p(x,A) is the metric projection of x to A, that is, the closest point of A to x. In
fact, the curvature measures are obtained axiomatically in [37] as the coefficients of the tube
formula, and it is this approach that we hope to emulate in a forthcoming work, based on
a localized version of the tube formula obtained in the present paper. In other words, we
believe that κk (introduced in (1.7) below) may also be understood as a (total) curvature, in
a suitable sense, and we expect that κk can be localized as a curvature measure (or rather,
current). A more rigorous formulation of these ideas is currently underway in [23].

Our Main Result Since it is somewhat arduous to express our tube formula with complete
precision, we present a somewhat simplified version of it here, so that the key features are
not overshadowed by technical details (the exact hypotheses necessary for this formulation
are given in Corollary 8.7).

Theorem 1.2 The d-dimensional volume of the tubular neighborhood of a sufficiently nice
self-similar fractal set F is given by the following distributional explicit formula:

VF (ε) =
∑

ω∈Ds∪{0,1,...,d−1}
cωεd−ω, (1.6)

1A set A has positive reach iff there is some δ > 0 such that any point x within δ of A has a unique metric
projection to A, i.e., that there is a unique point A minimizing dist(x,A). Equivalently, every point q on the
boundary of A lies on a sphere of radius δ which intersects ∂A only at q .
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where for each fixed ω ∈ Ds,

cω := res (ζs(s);ω)

d∑

k=0

gω−k

ω − k
κk. (1.7)

Here, ζs is a zeta function which encodes scaling information about F , Ds is the set of
poles of ζs (the complex dimensions2), and g and κk are geometric data obtained from the
complement of F . Roughly speaking, g is the size of the largest bounded component of
R

d \ F (the generator), and κk are “curvatures” of the same set, in some sense. Also, “suf-
ficiently nice” requires that the open set condition is satisfied for a set whose boundary is
contained in F ; cf. [34, Theorem 6.2].

Theorem 1.2 is a special case of a more fundamental result which is valid under much
more general hypotheses: the tube formula for fractal sprays given in Theorem 7.4:

Theorem 1.3 The d-dimensional volume of the inner tubular neighborhood of a fractal
spray T with a generator G is given by the following distributional explicit formula:

VT (ε) =
∑

ω∈DT

res (ζT (ε, s);ω) , (1.8)

where

ζT (ε, s) := εd−sζs(s)

d∑

k=0

gs−k

s − k
κk (1.9)

and DT := Ds ∪ {0,1, . . . , d − 1} is the set of poles of the tubular zeta function ζT .

In (1.9), the numbers κ0, κ1, . . . , κd refer to a chosen “Steiner-like representation” of G

(an expression of the inner tube for G which satisfies certain very mild conditions discussed
in Definition 5.1).

Our tube formula extends previous results in two ways. On one hand, it provides a fractal
analogue of the classical Steiner formula of convex geometry. On the other hand, the tube
formula (1.8) also provides a natural higher-dimensional analogue of the tube formula for
fractal strings obtained in [30] and recalled in (6.16). The present work can be considered
as a further step towards a higher-dimensional theory of fractal strings and their complex
dimensions, especially in the self-similar case, following upon [27, Sects. 10.2 and 10.3],
and our earlier papers [21, 33]. This is discussed further in Sect. 8.2 and in Remark 9.1.

To emphasize the present analogy with (1.6), consider that, with the obvious change of
notation, Steiner’s formula (1.4) may be rewritten

vold(A
ext
ε ) =

∑

k∈{0,1,...,d−1}
ckε

d−k. (1.10)

The obvious similarities between the tube formulas (1.6) and (1.10) is striking. Our tube
formula is a “fractal power series” in ε, rather than just a polynomial in ε as in Steiner’s
(and Weyl’s) formula. Moreover, our series is summed not just over the ‘integral dimensions’

2Actually, elsewhere in this paper, complex dimensions refers to the set D T = Ds ∪ {0,1, . . . , d − 1} (the
poles of ζT ) and we refer to Ds as the scaling complex dimensions; see Definition 7.3.
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{0,1, . . . , d −1}, but also over the countable set Ds of complex dimensions. The coefficients
cω of the tube formula are expressed in terms of the ‘curvatures’ and the inradii of the
generators of the tiling. It is intriguing to consider that the extra terms appearing in our
formula are oscillatory, as evinced by the purely imaginary components of the complex
dimensions. Moreover, fractals are objects with (multiplicative) geometric oscillations, in
the sense that the same geometric patterns repeat, at different scales of magnification. This
is the essential theme of the theory of complex dimensions as expounded in [30].

The primary object of study in [30] is a fractal string, a countable collection L = {Lj }∞
j=1

of disjoint open intervals which form a bounded open subset of R. Due to the trivial geome-
try of such intervals, this reduces to studying the lengths of these intervals L = {	j }∞

j=1, and
the sequence L is also referred to as a fractal string. The tube formula for a fractal string L
(and in particular, for a self-similar tiling in R) is defined to be VL(ε) := VL(ε) and is shown
to be essentially given by a sum of the form

VL(ε) =
∑

ω∈DL∪{0}
cωε1−ω (1.11)

in [30], Theorem 8.1. Here, the sum is taken over the set of complex dimensions DL =
{poles of ζL}, and cω is given in terms of the residue of ζL(s) at s = ω, the geometric zeta
function of L (defined as the meromorphic continuation of the Dirichlet series

∑∞
j=1 	s

j , for
s ∈ C). The definition VL(ε) := VL(ε) is justified because, as is shown in [25], VL depends
exclusively on L.

In [30, Sect. 1.4] (following [26]), a fractal spray is defined to be given by a nonempty
bounded open set G ⊆ R

d called the generator (or “basic shape” in [30]), scaled by a fractal
string L = {	j }∞

j=1. That is, a fractal spray is a bounded open subset of R
d which is the dis-

joint union of open sets ωj for j = 1,2, . . . , where ωj is congruent to 	jG (the homothetic
of ω by 	j ) for each 	j . Thus, a fractal string is a fractal spray on the generator G = (0,1),
the unit interval. In the context of the current paper, a self-similar tiling is a union of fractal
sprays on the generators G1, . . . ,GQ, each scaled by a fixed self-similar string. In fact, we
first prove Theorem 1.3 for the more general case of fractal sprays, and then refine it to
obtain the formula for self-similar tilings.

For fractal sets, the tube formula may also be used to assess the Minkowski measurability
and to determine the Minkowski dimension (also called the box or box-counting dimension)
and the value of the Minkowski content (when it exists); see Corollary 8.5 and Remark 8.6.
Minkowski dimension of the boundary ∂A of a bounded open subset A ⊆ R

d is a real-valued
extension of the usual (topological) notion of dimension defined by

D = dimM(∂A) := inf{α ≥ 0 ..
.
VA(ε) = O(ε1−α) as ε → 0+}.

Minkowski dimension frequently coincides with Hausdorff dimension (for example, for
fractal sets defined in terms of an iterated function system with mappings that do not over-
lap too much) and in general, dimH(X) ≤ dimM(X). The set ∂A is said to be Minkowski
measurable, with Minkowski content

M(∂A) := lim
ε→0+ VA(ε)ε−(d−dimM(∂A)),

if this limit exists and is both finite and strictly positive.
Further (potential) applications and extensions of our results are discussed in Sect. 10

and elsewhere in the paper; in particular, please see Remark 8.12. Some of the main results
of this paper were announced in [22].
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Strategy for Obtaining the Tube Formula For simplicity, we limit ourselves here to the
self-similar case. In [32], the second author has shown that a certain (self-similar) tiling T is
canonically associated with any self-similar set. This tiling is defined via the finite collection
� = {�j }J

j=1 of contractive similarity transformations which defines the self-similar set.
This tiling T is essentially a decomposition of the complement of the unique self-similar set
associated with �, and is reviewed in greater detail in Sect. 2. Several conditions are given
in [34] which describe precisely when the tube formula of a self-similar set may be obtained
from a tube formula for the self-similar tiling T . The results of the present study allow one
to obtain a tube formula for the (large) class of fractal sets satisfying the “compatibility
conditions” of [34, Theorem 4.4 or Theorem 6.2].

At the heart of this paper is the tubular zeta function ζT (s) of a self-similar tiling T . It
will take some work before we are able to describe this meromorphic distribution-valued
function precisely in Sect. 7. The function ζT is a generating function for the geometry of a
self-similar tiling: it encodes the density of geometric states of a tiling, including curvature
and scaling properties. The poles of ζT are the complex dimensions DT of the tiling, and
we obtain a tube formula for T given as a sum over DT of the residues of ζT , taken at
the complex dimensions. The complex dimensions generalize the Minkowski dimension in
the sense that, for any tiling T , sup{DT ∩ R} is equal to the Minkowski dimension of the
underlying self-similar set F .

The first ingredient of ζT is a scaling zeta function ζs(s) which encodes the scaling
properties of the tiling and is discussed in Sect. 4.2. This comparatively simple zeta function
is the Mellin transform of a discrete scaling measure ηs which encodes the combinatorics
of the scaling ratios of a self-similar tiling. More precisely, if one considers a composition
of similarity mappings �j , each with scaling ratio rj , for j = 1, . . . , J , then

�w = �w1w2...wn = �wn ◦· · ·◦�w2 ◦�w1

has scaling ratio rw = rw1rw2 · · · rwn , where wi ∈ {1,2, . . . , J }. The measure ηs is a sum of
Dirac masses, where each mass is located at a reciprocal scaling ratio r−1

w . The total mass of
any point in the support of ηs corresponds to the multiplicity with which such a scaling ratio
can occur. The scaling zeta function ζs is formally identical to the zeta functions studied
in [30]. The function ζs also allows us to define the scaling complex dimensions of a self-
similar set in R

d (as the poles of ζs), and we find these dimensions to have the same structure
as in the 1-dimensional case; see Sect. 4.3 and Remark 8.6. The definition and properties of
the scaling measure ηs and zeta function ζs is the subject of Sect. 4.1.

The next ingredient of ζT is a generator tube formula γG. In [32], it is shown that certain
tiles G1, . . . ,GQ of T are generators in the sense that any tile Rn of T is the image of some
Gq under some composition of the mappings �j , i.e.,

Rn ∈ T =⇒ Rn = �w(Gq),

for some Gq and some w = w1w2 · · ·wm. In Sect. 5, we discuss the role of the generators
and introduce the function γG which gives the inner tube formula for a generator in the
sense of (1.1). Moreover, appropriately parameterizing γG yields the inner tube formula for
a scaled generator. Therefore, by integrating γG against ηs, one obtains the total contribution
of Gq (and its images under the maps �w) to the final tube formula VT . This is elaborated
upon in Sect. 5.3.

At last, the tubular zeta function of the tiling ζT is assembled from the scaling zeta func-
tion, the tiling, and the terms appearing in γG. In some precise sense, ζT is a generating func-
tion for the geometry of the self-similar tiling. Using ζT , and following the distributional
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techniques and explicit formulas of [30], we are able to obtain an explicit distributional tube
formula for self-similar tilings.

Outline The rest of this paper is organized as follows. Section 2 contains a quick overview
of the background material concerning self-similar tilings. Section 3 discusses how the no-
tion of inradius describes the different scales of the tiling. Section 4 defines the scaling
measure, the scaling zeta function, and complex dimensions of a self-similar tiling. Sec-
tion 5 develops the tube formula for the generators of a self-similar tiling, and establishes
the general form of VT (ε) in terms of this. Section 6 reviews the explicit formulas for fractal
strings which will be used in the proof of the main results. Section 7 defines the tubular zeta
function of the tiling, and states and proves the tube formula for fractal sprays (a generaliza-
tion of a tiling) given in Theorem 7.4, from which the tube formula for self-similar tilings
follows readily, and Section 9 discusses several examples illustrating the theory. Appendix
A verifies the validity of the definition of the tubular zeta function ζT . Finally, Appendix B
verifies the distributional error term and its estimate, from Theorem 7.4.

Remark 1.4 (A Note on the References) The primary references for this paper are [32]
and the research monograph “Fractal Geometry, Complex Dimensions and Zeta Functions:
Geometry and spectra of fractal strings” by Lapidus and van Frankenhuijsen [30]. This vol-
ume is essentially a revised and much expanded version of [27], by the same authors. The
present paper cites [30] almost exclusively, so we provide the following partial correspon-
dence between chapters for the aid of the reader:

[27] Chap. 2 Chap. 3 Chap. 4 Chap. 6 Chap. 10

[30] Chap. 2–3 Chap. 4 Chap. 5 Chap. 8 Chap. 12

Remark 1.5 Throughout, we reserve the symbol i = √−1 for the imaginary number.

2 The Self-Similar Tiling

This section provides an overview of the necessary background material concerning self-
similar tilings. Further details may be found in [32].

Definition 2.1 A self-similar system is a family {�j }J
j=1 (with J ≥ 2) of contraction simili-

tudes

�j(x) := rjMjx + aj , j = 1, . . . , J.

For j = 1, . . . , J , we have 0 < rj < 1, aj ∈ R
d , and Mj ∈ O(d), the orthogonal group of

rigid rotations in d-dimensional Euclidean space R
d . The number rj is the scaling ratio of

�j . For convenience, assume that

1 > r1 ≥ r2 ≥ · · · ≥ rJ > 0. (2.1)

It is well known that there is a unique nonempty compact subset F ⊆ R
d satisfying the

fixed-point equation

F = �(F) :=
J⋃

j=1

�j(F ). (2.2)
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This (self-similar) set F is called the attractor of �. We abuse notation and let � denote both
an operator on compacta (as in (2.2)) and the family {�j }. Different self-similar systems
may give rise to the same self-similar set; therefore we emphasize the self-similar system
and its corresponding dynamics.

It is shown in [32] that for a self-similar system satisfying the tileset condition (see Def-
inition 2.2), there exists a natural decomposition of C \ F which is produced by the system
�. The construction of this tiling is illustrated for a well-known example, the Koch curve, in
Fig. 1. It may help the reader to look at this example before diving into the next paragraph
and the thicket of definitions therein. Further examples are depicted in Sect. 9.

Let C := [F ] be the convex hull of F , and let T := relintC be the relative interior of C.
Iterates of the hull C under � are denoted

Ck := �k(C) =
⋃

w∈Wk

�w(C), (2.3)

where w = w1 . . .wk is a word in Wk := {1,2, . . . , J }k and �w := �wk
◦ · · · ◦�w2 ◦�w1 .

For future reference, let W := ⋃∞
k=1 Wk be the set of all finite words w over the alphabet

{1,2, . . . , J }.

Fig. 1 Construction of the Koch tiling K. This example is discussed further in Sect. 9. The tiling K has the
single generator T1 = G1, an equilateral triangle
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Definition 2.2 The system satisfies the tileset condition iff T � �(C) and

int�j(C) ∩ int�	(C) = ∅, j �= 	. (2.4)

This is a restriction on the overlap of the images of the mappings and implies (but is not
equivalent to) the open set condition. For any system satisfying the tileset condition,

T1 := T \ C1 (2.5)

is well-defined and nonempty, and hence so is Tk := �k(T1). As an open set, T1 is a disjoint
union of connected open sets:

T1 = G1 ∪ G2 ∪ · · · ∪ GQ, Gp ∩ Gq = ∅,p �= q. (2.6)

Definition 2.3 The generators of the tiling are the connected components of T1, i.e., the
disjoint open sets {Gq} in (2.6).

The number Q of generators depends on the system �, not just on F . In general, the number
of connected components of an open subset of R

d may be countable; however, in this paper
we assume Q < ∞.

Definition 2.4 The self-similar tiling of � is

T = {Rn}∞
n=1 = {�w(Gq) ..

.
w ∈ W, q = 1, . . . ,Q}. (2.7)

In (2.7), the sequence {Rn} is an enumeration of the sets {�w(Gq)}, and �w is as in (2.3).
We say T is a tiling of C \ F because the tiles Rn have disjoint interiors and F does not
intersect the interior of any Rn (see Fig. 3):

C =
⋃

n
Rn, F ⊆

⋃
n
∂Rn, and Rn1 ∩ Rn2 = ∂Rn1 ∩ ∂Rn2 .

3 The Inradius

As alluded to in (1.1), we are interested in that portion of a set which lies within ε of its
boundary.

Definition 3.1 Given ε > 0, the inner ε-neighborhood of a bounded set A ⊆ R
d , d ≥ 1, is

Aε := {x ∈ A ..
. dist(x, ∂A) ≤ ε}, (3.1)

where ∂A is the boundary of A. We are primarily interested in the d-dimensional Lebesgue
measure of Aε , denoted VA(ε) := vold (Aε).

Remark 3.2 The primary reason we have worked with the inner ε-neighborhood instead
of the exterior (as in (1.3)) is that it is more intrinsic to the set; it makes the computation
independent of the embedding of T into R

d . At least, this should be the case, provided the
‘curvature’ terms κk of Definition 5.2 are also intrinsic. As a practical bonus, working with
the inner ε-neighborhood allows us to avoid potential issues with the intersections of the
ε-neighborhoods of different components.
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It is clear that if A is a bounded set, A ⊆ Aε for sufficiently large ε. Alternatively, it is
apparent that for a fixed ε > 0, any sufficiently small set will be entirely contained within its
ε-neighborhood. The notion of inradius allows us to see when this phenomenon occurs.

Definition 3.3 The inradius ρ of a set A is

ρ = ρ(A) := sup{ε > 0 ..
. ∃x with B(x, ε) ⊆ A}. (3.2)

Note that the supremum is taken over ε > 0, because A0 = A. The inradii ρn = ρ(Rn)

replace the lengths 	n = 2ρ(Ln) of the 1-dimensional theory; furthermore, the inradius is
characterized by the following theorem.3

Theorem 3.4 In R
d , the inradius is the furthest distance from a point of A to ∂A, or the

radius of the largest ball contained in A, i.e.,

ρ(A) = sup{ε > 0 ..
.
V (Aε) < V (A)}. (3.3)

Proof The continuity of the distance and volume functionals gives V (Aδ) < V (A) if and
only if there is a set U of positive d-dimensional measure contained in the interior of A

which is further than δ from any point of ∂A. For any x ∈ U , B(x, δ) ⊆ A. Conversely, for
δ strictly less than the right-hand side of (3.3), the same reasons imply the existence of the
set U of positive measure. �

Remark 3.5 The proof of Theorem 3.4 shows that the inradius may also be defined by
ρ(A) = sup{dist(x, ∂A) ..

.
x ∈ A}.

The utility of the inradius in the present paper arises primarily from the equality (3.3)
and the fact that the inradius behaves well under the action of the self-similar system:

ρn = ρ(Rn) = ρ(�w(Gq)) = r
e1
1 · · · reJ

J gq, (3.4)

where rj is the scaling ratio of �j , and the exponent ej ∈ N indicates the multiplicity of the
letter j in the finite word w ∈ W .

Definition 3.6 For q = 1, . . . ,Q, the q th generating inradius is the inradius of the q th gen-
erator of the tiling T and denoted

gq := ρ(Gq). (3.5)

For convenience, we may take the generators in nonincreasing order, i.e., index the gen-
erators so that

g1 ≥ g2 ≥ · · · ≥ gQ > 0. (3.6)

4 Measures and Zeta Functions

In this section and the rest of the paper, any zeta function is understood to be the meromor-
phic extension of its defining expression.

3Theorem 3.4 is folkloric, but we were unable to find it in the literature and so have provided a proof.
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4.1 The Geometric Zeta Function of a Fractal String

We recall the notion of “fractal string” and “fractal spray from [30], see also [10–12, 18–20,
25–29, 33], along with [17, Example 5.1 and Appendix C].

Definition 4.1 A fractal string is defined to be a bounded open subset of R, that is, a count-
able collection of disjoint open intervals, L = ⋃∞

n=1 Ln, with lengths L = {	n}∞
n=1. The geo-

metric zeta function of such an object is

ζL(s) =
∞∑

n=1

	s
n, (4.1)

and can be used to study the geometry of L and of its (presumably fractal) boundary ∂L :=
∂L.

Observe that ζL(s) is the Mellin transform of the measure

ηL =
∞∑

n=1

δ1/	n , (4.2)

where δx denotes the Dirac mass (or Dirac measure) at x. Thus,

ζL(s) =
∫ ∞

0
xsdηL(x). (4.3)

The following definition first appeared in [26].

Definition 4.2 Let G ⊆ R
d be a nonempty bounded open set, which we will call the gen-

erator (or basic shape). Then a fractal spray T is a bounded open subset of R
d which is

the disjoint union of open sets ωn for n = 1,2, . . . , where each ωn is congruent to 	nG, the
homothetic of G by 	n. Here, L = {	n}∞

n=1 is a fractal string and we say that T is “scaled
by” L. It is clear that a self-similar tiling as discussed in Definition 2.4 is a special case of
fractal spray.

Thus, any fractal string can be thought of as a fractal spray on the generator G = (0,1), the
unit interval. In the context of the current paper, a self-similar tiling is a union of fractal
sprays on the generators G1, . . . ,GQ, each scaled by a fixed self-similar string. A general
fractal spray may have multiple generators, as long as they are all scaled by the same fractal
string L. However, for the remainder of this paper we consider only a single generator G.
Indeed, as mentioned in Sect. 5.4, the multiple-generator case can readily be reduced to the
case of a single generator.

Remark 4.3 One can also define a generalized fractal string η to be a locally finite regular
Borel measure on R+ with support bounded away from 0, as is done in [30, Sect. 4]. With
regard to scaling, this is perhaps the greatest degree of generality in which the results of the
present paper also hold. Indeed, all the main results of this paper remain true when ηs is
replaced by a generalized fractal string η, including the technical content of the appendices.
However, since the geometric realization of a generalized fractal string (or spray) is unclear
at this point, we describe tube formulas and other concepts from geometric measure theory
in terms of ηs.
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4.2 The Scaling Zeta Function

We now extend Definition 4.1 to higher dimensions. In 1 dimension, the length of an interval
is just twice its inradius, and the distinction between the scale of a set and its volume is
blurred. In higher dimensions, the two are related by a power law, i.e., in R

d , the volume
of a compact set of full dimension will change by a factor of rd when the set is scaled by
a factor r . In [30], the geometric zeta function ζL records the measures of all the open sets
comprising the string. However, in higher dimensions it is easier to use a zeta function (ζs,
introduced just below) to record the scales (inradii) of the open sets in question.

In Definition 7.1, we will introduce the tubular zeta function of the tiling ζT , which is
the higher-dimensional analogue of ζL , and is defined in terms of ζs and the generators. The
tiling zeta function ζT encodes the density of geometric states of T and acts as a generating
function for the geometry of the entire tiling. The scaling zeta function encodes only scaling
data (inradii). In [30], both of these roles are essentially played by ζL .

Definition 4.4 For a fractal spray scaled by a given fractal string L = {	n}∞
n=1, we use the

inradii ρn := 	n

2 to define the scaling measure by

ηs(x) :=
∞∑

n=1

δ1/ρn (x). (4.4)

Definition 4.5 The scaling zeta function is the Mellin transform of the scaling measure:

ζs(s) :=
∫ ∞

0
x−sdηs(x). (4.5)

Remark 4.6 In the special case of a self-similar tiling, as in Sect. 2, it is easy to see from
Definition 4.2 that the scaling measure encodes the scaling factors of the self-similar system
� as a sum of Dirac masses:

ηs(x) :=
∑

w∈W

δ1/rw (x). (4.6)

In this case, one can see that the scaling zeta function ζs encodes the combinatorics of
the scaling ratios {rj }J

j=1 of � = {�}J
j=1, and is thus a generating function for the scaling

properties of �:

ζs(s) =
∑

w∈W

rs
w =

∞∑

k=0

∑

w∈Wk

rs
w. (4.7)

However, there is another, simpler (and more useful) form of ζs, which we now explain.

Theorem 4.7 is the higher-dimensional counterpart of [30, Theorem 2.4], and can, in fact,
be viewed as a corollary of it; see Sect. 4.3. Indeed, it is proved in precisely the same way.

Theorem 4.7 The scaling zeta function of a self-similar tiling is

ζs(s) = 1

1 − ∑J

j=1 rs
j

. (4.8)

This remains valid for the meromorphic extension of ζs to all of C.
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Definition 4.8 We can now define the scaling (complex) dimensions of a tiling T as the
poles of the scaling zeta function:

Ds := {ω ∈ C ..
.
ζs(s) has a pole at ω}. (4.9)

4.3 Comparison with [30]

Although the measure and zeta function introduced in Definition 4.4 and Definition 4.5
above correspond to fractal subsets of R

d , it is crucial to note that (setting geometric inter-
pretation aside) they are formally identical to the objects L (thought of as a measure) and ζL
studied in [30]. To be precise, the scaling measure ηs is a fractal string of the sort studied in
Chap. 2–3 of [30], and a generalized fractal string of the kind introduced in Chap. 4 of [30].
Consequently, all of the explicit formulas developed in [30] are applicable to the measures
and zeta functions described in the present paper. This is key to the proof of Theorem 7.4,
the tube formula for fractal sprays.

In the special case when ηs is the scaling measure of a self-similar tiling, ζs may be
thought of as the geometric zeta function of a self-similar string (as in [30]) with scaling
ratios {rj }J

j=1 and a single gap,4 which has been normalized so as to have 	1 = 1, where 	1

is the first length in the string. Let D be the unique real number satisfying
∑J

j=1 rD
j = 1.

One can check (as in [30], Sect. 5.1) that for some real constant c > D,

ηs(x) = 1

2π i

∫ c+i∞

c−i∞
xs−1ζs(s)ds, and ζs(s) =

∫ ∞

0
x−sηs(dx). (4.10)

Additionally, the structure theorem for complex dimensions of self-similar strings [30,
Theorem 3.6] (in the special case of a single gap), holds for the set of scaling complex
dimensions of Definition 4.8. By (4.8), Ds consists of the set of complex solutions of the
complexified Moran equation

∑J

j=1 rs
j = 1 which is studied in detail in [30, Chaps. 2–3]. In

particular, the scaling complex dimensions lie in a horizontally bounded strip of the form
D	 ≤ Re s ≤ D, where D is as just above and D	 < D is some other (finite, possibly neg-
ative) constant. The positive number D is called the similarity dimension of � (or of its
attractor F ) and coincides with the abscissa of convergence of ζs [30], Theorem 1.10.5 Fur-
thermore, the following dichotomy prevails:

• Lattice case. When the logarithms of the scaling ratios rj are each an integer power of
some common positive real number, the scaling complex dimensions lie periodically on
finitely many vertical lines, including the line Re s = D. In this case, there are infinitely
many complex dimensions with real part D

• Nonlattice case. Otherwise, the scaling complex dimensions are quasiperiodically distrib-
uted and s = D is the only complex dimension with real part D. However, there exists
an infinite sequence of scaling complex dimensions approaching the line Re s = D from
the left. In this case, the set {Re s ..

.
s ∈ D} appears to be dense in (finitely many compact

subintervals of) [D	,D].

4In this paper, we use the term “generator” in place of “gap”.
5If the self-similar system defining F satisfies the ‘open set condition’ (see [14], as described in [2, 31,
39] or [15]), as when the tileset condition is satisfied, then D coincides with the Hausdorff and Minkowski
dimensions of F .
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It has been proven in [30] that for d = 1, the attractor of � fails to be Minkowski measurable
if and only if ζL has nonreal complex dimensions with real part D, and in [30], Conj. 12.18,
this is conjectured to hold also in higher dimensions. See also Remark 8.6.

5 The Generators

The inner tube formula for a self-similar tiling will consist of the sum of the inner tube
formulas for each tile, and each of these can be expressed as a rescaled version of the tube
formula for a generator. That is, if R = �w(G) for some w ∈ W , then the inradius of such a
tile is

ρ = ρ(R) = ρ(�w(G)) = rwg = r
e1
1 . . . r

eJ

J g,

and invariance of Lebesgue measure under rigid motions gives

VR(ε) = V�w(G)(ε) = VrwG(ε). (5.1)

Thus, it behooves us to find an expression for

γG(x, ε) := V(1/x)G(ε), (5.2)

where 1
x
G is a homothetic image of G, scaled by some factor 1

x
> 0. Then γG(1, ε) gives

the inner tube formula for G, and γG(x, ε) is the volume of a tile which is similar to G

but which has been scaled by 1/x. The motivation for defining γG in terms of 1/x (rather
than x) appears in (5.17). Since γG(x, ε) gives the inner tube formula for and set congruent
to (1/x)G, it will also be useful for computing the inner tube formula for a general fractal
spray.

Definition 5.1 A Steiner-like representation6 of a generator G is an inner tube formula of
the form

VG(ε) =
d−1∑

k=0

κk(G, ε)εd−k, for ε < g, (5.3)

where each κk(G, ε) is some reasonably nice (e.g., bounded and locally integrable) function
for ε ∈ [0,∞). In particular, we require that

(1) each κk(G, ε) is homogeneous of degree k, so that for λ > 0,

κk (λG,λε) = κk(G, ε)λk, and (5.4)

(2) each κk(G, ε) is rigid motion invariant, so that

κk (T (G), ε) = κk(G, ε), (5.5)

for any (affine) isometry T of R
d .

6We are grateful to Steffen Winter for pointing out that (5.3) is really a property of (a choice of) the tube
formula, as opposed to a property of the generator, and for suggesting the term “Steiner-like representation”
(to replace the term “Steiner-like generator”, which appeared in a previous draft).
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(3) for each κk(G, ε), k = 0,1, . . . , d − 1, the limit limε→0+ κk(G, ε) exists in R.

We have chosen the term “Steiner-like” for Definition 5.1 because the intrinsic volumes μk

(see Theorem 1.1 and the ensuing discussion) satisfy the following properties:

(1) each μk is homogeneous of degree k, so that for x > 0,

μk (xA) = μk(A)xk, and (5.6)

(2) each μk(A) is rigid motion invariant, so that

μk (T (A)) = μk(A), (5.7)

for any (affine) isometry T of R
d .

Caution: the description of κk(G) given in the conditions of Definition 5.1 is intended to
emphasize the resemblance between κk(G) and μk . However, κk(G) may be signed (even
when G is convex and k = d −1, d) and is more complicated than μk in general. In contrast,
the Federer curvature measures �k are always positive for convex sets; cf. [4] and [37].

Note added in proof Property (3) of Definition 5.1 eventually proved to be unnecessary,
and will be omitted in future work, e.g., [24].

5.1 The Tube Formula for a Monophase Generator

In this paper, we discuss only the special case of a Steiner-like generator G where the co-
efficient functions κk(G, ε) are piecewise constant functions of ε, in which case G is called
pluriphase as in Definition 5.5. In the special case when each κk(G, ε) takes on only two
values, G is called monophase as in Definition 5.2. We will treat the general case in the
forthcoming collaboration with Steffen Winter [24].

Definition 5.2 A Steiner-like generator G is said to be a monophase generator, or to have
a monophase tube formula, iff

VG(ε) = γG(1, ε) =
d−1∑

k=0

κk(G)εd−k, for ε < g, (5.8)

for some κk(G) ∈ R, k = 0,1, . . . , d − 1.

Not every polyhedral generator G is monophase; the more general pluriphase case is dis-
cussed in Sect. 5.2. In general, the computation of V (G,ε) may be nontrivial. So far, we
have only defined V (G,ε) for ε < g. To extend it to all of R

+, note that V (G,ε) is just the
Lebesgue measure of G for ε ≥ g. Therefore, define

κk(G, ε) := κk(G)χ[0,g)(ε), k = 0,1, . . . , d − 1,

κd(G, ε) := −κd(G)χ[g,∞)(ε),

where κk(G) is as in (5.8), χA is the usual characteristic function of the set A, and κd(G) is
defined to be the negative of the d-dimensional Lebesgue measure of G:

κd(G) = −vold (G). (5.9)
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Now we have

V (G,ε) =
d∑

k=0

κk(G, ε)εd−k, for ε ≥ 0. (5.10)

Remark 5.3 Note that for the case k = d , one must have limε→0+ κd(G, ε) = 0. This implies
that V (G,ε) can have no constant term when G is monophase, and hence the sum in (5.8)
does not include a d th term. (The same may not hold when G is pluriphase.)

Theorem 5.4 If G is monophase, then for any tile congruent to the homothetic image 1
x
G,

the inner tube formula is given by

γG(x, ε) =
{∑d−1

k=0 κk(G)x−kεd−k, ε ≤ g/x,

−κd(G)x−d , ε ≥ g/x.
(5.11)

Proof So far, we have only defined VG(ε) for ε < g. To extend it to all of R
+, note that

VG(ε) is just the Lebesgue measure of G for ε ≥ g. Therefore, define

κk(G; ε) := κk(G)χ[0,g)(ε), i = 0,1, . . . , d − 1,

κd(G; ε) := −κd(G)χ[g,∞)(ε),

where κk(G) is as in (5.8), χA is the usual characteristic function of the set A, and μd is
Lebesgue measure on R

d . Now we have

VG(ε) = γG(1, ε) =
d∑

k=0

κk(G; ε)εd−k, for ε ≥ 0. (5.12)

Next, we would like to adapt this formula so as to obtain a tube formula valid for a tile of any
size. Note that VrG(rε) = rdVG(ε), as both expressions are measuring congruent regions in
R

d . Hence for ε < g, one has

d−1∑

k=0

rkκk(G; ε)(rε)d−k = rdVG(ε) = VrG(rε) =
d−1∑

k=0

κk(rG; rε)(rε)d−k,

and thus for ε < g/x, one has

γG(x, ε) = V 1
x G(ε) =

d−1∑

k=0

(
1

x

)k

κk(G;xε)εd−k =
d−1∑

k=0

κk(G;xε)x−kεd−k.

Since κk(G;xε) = κk(G)χ[0,g)(xε) = κk(G)χ[0,g/x)(ε) for k = 0,1, . . . , d −1, it is clear that
(5.2) may be expressed as

γG(x, ε) =
d∑

k=0

κk

(
1

x
G; ε

)
εd−k =

{∑d−1
k=0 κk(G)x−kεd−k, ε ≤ g/x,

−κd(G)x−d , ε ≥ g/x,
(5.13)

where the constants κk(G) are as defined in (5.8) for k = 0,1, . . . , d − 1, and in (5.9) for
k = d . �
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The function γG(x, ε) gives the volume of the ε-neighborhood of a tile which is congru-
ent to a generator scaled by 1/x. The value ε = g/x corresponds to the value of ε at which
the inner ε-neighborhood of the tile becomes equal to the tile itself. Thus, γG is continuous
(but generally not differentiable) at ε = g/x.

5.2 More General Generators

Not every generator G is monophase, so we introduce the pluriphase case in Definition 5.5.
The most general case is discussed in [24]. In fact, even if G is polyhedral or convex, it
still may not be monophase. Example 5.6 gives a set which is convex and pluriphase but not
monophase and the Cantor Carpet discussed in [24, Ex. 6.1] gives a tiling with a nonconvex
generator (in the shape of a Swiss cross) which is polyhedral but not even pluriphase.

Definition 5.5 A generator G is said to be a pluriphase generator iff its inner tube formula is
given by a piecewise polynomial function of ε. Equivalently, G is pluriphase iff the functions
κk(G; ε) of (5.3) are piecewise constant for k = 0,1, . . . , d .

It is possible (though doubtful) that all convex generators are pluriphase, but this has
not yet been proved. However, it seems likely that all convex polyhedra are pluriphase. For
situations even more general, it is an interior version of Federer’s notion of reach (see [4])
that is required. For such cases, the inner tube formula should be obtained in [23] via the
more general methods of [13] and others, just like Theorem 5.4.

Example 5.6 (A Pluriphase Generator) Consider a fractal spray on a generator G consisting
of a 2 × 2 square with one corner replaced by a circular arc, as depicted in Fig. 2. This
generator has inradius g = ρ(G) = 1 and is pluriphase, but not monophase. Indeed, the
relevant partition is

{0 = ε0, ε1 = 1/2, ε2 = 1}, (5.14)

and the tube formula for G is

γG(1, ε) =

⎧
⎪⎨

⎪⎩

(8 + π
4 )ε − (5 + π

4 )ε2, ε0 ≤ ε ≤ ε1,
π−4
16 + 8ε − 4ε2, ε1 ≤ ε ≤ ε2,

π−4
16 + 4, ε2 ≤ ε.

(5.15)

Fig. 2 A pluriphase generator which is not monophase
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5.3 Tilings with One Generator

Suppose we have a tiling T with just one generator G. Then the inner tube formula of T is
given by

VT (ε) =
∞∑

n=1

VRn(ε) =
∑

ρn≥ε

VRn(ε) +
∑

ρn<ε

VRn(ε), (5.16)

much as in [26], (3.2). Recall that ρn is the inradius of the tile Rn. For Rn = �w(Gq),
invariance under rigid motions allows us to use the equality (5.1) to rewrite the sums in
(5.16) as integrals with respect to the scaling measure ηs:

VT (ε) =
∑

ρ−1
n ≤1/ε

VRn(ε) +
∑

ρ−1
n >1/ε

VRn(ε)

=
∫ g/ε

0
V(1/x)G(ε)dηs(x) + μd(G)

∫ ∞

g/ε

x−ddηs(x) (5.17)

=
∫ ∞

0
γG(x, ε)dηs(x)

= 〈ηs, γG〉, (5.18)

where γG is a ‘test function’ giving the volume of a tile which is similar to G, but which has
been scaled by a factor of 1/x; see (5.2). Although γG is not smooth, it fits the criteria given
in Theorem 6.4 and is thus amenable to the distributional techniques of [30, Sect. 5.4].

5.4 Tilings with Multiple Generators

Upon replacing G by Gq , we use the notation Vq, γq, κqk , etc., to refer to the corresponding
quantity for the q th generator. For example, γG(x, ε) is replaced by γq(x, ε) = γGq (x, ε), the
volume of the ε-neighborhood of a tile which is similar to Gq but which has been scaled
by x.

The contribution to VT (ε) resulting from one generator Gq and its successive images
is Vq(ε) := 〈ηs, γq〉, so the case of multiple generators can be reduced to a sum of single-
generator tilings via the formula

VT (ε) =
Q∑

q=1

Vq(ε) =
Q∑

q=1

〈ηs, γq〉. (5.19)

For a concrete example of how this is done, see the example of the pentagasket in Sect. 9.4.
Henceforth, we will always assume there is only a single generator, as this simplifying

assumption will clarify the exposition. The single generator will always be denoted by G.

6 Distributional Explicit Formulas for Fractal Strings

These four definitions and the three theorems that follow them are adapted from [30,
Sect. 5.3]. The technical details described here are used in the proof of Theorem 7.4, es-
pecially in Appendix A and Appendix B. The reader can easily skim or skip this section on
a first reading.
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Definition 6.1 Let f : R → R be a bounded Lipschitz continuous function. Then the screen
is S = {f (t) + it ..

.
t ∈ R}, the graph of a function with the axes interchanged. We let

infS := inft f (t) = inf{Re s ..
.
s ∈ S}, and (6.1)

supS := supt f (t) = sup{Re s ..
.
s ∈ S}. (6.2)

The screen is thus a vertical contour in C. The region to the right of the screen is the set W ,
called the window:

W := {z ∈ C ..
. Re z ≥ f (Im z)}. (6.3)

The poles of ζs are called the scaling dimensions and those which lie in the window are
called the visible scaling dimensions; the set of them is denoted

Ds(W) =
{
ω ∈ W ..

. lim
s→ω

|ζs(s)| = ∞
}
. (6.4)

Definition 6.2 The scaling measure ηs (as in Definition 4.4) is said to be languid if its asso-
ciated zeta function ζs satisfies certain growth conditions relative to the screen. Specifically,
let {Tn}n∈Z be a sequence in R such that T−n < 0 < Tn for n ≥ 1, and

lim
n→∞Tn = ∞, lim

n→∞T−n = −∞, and lim
n→∞

Tn

|T−n| = 1. (6.5)

For ηs to be languid, there must exist real constants �,c > 0 and a sequence {Tn} as de-
scribed in (6.5), such that

L1 For all n ∈ Z and all σ ≥ f (Tn),

|ζs(σ + iTn)| ≤ c · (|Tn| + 1)� , and (6.6)

L2 For all t ∈ R, |t | ≥ 1,

|ζs(f (t) + it)| ≤ c · |t |� . (6.7)

In this case, ηs is said to be languid of order � .

Definition 6.3 The scaling measure ηs is said to be strongly languid if it satisfies L1 and
the condition L2′, which is clearly stronger than L2:

L2′ There exists a sequence of screens Sm(t) = fm(t)+ it for m ≥ 1, t ∈ R, with supSm →
−∞ as m → ∞, and with a uniform Lipschitz bound. Additionally, there must exist
constants A,c > 0 such that

|ζs(f (t) + it)| ≤ c · A|fm(t)|(|t | + 1)� , (6.8)

for all t ∈ R and m ≥ 1.

It turns out that Definition 6.3 is always satisfied when ηs is the scaling measure of a
self-similar tiling; see [30, Sect. 6.4].

Taking [30, Theorem 5.26 and Theorem 5.30] at level k = 0 gives the following dis-
tributional explicit formula for the action of a scaling measure ηs on a test function
ψ ∈ C∞(0,∞). Note that ψ may not have compact support; only the decay properties (6.9)–
(6.10) are required.



110 M.L. Lapidus, E.P.J. Pearse

Theorem 6.4 (Extended Distributional Explicit Formula) Let ηs be a scaling measure
which is languid of order � . Let ψ ∈ C∞(0,∞) with nth derivative satisfying, for some
δ > 0, and every integer n ∈ {0,1, . . . ,N = [� ] + 2},

ψ(n)(x) = O(x−n−D−δ) as x → ∞, and (6.9)

ψ(n)(x) =
∑

α

a(n)
α x−α−n + O(x−n−infS+δ) as x → 0+. (6.10)

Then we have the following distributional explicit formula for ηs:

〈ηs,ψ〉 =
∑

ω∈Ds

res
(
ζs(s)ψ̃(s);ω

)
+

∑

α∈W\Ds

a(0)
α ζs(α) + 〈R,ψ〉 , (6.11)

where the error term R(x) is the distribution given by

〈R,ψ〉 = 1

2π i

∫

S

ζs(s)ψ̃(s)ds (6.12)

and estimated by

R(x) = O(xsupS−1), as x → ∞. (6.13)

Here, ψ̃ is the Mellin transform of the function ψ , defined by

ψ̃(s) :=
∫ ∞

0
xs−1ψ(x)dx. (6.14)

Note: the sum in (6.10) is over finitely many complex exponents α with Reα > −σl + δ;
we express this by saying that ψ has an asymptotic expansion of order −σl + δ at 0.

Taking [30], Theorem 5.27, at level k = 0 gives the following distributional explicit for-
mula for the action of a scaling measure ηs on a test function ψ . Note that in addition
to requiring ψ ∈ C∞(0,∞), we now also require that ψ is a finite linear combination of
terms x−βe−cβx in a neighborhood of the interval (0,A], where A is the same constant as in
Definition 6.3.

Theorem 6.5 (Extended Distributional Formula, without Error Term) Let ηs be a strongly
languid scaling measure. Let q ∈ N be such that q > max{1,� }, where � is as in Def-
inition 6.2. Further, let ψ be a test function that is q times continuously differentiable on
(0,∞). Assume that the j th derivative ψ(j)(x) satisfies (6.9) and (6.10), and that there exists
a δ > 0 such that

ψ(j)(x) =
∑

α

a(j)
α x−αe−cαx, for x ∈ (0,A + δ), 0 ≤ j ≤ q. (6.15)

Then formula (6.11) holds with R ≡ 0.

Theorem 6.6 (Tube Formula for Fractal Strings [30], Theorem 8.1) Let L = {	n}∞
n=1 be

a fractal string with languid zeta function ζL = ∑∞
n=1 	s

n. Then the volume of the (one-
sided) tubular neighborhood of radius ε of the boundary of L is given by the following
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distributional explicit formula for test functions ψ ∈ C∞
c (0,∞), the space of C∞ functions

with compact support contained in (0,∞):

VL(ε) =
∑

ω∈DL(W)

res

(
ζL(s)(2ε)1−s

s(1 − s)
;ω

)
+ {2εζL(0)} + R(ε). (6.16)

Here the term in braces is only included if 0 ∈ W \ Ds(W), and R(ε) is the error term, given
by

R(ε) = 1

2π i

∫

S

ζL(s)(2ε)1−s

s(1 − s)
ds (6.17)

and estimated by

R(ε) = O(ε1−supS), as ε → 0+. (6.18)

The meaning of (6.13) and (6.18), the order of the distributional error term, is given in Defi-
nition B.6 of Appendix B. When L is a self-similar fractal string, the results of Theorem 6.6
may be strengthened as described in Sect. 8.1 and in [30, Sect. 8.4]. In particular, one may
take W = C and R ≡ 0.

7 The Tube Formula for Fractal Sprays

We now present the main result of the paper, a higher-dimensional analogue of Theorem 6.6.
While the proof is similar in spirit to the proof of the tube formula for fractal strings obtained
in [30, Sect. 8.1] (cf. Theorem 6.6), it is significantly more involved, especially if Appen-
dices A and B are taken into account. This result provides new insight, particularly with
regard to the geometric interpretation of the terms of the formula; see Remark 10.2. Also, it
introduces the proper conceptual framework and confirms that fractal sprays are clearly the
higher-dimensional counterpart of fractal strings. In a similar vein, we will see from Theo-
rem 8.3 (the tube formula for self-similar tilings) that the self-similar tilings are the natural
higher-dimensional analogue of self-similar fractal strings.

Although our primary goal in this paper is to obtain a tube formula for self-similar tilings,
we state our main result for the more general class of fractal sprays, as we expect it to be
useful in the study of other fractal structures and tilings to be investigated in future work.
The key special case of self-similar tilings is stated in Theorem 8.3 of Sect. 8.1.

7.1 Statement of the Tube Formula

We will prove the tube formula first for the more general case of fractal sprays, and then
refine this result to obtain the formula for self-similar tilings.

Definition 7.1 Let T be a fractal spray with a single monophase generator G. Then the
tubular zeta function (or volume zeta function) of T is

ζT (ε, s) :=εd−sζs(s)

d∑

k=0

gs−k

s − k
κk. (7.1)

Here, κk = κk(G) as defined in Definition 5.2.
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It turns out that ζT is a meromorphic distribution-valued function for each fixed
s ∈ W , where W ⊆ C is the window defined in Definition 6.1. This verification is given
in Definition A.5 and Theorem A.7 of Appendix A. Considered as a distribution, the action
of ζT (s, ·) on a test function ψ ∈ C∞

c (0,∞) is given by

〈ζT (ε, s),ψ(ε)〉 =
∫ ∞

0
ζT (ε, s)ψ(ε)dε. (7.2)

Here, C∞
c (0,∞) is the space of smooth functions with compact support contained in (0,∞).

At first glance, it may appear strange that something as concretely geometric as a tube for-
mula is given distributionaly. However, the flexibility of the distributional framework allows
the proof to proceed; see [30, Remark 5.20].

Remark 7.2 The presentation here differs slightly from that given in [30], wherein the “geo-
metric zeta function” is actually closer to what we call the scaling zeta function here. The
general tube formula (6.16) involves the one-dimensional case of ζT , although this is not
explicitly stated. For several reasons, it behooves one to think of ζT as the zeta function
most naturally associated with the geometric properties of the spray (or tiling), especially as
pertains to the tube formula:

(i) The function ζT arises naturally in the expression of the tube formula for the tiling, as
will be seen in Theorem 7.4 and Theorem 8.3.

(ii) It is the poles of ζT (ε, s) that naturally index the sum appearing in VT , and the residues
of ζT that give the actual volume.

(iii) Using ζT leads to the natural unification of expressions which previously appeared
unrelated; compare (8.2) to (8.4) in Corollary 8.7.

Thus, the function ζT encodes all the geometric information of T as pertains to its tube for-
mula. In Remark 8.13 we discuss how the unification mentioned in (ii) leads to a geometric
interpretation of the term {2εζs(0)} that appears in (6.16).

Definition 7.3 The set of complex dimensions of a fractal spray is

DT := Ds ∪ {0,1, . . . , d − 1}, (7.3)

where Ds is the set of poles of ζs, as in (6.4). When a window W has been specified, the set
of visible complex dimensions is DT (W) := DT ∩ W , and Ds(W) = Ds ∩ W is the set of
visible scaling dimensions. Thus, DT (W) consists of the visible scaling dimensions and the
visible “integral dimensions” of the spray. Furthermore, the poles of ζT are all contained in
DT . Note that DT (W) is a discrete subset of W ⊆ C, and hence is countable.

Theorem 7.4 (Tube Formula for Fractal Sprays) Let T be a fractal spray on the monophase
generator G, with generating inradius g = ρ(G) > 0, and scaling measure ηs. Assume that
ζs is languid on a screen S which avoids the dimensions in DT (W). Then for test functions
in C∞

c (0,∞), the d-dimensional volume of the inner tubular neighborhood of the spray is
given by the following distributional explicit formula:

VT (ε) =
∑

ω∈DT (W)

res (ζT (ε, s);ω) + R(ε), (7.4)
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where the sum ranges over the set (7.3) of visible integral and scaling dimensions of the
spray. Here, the error term R(ε) is given by

R(ε) = 1

2π i

∫

S

ζT (ε, s)ds, (7.5)

and estimated by

R(ε) = O(εd−supS), as ε → 0+. (7.6)

In the case that ω ∈ Ds(W)∩{0,1, . . . , d −1}, then the corresponding term res (ζT (ε, s);ω)

appears only once in the sum in (7.4). As a distributional formula, (7.4) is valid when applied
to test functions ψ ∈ C∞

c (0,∞). The order of the distributional error term as in (7.6) is
defined in Definition B.6. There is a version of this theorem in which the error term vanishes
identically; it is presented in Corollary 8.1. Also, the special case of self-similar tilings is
presented in Theorem 8.3. The following proof relies heavily on the material in Sect. 6; the
reader may wish to review this material before proceeding.

7.2 Proof of the Tube Formula

The reader may now wish to review Sect. 6 before proceeding, as the proof uses these
explicit formulas and distributional techniques from [30].

Proof of Theorem 7.4 Recall that we view VT (ε) as a distribution,7 so we understand
VT (ε) = 〈ηs, γG〉 by computing its action on a test function ψ :

〈VT (ε),ψ〉 = 〈〈ηs, γG〉,ψ〉 =
∫ ∞

0

(∫ ∞

0
γG(x, ε)dηs(x)

)
ψ(ε)dε

=
∫ ∞

0

∫ ∞

0
γG(x, ε)ψ(ε)dεdηs(x)

= 〈ηs, 〈γG,ψ〉〉 . (7.7)

Now, writing κk = κk(G), we use (5.11) to compute

〈γG,ψ〉 =
∫ ∞

0
γG(x, ε)ψ(ε)dε

=
∫ ∞

0

d∑

k=0

κk

(
1

x
G; ε

)
εd−kψ(ε)dε

=
d−1∑

k=0

∫ ∞

0
κkχ[0,g/x)(ε)x

−kεd−kψ(ε)dε −
∫ ∞

0
κdχ[g/x,∞)(ε)x

−dψ(ε)dε

7Indeed, VT (ε) is clearly continuous and bounded (by the total volume of the spray); hence it defines a
locally integrable function on (0,∞).
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=
d−1∑

k=0

κkx
−k

∫ g/x

0
εd−kψ(ε)dε − κdx

−d

∫ ∞

g/x

ψ(ε)dε

=
d∑

k=0

ϕk(x), (7.8)

where, for x > 0, we have introduced

ϕk(x) :=
{

κkx
−k

∫ g/x

0 εd−kψ(ε)dε, 0 ≤ k ≤ d − 1,

κkx
−k

∫ g/x

∞ ψ(ε)dε, k = d,
(7.9)

in the last line. Caution: ϕk is a function of x, whereas ψ is a function of ε.
Putting (7.8) into (7.7), we obtain

〈VT ,ψ〉 =
〈
ηs,

d∑

k=0

ϕk

〉
=

d∑

k=0

〈ηs, ϕk〉 . (7.10)

To apply Theorem 6.4, we must first check that the functions ϕk satisfy the hypotheses
(6.9)–(6.10). Recall that ψ ∈ C∞

c (0,∞).
For k < d , (6.9) is satisfied because for large x, the corresponding integral in (7.9) is

taken over a set outside the (compact) support of ψ . This gives ϕk(x) = 0 for sufficiently
large x, and it is clear that, a fortiori, the nth derivative of ϕk satisfies

ϕ
(n)
k (x) = O(x−n−D−δ) for x → ∞. (7.11)

To see that (6.10) is satisfied, note that ψ vanishes for x sufficiently large and thus

ϕk(x) = κkx
−k

∫ ∞

0
εd−kψ(ε)dε for x ≈ 0,

i.e., ϕk(x) = akx
−k for all small enough x > 0, where ak is the constant

ak := κk

∫ ∞

0
εd−kψ(ε)dε = κkψ̃(d − i + 1) = lim

x→0+ xkϕk(x). (7.12)

Here ψ̃ is the Mellin transform of ψ , as in (6.14).
Thus, the expansion (6.10) for the test function ϕk consists of only one term, and for each

n = 0,1, . . . ,N ,8

ϕ
(n)
k (x) = dn

dxn

[
akx

−k
] = O(x−n−k) for x → 0+. (7.13)

A key point is that since ψ is smooth, (7.11) and (7.13) will hold for each n = 0,1, . . . ,N ,
as required by Theorem 6.4. Since the expansion of ϕk has only one term, the only α in the
sum is α = k. Thus ak is the constant corresponding to aα in (6.10).

8Recall that ηs is languid of order � and that N = [� ] + 2 in the hypotheses of Theorem 6.4.
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Applying Theorem 6.4 in the case when k < d , (6.11) becomes

〈ηs, ϕk〉 =
∑

ω∈Ds(W)

res (ζs(s)ϕ̃k(s);ω) + {akζs(k)}k∈W\Ds

+ 1

2π i

∫

S

ζs(s)ϕ̃k(s)ds, (7.14)

where the term in braces is to be included iff k ∈ W \ Ds. Here and henceforth, ϕ̃k denotes
the Mellin transform of ϕi given by

ϕ̃k(s) =
∫ ∞

0
xs−1ϕk(x)dx. (7.15)

The case when k = d is similar (or antisimilar). The compact support of ψ again gives

ϕd(x) = κdx
−d

∫ 0

∞
ψ(ε)dε, for x → ∞, (7.16)

so that for some positive constant c, and for all sufficiently large x, we have κd(x) = cx−d .
Hence

ϕ
(n)
d (x) = O(x−n−d) for x → ∞, ∀n ≥ 0, (7.17)

and (6.9) is satisfied. For very small x, the integral in the definition of κd(x) is taken over
an interval outside the support of ψ , and hence κd(x) = 0 for x ≈ 0. Then clearly (6.10) is
satisfied:

ϕ
(n)
d (x) = 0 for x → 0+,∀n ≥ 0. (7.18)

An immediate consequence of (7.18) is that for k = d in (7.12), the constant term is

ad = lim
x→0

xdϕd(x) = 0, (7.19)

and compared with (7.14) we have one term less in

〈ηs, ϕd〉 =
∑

ω∈Ds(W)

res (ζs(s)ϕ̃d(s);ω) + 1

2π i

∫

S

ζs(s)ϕ̃d(s)ds. (7.20)

As in (7.15), denote the Mellin transform of the function ψ by ψ̃ and compute

ϕ̃k(s) =
∫ ∞

0
xs−1ϕk(x)dx = κk

∫ ∞

0
xs−k−1

∫ g/x

0
εd−kψ(ε)dεdx

= κk

∫ ∞

0

(∫ g/ε

0
xs−k−1dx

)
εd−kψ(ε)dε

= κk

s − k

∫ ∞

0
gs−kεk−sεd−kψ(ε)dε

= gs−k κk

s − k
ψ̃(d − s + 1). (7.21)

By a similar calculation,

ϕ̃d (s) = gs−d κd

s − d
ψ̃(d − s + 1). (7.22)
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Note that for 0 ≤ k < d − 1, (7.21) is valid for Re s > k, and for k = d , (7.22) is valid
for Re s < k. Thus both are valid in the strip d − 1 < Re s < d , and hence by analytic
(meromorphic) continuation, they are valid everywhere in C. Indeed, by Corollary A.4, ψ̃

is entire.
We return to the evaluation of (7.10), applying Theorem 6.4 to find the action of ηs on

the test function ϕk , for k = 0, . . . , d . Substituting (7.21) and (7.22) into (7.14) gives

〈ηs, ϕk〉 =
∑

ω∈Ds(W)

res

(
ζs(s)

gs−kκk

s − k
ψ̃(d − s + 1);ω

)

+ {akζs(k)}k∈W\Ds
+ 〈Rk,ψ〉, (7.23)

where Rk is defined by

〈Rk,ψ〉 := 1

2π i

∫

S

ζs(s)ϕ̃k(s)ds. (7.24)

Substituting (7.23) into (7.10), we obtain

〈V (ε),ψ〉 =
d∑

k=0

∑

ω∈Ds(W)

res

(
ζs(s)

gs−kκk

s − k
ψ̃(d − s + 1);ω

)

+
d∑

k=0

{akζs(k)}k∈W\Ds
+

d∑

k=0

〈Rk(ε),ψ(ε)〉. (7.25)

Recall from (7.19) that the d th term is ad = 0, so the top term of the second sum vanishes.
Note that at each such k we have a residue

res

(
ζs(s)

gs−kκk

s − k
ψ̃(d − s + 1); k

)
= κk lim

s→k
ζs(s)g

s−kψ̃(d − s + 1)

= κkζs(k)ψ̃(d − i + 1)

= akζs(k). (7.26)

Since the terms of the second sum of (7.25) are only included for k ∈ W \ Ds(W), we can
use (7.3) and (7.26) to combine the last two sums of (7.25) without losing or duplicating
terms:

〈V (ε),ψ〉 =
∑

ω∈DT (W)

res

(
ψ̃(d − s + 1)ζs(s)

d∑

k=0

gs−kκk

s − k
;ω

)
+ 〈R(ε),ψ(ε)〉 ,

where R(ε) := ∑d

k=0 Rk(ε). This may also be written as the distribution

V (ε) =
∑

ω∈Ds(W)

res

(
εd−sζs(s)

d∑

k=0

gs−kκk

s − k
;ω

)
+ R(ε). (7.27)

This completes the proof of (7.4). All that remains is the verification of the expression
(7.5) for the error term, and error estimate (7.6). Due to their technical and specialized
nature, we leave the proofs of (7.5) and (7.6) to Appendix B. �
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8 Extensions and Consequences: the Tube Formula for Self-Similar Tilings

Recall from Sect. 5.4 that the results of Sect. 8 may easily be extended to multiple generators
simply by taking the corresponding finite sum. The next corollary indicates that when ζs is
strongly languid, one may take W = C in the previous theorem and the error term will vanish
identically.

Corollary 8.1 (Tube Formula for Strongly Languid Fractal Sprays) Let T be a fractal spray
on the monophase generator G, and additionally assume that ζs is strongly languid, and
hence that W = C. Then

VT (ε) =
∑

ω∈DT

res (ζT (ε, s);ω) , (8.1)

where DT = DT (C) is the set of complex dimensions of T , as in (7.3).

Proof This is immediate upon combining Theorem 6.5 (the extended distributional formula
without error term) with the proof of Theorem 7.4. One finds that Rk ≡ 0 for each k =
0,1, . . . , d in (7.24) and thus R ≡ 0 in (7.27). �

Remark 8.2 (Reality Principle) The nonreal complex dimensions appear in complex con-
jugate pairs and produce terms with coefficients which are also complex conjugates, in the
general tube formula for fractal sprays. This ensures that formulas (7.4) and (8.1)–(8.2) are
real-valued.

8.1 The Self-Similar Case

Self-similar strings automatically satisfy the more stringent hypothesis of being strongly
languid, as in Definition 6.3. This automatically entails that Corollary 8.1 holds,9 so the
window may be taken to be all of C and the error term vanishes identically, i.e., R(ε) ≡ 0.
Hence Theorem 7.4 may be strengthened for self-similar tilings as in Theorem 8.3.

Theorem 8.3 (Tube Formula for Self-Similar Tilings) Let T = {�wG}, be a self-similar
tiling with pluriphase generator G and geometric zeta function ζT . Then the d-dimensional
volume of the inner tubular neighbourhood of T is given by the following distributional
explicit formula:

VT (ε) =
∑

ω∈DT

res (ζT (ε, s);ω) , (8.2)

where DT = DT (C) = Ds(C) ∪ {0,1, . . . , d − 1} is the set of complex dimensions of T .

Proof The proof follows [30, Sect. 6.4]. According to Theorem 4.7, the scaling zeta function
of a self-similar tiling has the form

ζs(s) = 1

1 − ∑J

j=1 rs
j

.

9This is essentially because Theorem 6.4 and Theorem 6.6 hold without error term. This is discussed further
in [30, Theorem 5.27], and the end of [30, Theorem 8.1]. A general discussion of the strongly languid case
may be found in [30, Definition 5.3], and an argument showing that all self-similar strings are strongly languid
is given in [30, Sect. 6.4].
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Let rJ be the smallest scaling ratio. Then from

|ζs(s)| �
(

1

rJ

)−|σ |
as σ = Re(s) → −∞,

we deduce that ζT is strongly languid and therefore apply Corollary 8.1. This argument
follows from the analogous ideas regarding self-similar strings, which may be found in [30,
Sect. 8.4]. �

Remark 8.4 Theorem 8.3 provides a higher-dimensional counterpart of the tube formula
obtained for self-similar strings in [30, Sect. 8.4]. It should be noted that Theorem 8.3 applies
to a slightly smaller class of test functions than Theorem 7.4. Indeed, the support of the
test functions must be bounded away from 0 by μd(C)g/rJ , where C = [F ] is the hull of
the attractor (as in Sect. 2), g is the smallest generating inradius (as in (3.6)), and rJ is
the smallest scaling ratio of � (as in (2.1)). This technicality is discussed further in [30],
Definition 5.3 and Theorem 5.27, Sect. 6.4, and Theorem 8.1.

Corollary 8.5 (Measurability and the Lattice/Nonlattice Dichotomy) Under mild condi-
tions on the residues of ζτ , a self-similar tiling is Minkowski measurable if and only if it is
nonlattice.

Sketch of Proof We define a self-similar tiling T to be Minkowski measurable iff

0 < lim
ε→0+ VT (ε)ε−(d−D) < ∞, (8.3)

i.e., if the limit in (8.3) exists and takes a value in (0,∞). A tiling has infinitely many
complex dimensions with real part D iff it is lattice type, as mentioned in Sect. 4.3. Further-
more, all the poles with real part D are simple in that case. A glance at (8.5) then shows that
VT (ε)ε−(d−D) is a sum containing infinitely many purely oscillatory terms cωεinp, n ∈ Z,
where p is some fixed period. Thus, the limit (8.3) cannot exist; see also [30, Sect. 8.4.2].10

Conversely, the tiling is nonlattice iff D is the only complex dimension with real part D. In
this case, D is simple and no term in the sum VT (ε)ε−(d−D) is purely oscillatory; thus the
tiling T is measurable. See also [30, Sect. 8.4.4]. �

Note added in proof Please see Remark 10.6 for the “mild conditions” mentioned in the
statement of Corollary 8.5, and the scope of Remark 8.6 and Remark 8.12.

Remark 8.6 In [30, Sects. 8.3–8.4], it is shown that a self-similar fractal string (i.e., a
1-dimensional self-similar tiling) is Minkowski measurable if and only if it is nonlattice.
Gatzouras showed in [8] that nonlattice self-similar subsets of R

d are Minkowski measur-
able, thereby extending to higher dimensions a result in [3, 19] and partially proving the
geometric part of [19, Conjecture 3]. The previous result gives a complete characterization
of self-similar tilings in R

d as nonlattice if and only if they are Minkowski measurable. With
the exception of Remark 9.2, each of the examples discussed in Sect. 9 is lattice and hence
not Minkowski measurable. Our results, however, apply to nonlattice tilings as well. A more
detailed proof of Corollary 8.5 is possible via truncation, by using the screen and window
technique of [30, Theorem 5.31 and Theorem 8.36].

10It is shown in [30] that infinitely many coefficients cω are nonzero for Reω = D.
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The following corollary of Theorem 8.3 will be used in Sect. 9.

Corollary 8.7 If, in addition to the hypotheses of Theorem 8.3, G is monophase and ζT (s)

has only simple poles, then

VT (ε) =
∑

ω∈Ds

d∑

k=0

res (ζs(s);ω)εd−ω gω−k

ω − k
κk +

d−1∑

k=0

κkζs(k)εd−k. (8.4)

It is not an error that the first sum extends to d in (8.4), while the second stops at d − 1;
see (7.19). Note that in Corollary 8.7, Ds does not contain any integer k = 0,1, . . . , d − 1,
because this would imply that ζT has a pole of multiplicity at least 2 at such an integer. In
general, at most one integer can possibly be a pole of ζs; see Sect. 4.3.

Remark 8.8 For self-similar tilings satisfying the hypotheses of Corollary 8.7, it is clear that
the general form of the tube formula is

VT (ε) =
∑

ω∈DT

cωεd−ω, (8.5)

where for each fixed ω ∈ Ds,

cω := res (ζs(s);ω)

d∑

k=0

gω−k

ω − k
κk. (8.6)

Note that when ω = k ∈ {0,1, . . . , d − 1}, one has cω = ck = ζs(k)κk .

Remark 8.9 The oscillatory nature of the geometry of T is apparent in (8.5). In particular,
the existence of the limit in (8.3) can be determined in the nonlattice case by examining
(8.5) and DT .

Remark 8.10 In the literature regarding the 1-dimensional case [5, 28, 30], the terms “gaps”
and “multiple gaps” have been used where we have used “generators”.

Remark 8.11 (Comparison of VT with the Steiner Formula) In the trivial situation when
the spray consists only of finitely many scaled copies of a monophase generator (so the
scaling measure ηs is supported on a finite set), the zeta function ζs will have no poles in
C. Therefore, the tube formula becomes a sum over only the numbers 0,1, . . . , d − 1 (recall
from (7.19) that ad = 0, so the d th summand vanishes), for which the residues simplify
greatly as in (7.26). In this case, ζs(k) = ρk

1 +· · ·+ρk
J , so each residue from (7.26) becomes

a finite sum

ζs(k)κk(ε) = ρk
1κkε

d−k + · · · + ρk
J κkε

d−k

= κk(rw1G)εd−k + · · · + κk(rwJ
G)εd−k,

where J is the number of scaled copies of the generator G, and rwj
is the corresponding

scaling factor. Thus, for each j = 1, . . . , J , we obtain a monophase formula for the scaled
basic shape rwj

G.
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Remark 8.12 [Combining the results of this paper with [30].] Since, as was noted in
Sect. 4.3, the structure of the scaling complex dimensions of a self-similar tiling in R

d is
the same as in the 1-dimensional case, we could state an analogue of each of the theorems
given in [30, Sect. 8.4], whether in the lattice case ([30, Sect. 8.4.2]) or in the nonlattice
case ([30, Sect. 8.4.4]). In particular, we can apply Theorem 7.4 with a suitable window
W (and use the Diophantine approximation techniques of [30, Chap. 3]) in order to ob-
tain the exact higher-dimensional analogues of the tube formulas with error term stated in
[30, Corollary 8.27] and [30, Theorem 8.37 and Eqn. (8.71)], in the lattice and nonlattice
case, respectively. Finally,in the lattice case, following [30, Sect. 8.4.3], even though the
self-similar tiling is not Minkowski measurable, we could calculate its ‘average Minkowski
content’ (cf. [30, Definition 8.29] with 1 replaced by d) and obtain the d-dimensional ana-
logue of [30, Theorem 8.30]. In order to avoid redundancies, we will avoid formulating
explicitly any of these consequences of our results in this paper. An attentive reader of [30]
should easily be able to combine that material with the present results and obtain such useful
corollaries.

8.2 Recovering the Tube Formula for Fractal Strings

In this section, we discuss the 1-dimensional tube formula of Theorem 6.6 which is true for
general (i.e., not necessarily self-similar) fractal strings and which can be recovered from
Theorem 7.4. Suppose L = {	n}∞

n=1 is a languid fractal string with associated measure ηL =∑∞
n=1 δ1/	n , as in (4.2), and associated zeta function ζL = ∑∞

n=1 	s
n, as in (4.1). Considering

the string now as a tiling, write L as L = {Ln}∞
n=1 to emphasize the fact that we are thinking

of it as a spray instead of as a string. Take the spray L to have as its single generator the
interval G = (0,2), so that L has inradii ρn = 1

2	n and that the length of ρnG is 	n. Now the
scaling measure is ηs = ∑∞

n=1 δ2/	n and the scaling zeta function is

ζs(s) =
∞∑

n=1

(
	n

2

)s

= 2−sζL(s). (8.7)

The generator is clearly monophase with κ0 = 2 and κ1 = −2g:

γG(x, ε) =
{

2ε, ε ≤ g/x,

2g/x, ε ≥ g/x.
(8.8)

One obtains the tubular zeta function of the (1-dimensional) tiling L as

ζL(ε, s) = ε1−sζs(s)

1∑

k=0

κk

s − k
= ε1−s2−sζs(s)

(
2

s
− 2

s − 1

)
= ζL(s)(2ε)1−s

s(1 − s)
, (8.9)

by substituting in (8.7) in the last step. Then from Theorem 7.4 we exactly recover the tube
formula VL(ε) = VL(ε) (and its error term) as given by Theorem 6.6. Note that Ds = DL by
(8.7).

Remark 8.13 In addition to recovering a previously known formula, we also gain a geo-
metric interpretation of the terms appearing in the 1-dimensional tube formula (6.16), in
view of the previous computation. In particular, one sees that the linear term {2εζs(0)} has
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a geometric interpretation in terms of the inner Steiner formula for an interval, and can be
dissected as

2εζs(0) = κ0(G)ε1−0ζs(0) = (−2)μk(G)εd−kζs(k), (8.10)

where k = 0 and d = 1. Note that μ0(G) = −1 is the Euler characteristic of an open interval.
This should be discussed further in [23].

9 Tube Formula Examples

Although Remark 9.2 discusses how one may construct nonlattice examples, the other ex-
amples chosen in this section are lattice self-similar tilings, in the sense of Sect. 4.3. Also,
all examples in this section have monophase generators in the sense of Definition 5.2, as is
verified in each case. The pentagasket of Example 9.4 is the only example given here of a
self-similar tiling with multiple generators.

Moreover, the scaling zeta function ζs of each example has only simple poles, with a
single line of complex dimensions distributed periodically on the line Re s = D. Thus, the
tube formula may be substantially simplified via Corollary 8.7.

9.1 The Cantor Tiling

The Cantor tiling C (called the Cantor string in [30], Sect. 1.1.2 and Sect. 2.3.1) is con-
structed via the self-similar system

�1(x) = x

3
, �2(x) = x + 2

3
.

The associated self-similar set F is the classical ternary Cantor set, so d = 1 and we have
one scaling ratio r = 1

3 , and one generator G = (
1
3 , 2

3

)
with generating inradius g = 1

6 . The
corresponding self-similar string has inradii ρm = grm with multiplicity 2m, m = 0,1,2, . . . ,
so the scaling zeta function is

ζs(s) = 1

1 − 2 · 3−s
, (9.1)

and the scaling complex dimensions are

Ds = {D + inp ..
.
n ∈ Z} for D = log3 2, p = 2π

log 3
. (9.2)

We note that ζs(0) = −1 and apply (8.9) from the previous section to recover the follow-
ing tube formula for C (as obtained in [30], Sect. 1.1.2):

VC(ε) = 1

2 log 3

∑

n∈Z

(2ε)1−D−inp

(D + inp)(1 − D − inp)
− 2ε. (9.3)

Alternatively, this may be written as a series in ( ε
g
) as

VC(ε) = 1

3 log 3

∑

n∈Z

(
1

D + inp
− 1

D − 1 + inp

) (
ε

g

)1−D−inp

− 2ε, (9.4)

with g = 1
6 , D = log3 2, and p = 2π/ log 3. It is this form of the tube formula which is closer

in appearance to the following examples.
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Fig. 3 The Koch tiling K

9.2 The Koch Tiling

The standard Koch tiling K (see Fig. 3, along with Fig. 1 of Sect. 2) is constructed via the
self-similar system

�1(z) := ξz and �2(z) := (1 − ξ)(z − 1) + 1, (9.5)

with ξ = 1
2 + 1

2
√

3
i and z ∈ C. The attractor of {�1,�2} is the classical von Koch curve. Thus

K has one scaling ratio r = |ξ | = 1/
√

3, and one generator G: an equilateral triangle of side
length 1

3 and generating inradius g =
√

3
18 . This tiling has inradii ρm = grm with multiplicity

2m, where m = 0,1,2, . . . , so the scaling zeta function is

ζs(s) = 1

1 − 2 · 3−s/2
, (9.6)

and the scaling complex dimensions are

Ds = {D + inp ..
.
n ∈ Z} for D = log3 4, p = 4π

log 3
. (9.7)

By inspection, a tile with inradius 1/x will have tube formula

γG(x, ε) =
{

33/2(−ε2 + 2εx), ε ≤ 1/x,

33/2x2, ε ≥ 1/x.
(9.8)

For fixed x, (9.8) is clearly continuous at ε = 0+. Thus we have

ζs(s) = 1

1 − 2 · 3−s/2
and

κ0 = −33/2, κ1 = 2 · 33/2, κ2 = −33/2.

Now applying (8.4), the tube formula for the Koch tiling K is

VK(ε) = 33/2g2
∑

ω∈Ds

res

(
1

1 − 2 · 3−s/2
;ω

) (
− 1

ω
+ 2

ω − 1
− 1

ω − 2

) (
ε

g

)2−ω

+ g

2
ζs(0) res

(
−1

s
;0

) (
ε

g

)2−0

+ g

2
ζs(1) res

(
2

s − 1
;1

) (
ε

g

)2−1
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= g

log 3

∑

n∈Z

(
− 1

D + inp
+ 2

D − 1 + inp
− 1

D − 2 + inp

) (
ε

g

)2−D−inp

+ 33/2ε2 + 1

1 − 2 · 3−1/2
ε, (9.9)

where D = log3 4, g =
√

3
18 and p = 4π

log 3 as before.

Remark 9.1 In [21], a tube formula was obtained for the Koch curve itself (rather than for
the tiling associated with it) and the possible complex dimensions of this curve were inferred
to be

DK� = {D + inp ..
.
n ∈ Z} ∪ {0 + inp ..

.
n ∈ Z},

where D = log3 4 and p = 2π
log 3 . The line of poles above D was expected,11 and agrees

precisely with the results of this paper. The meaning of the line of poles above 0 is still
unclear. A zeta function for the Koch curve was not defined prior to the present paper; all
previous reasoning was by analogy with (6.16).

Remark 9.2 (Nonlattice Koch Tilings) By replacing ξ = 1
2 + 1

2
√

3
i in (9.5) with any other

complex number satisfying |ξ |2 + |1 − ξ |2 < 1, one obtains a family of examples of non-
lattice self-similar tilings. The tube formula computations parallel the lattice case almost
identically. The lattice Koch tilings correspond exactly to those ξ ∈ B( 1

2 , 1
2 ) (the ball of ra-

dius 1
2 centered at 1

2 ∈ C) for which logr |ξ | and logr |1 − ξ | are both positive integers, for
some fixed 0 < r < 1. Further discussion (and illustrations) of nonlattice Koch tilings may
be found in [32].

9.3 The Sierpinski Gasket Tiling

The Sierpinski gasket tiling S G (see Fig. 4) is constructed via the system

�1(z) := 1

2
z, �2(z) := 1

2
z + 1

2
, �3(z) := 1

2
z + 1 + i

√
3

4
,

Fig. 4 The Sierpinski gasket tiling

11This set of complex dimensions was predicted in [27], Sect. 10.3.
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which has one common scaling ratio r = 1/2, and one generator G: an equilateral triangle
of side length 1

2 and inradius g = 1
4
√

3
. Thus S G has inradii ρm = grm with multiplicity 3m,

m = 0,1,2, . . . , so the scaling zeta function is

ζs(s) = 1

1 − 3 · 2−s
, (9.10)

and the scaling complex dimensions are

Ds = {D + inp ..
.
n ∈ Z} for D = log2 3, p = 2π

log 2
. (9.11)

Aside from ζs(s), the tube formula calculation for S G is identical to that for the previous
example K:

VS G (ε) =
√

3

16 log 2

∑

n∈Z

(
− 1

D + inp
+ 2

D − 1 + inp
− 1

D − 2 + inp

) (
ε

g

)2−D−inp

+ 33/2

2
ε2 − 3ε. (9.12)

Remark 9.3 Suppose that for a tiling T , the boundary of the hull intersects the boundary of
a generator in at most a finite set: |∂C ∩ ∂Gq | < ∞. In this case, the tube formula for the
tiling is almost the (exterior) tube formula for the attractor. This is the case for the Sierpinski
gasket, and also for the Sierpinksi carpet (in which case the intersection is empty). In fact, the
exterior ε-neighbourhood of the Sierpinski gasket curve is obtained by adding the Steiner’s
formula for C:

vol2((S G)ε) = VS G (ε) + 3ε + πε2. (9.13)

9.4 The Pentagasket Tiling

The pentagasket tiling P (see Fig. 5) is constructed via the self-similar system defined by
the five maps

�j(x) = 3 − √
5

2
x + pj , j = 1, . . . ,5,

with common scaling ratio r = φ−2, where φ = (1 + √
5)/2 is the golden ratio, and the

points
pj

1−r
= cj form the vertices of a regular pentagon of side length 1.

The pentagasket P is an example of multiple generators Gq : G1 is a regular pentagon and
G2, . . . ,G6 are congruent isosceles triangles, as seen in T1 of Fig. 5. To make the notation
more meaningful, we use the subscripts p, t to indicate a pentagon or triangle, respectively.

The generating inradius for the pentagon is gp = φ2

2 tan 3
10π and the generating inradius

for the triangles is gt = φ3

2 tan π
5 . Thus, P has inradii ρm = gqr

m, for q = p, t and m =
0,1,2, . . . , with multiplicity 5m, so the scaling zeta function is

ζs(s) = 1

1 − 5 · r−s
, (9.14)
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Fig. 5 The pentagasket tiling

Fig. 6 The pentagasket and the
golden ratio φ

and the scaling complex dimensions are

Ds = {D + inp ..
.
n ∈ Z} for D = log1/r 5, p = 2π

log r−1
. (9.15)

We omit the exercise of finding volumes for the pentagonal and triangular generators; the
tube formula for a tile of inradius 1/x is

γq(x, ε) =
{

κq0(ε)x
0 + κq1(ε)x

1 = αq

(−ε2 + 2εx
)
, ε ≤ 1/x,

κq2(ε)x
2 = αqx

2, ε ≥ 1/x,

where αp := 5 cot 3
10π and αt := (cot π

5 )/(1 − tan2 π
5 ). Since G2, . . . ,G6 are congruent, we

will apply Corollary 8.7 to a triangle Gt and multiply by 5 before adding it to the result
of applying Corollary 8.7 to the pentagon Gp . For the pentagon and the triangle, we have
κ0 = −αq, κ1 = 2αq , and κ2 = −αq .

The tubular zeta function of P is

ζP (ε, s) =
6∑

q=1

αqg
s
q

1 − 5 · r−s

(
−1

s
+ 2

s − 1
− 1

s − 2

)
ε2−s ,

and the tube formula for P is

VP (ε) = αp

log r−1

∑

n∈Z

g2
p

(
− 1

D + inp
+ 2

D − 1 + inp
− 1

D − 2 + inp

) (
ε

gp

)2−D−inp
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+ 5αt

log r−1

∑

n∈Z

g2
t

(
− 1

D + inp
+ 2

D − 1 + inp
− 1

D − 2 + inp

) (
ε

gt

)2−D−inp

+
[(

αp

4
+ 5αt

4

)
ε2 + (2αpgq + 10αpgqr)r

r − 5
ε

]
, (9.16)

with r = φ−2, αp = 5 cot 3
10π , αt = (cot π

5 )/(1 − tan2 π
5 ), gp = φ2

2 tan 3
10π , gt = φ3

2 tan π
5 ,

D = log1/r 5 and p = 2π

log r−1 .

Remark 9.4 Much as in the case of fractal strings where d = 1 (see [30], Sect. 8.4.2), it fol-
lows from Theorem 8.3 that for a lattice self-similar tiling T , each line of simple complex
dimensions β + inp gives rise to a function which consists of a multiplicatively periodic
function times εd−β . Here, β is some real constant and p = 2π/ log r−1 is the oscillatory pe-
riod of T . Consequently, since the scaling complex dimensions with real part D are always
simple, the tube formula for each lattice tiling in this section has the form

VT (ε) = h
(
logr−1(ε

−1)
)
εd−β + P (ε), (9.17)

where h is an additively periodic function of period 1 and P is a polynomial in ε. For
instance, the periodic function appearing in the tube formula (9.9) for the Koch tiling K of
Example 9.2 has the following Fourier expansion:

h(u) = g

log 3

∑

n∈Z

ginp

(
− 1

D + inp
+ 2

D − 1 + inp
− 1

D − 2 + inp

)
e2πinu, (9.18)

where g = √
3/18, D = log3 4, r = 1/

√
3, and p = 4π/ log 3. We note that multiplicatively

periodic terms appear frequently in the mathematics and physics literature. See, for example,
the relevant references given in Sect. 1.5, Sect. 2.7, Sect. 6.6, and Sect. 12.5 of [30].

10 Some Remarks on the Results in This Paper

In this last section, we briefly comments on several consequences and possible extensions
of our main results.

Remark 10.1 The monograph [30] proposes a new definition of a fractal as “an object with
nonreal complex dimensions that have a positive real part”. With respect to this definition,
the present work confirms the fractal nature of all the examples discussed in Sect. 9, and
more generally, of all self-similar tilings considered in this paper.

Remark 10.2 Our results for tilings shed new light on the (1-dimensional) tube formula for
fractal strings (1.11). The origin of the previously mysterious linear term {2εζL(0)} (see
(6.16)) is now seen to come from a monophase formula for the unit interval, akin to (5.2).
This is discussed further in Sect. 8.2. In fact, all terms coming from the second sum of
the extended distributional formula of Theorem 6.4 are now understood to be related to a
pluriphase formula. This reveals a geometric interpretation and allows the two sums to be
naturally combined, as seen in (7.26) and (8.10).
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Remark 10.3 Many classical fractal curves are attractors of more than one self-similar sys-
tem. For example, the Koch curve discussed in Sect. 9.2 is also the attractor of a system
of four similarity transformations of R

2, each with scaling ratio r = 1
3 . In this particular

example, changes in the scaling zeta function produce a different set of complex dimen-
sions. In fact, we obtain a subset of the original complex dimensions: {log3 4 + inp ..

.
n ∈

Z,p = 4π/ log 3}. This has a natural geometric interpretation which is to be discussed in
later work. In particular, it would be desirable to determine precisely which characteristics
remain invariant between different tilings which are so related.

Remark 10.4 The two formulas (1.6) and (1.10) initially appear to be measuring very dif-
ferent things, but this is misleading. If one considers the example of the Sierpinski tiling
(discussed in Sect. 9.3), then it is immediately apparent that the exterior ε-neighbourhood
of the Sierpinski gasket is, in fact, equal to the union of the inner ε-neighbourhood of the
tiling and the exterior ε-neighbourhood of the largest triangle. With C0 as in Fig. 4,

vol2(S G ext
ε ) = VS G (ε) + vol2(C0). (10.1)

However, things do not always work out so neatly, as the example of the Koch tiling shows;
see Sect. 9.2. In the forthcoming paper [34], precise conditions are given for equality to
hold as in (10.1). This allows one to use results of the present paper to compute explicit tube
formulas for a large family of self-similar sets, including the Sierpinski gasket and carpet;
see Remark 9.3.

Despite the fact that the tube formula for a self-similar tiling may differ from the tube
formula for the corresponding self-similar set, it still gives us valuable information about
self-similar geometries (and their associated dynamical systems). Indeed, we can define the
complex dimensions of a given self-similar set in R

d to be those of the self-similar tiling
canonically associated to it (as in [32]). This is motivated by focusing on the dynamics of
the self-similar system, rather than looking directly at the set. For an example, see Sect. 9.2,
especially Remark 9.1.

Remark 10.5 Recall that Weyl’s celebrated formula [41] expresses the leading asymptotics
of the eigenvalue counting function of the (Dirichlet) Laplacian on a d-dimensional compact
Riemann manifold M in terms of the volume of M and its dimension d ; see, e.g., [30,
Sect. 12.5 and Appendix B]. An analogue of this formula exists for certain manifolds with
fractal boundaries (for example, very irregular bounded open sets in R

d ), and in that case,
the corresponding error term can be expressed in terms of the Minkowski dimension of
the boundary; see [17–19], along with [30, Sect. 12.5.1 and Sect. 12.5.2] and the relevant
references therein. For a fractal spray satisfying suitable hypotheses, we should be able to
use the framework and the results of the present paper in order to obtain a full spectral
asymptotic expansion (not just the leading term) for the Laplacian, expressed in terms of the
underlying visible complex dimensions. See [30, Sects. 6.3–6.5] for the 1-dimensional case,
and [30, Sect. 6.6] for an example in the case of a of self-similar fractal spray: the Sierpinski
drum. We hope to elaborate on this remark in a later work.

Remark 10.6 (Note added in proof) It turns out that a little more care is needed for the
results concerning Minkowski measurability to ensure that limε→0+ V (T , ε)ε−(d−D) (or its
counterpart in the lattice case, the average Minkowski content) does not vanish in (8.3), and
that the corresponding term in the explicit formula dominates the remaining ones. This issue
was discovered during collaboration with Steffen Winter on the forthcoming paper [24], and
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so it will be discussed in full detail in a sequel to that paper. For example, a sufficient
condition for Corollary 8.5 to hold is that D > d − 1 and

d−1∑

k=0

gD−k

D − k
(d − k)κk(G) �= 0, (10.2)

where g is the inradius of the monophase generator G and κk(G) is as in Definition 5.2.

Acknowledgements The authors wish to thank Martina Zähle for several helpful discussions on geometric
measure theory and for bringing Ref. [13] to our attention. Additionally, the authors would like to thank
Steffen Winter for many helpful discussions and suggestions, and for finding mistakes in an earlier version of
this paper. Steffen also suggested the term “monophase” (the authors had originally used the term “diphase”
in an earlier draft of this paper).

Appendix A: The Definition and Properties of ζT

In this appendix, we confirm some basic properties of the tubular zeta function ζT of a
fractal spray T . However, we first require some facts about Mellin transformation. If ψ ∈
D = C∞

c (0,∞), it is elementary to check that for every s ∈ C, the Mellin transform ψ̃(s)

is given by the well-defined integral (6.14) and satisfies |ψ̃(s)| ≤ |ψ̃ |(Re s) < ∞. We will
need additional estimates in what follows. We also use the forthcoming fact that ψ̃(s) is an
entire function; see Corollary A.4.

Throughout Appendix A, we assume that the hypotheses of Theorem 7.4 are satisfied.

Lemma A.1 Suppose that S ⊆ C is horizontally bounded, so infS := infS Re s and supS :=
supS Re s are finite. Let K be a compact interval containing the support of ψ ∈ C∞

c (0,∞).
Then there is a constant cK > 0 depending only on K such that

sup
s∈S

|ψ̃(s)| ≤ cK‖ψ‖∞. (A.1)

In particular, ψ̃(s) is always uniformly bounded on any screen S as in Definition 6.1.

Proof Let K be a compact interval containing the support of ψ . Since

|xs−1| = xRe s−1 ≤
{

xsupS−1, x ≥ 1,

x infS−1, 0 < x < 1,
(A.2)

one can define a bound

bK := sup
x∈K

max{xsupS−1, x infS−1}.

Note that bK is finite because the function x �→ max{xsupS−1, x infS−1} is continuous on the
compact set K , and hence is bounded. Then we use (A.2) to bound ψ̃ as follows:

|ψ̃(s)| ≤
∫ ∞

0
|xs−1| · |ψ(x)|dx

=
∫

K

xRe s−1|ψ |(x)dx = ˜|ψ |(Re s) (A.3)

≤ bK‖ψ‖∞ · vol1(K). �
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Remark A.2 The exact counterpart of Lemma A.1 holds if ψ̃(s) is replaced by a translate
ψ̃(s − s0), for any s0 ∈ C. Therefore, under the same assumptions as in Lemma A.1, we
have

sup
s∈S

|ψ̃(s − s0)| ≤ cK,s0‖ψ‖∞, (A.4)

where cK,s0 := bK,s0 · vol1(K), and

bK,s0 := sup
x∈K

max{xsupS−Re s0−1, x infS−Re s0−1} < ∞. (A.5)

In particular, for any compact interval K containing the support of ψ , and for each fixed
integer k ≥ 0,

sup
s∈S

∣∣∣ψ̃(s − d + k + 1)

∣∣∣ ≤ cK,k‖ψ‖∞, (A.6)

where cK,k is a finite and positive constant.

Lemma A.3 Let (X,μ) be a measure space. Define an integral transform by F(s) =∫
X

f (x, s)dμ(x) where

|f (x, s)| ≤ G(x), for some G ∈ L1(X,μ),

for μ-a.e. x ∈ X, and for all s in some neighbourhood of s0 ∈ C. If the function s �→ f (x, s)

is holomorphic for μ-a.e. x ∈ X, then F(s) is well-defined and holomorphic at s0.

The proof is a well-known application of Lebesgue’s Dominated Convergence Theorem.
We use Lemma A.3 to obtain the following corollary, which is used to prove Theorem 7.4
and Theorem A.7.

Corollary A.4 For ψ ∈ C∞
c (0,∞), ψ̃(s) is entire.

Proof Fix s0 ∈ C. If s is in a compact neighbourhood of s0, then Re s is bounded, say by
α ∈ R. Then for almost every x > 0,

∣∣xs−1ψ(x)
∣∣ ≤ xα−1‖ψ‖∞χψ, (A.7)

where χψ is the characteristic function of the compact support of ψ . Upon application of
Lemma A.3, one deduces that ψ is holomorphic at s0. �

Caution: Corollary A.4 does not combine with Lemma A.1 to imply that ψ̃ is constant;
indeed, Liouville’s Theorem does not apply here because s is restricted to the screen S in
Lemma A.1.

Definition A.5 For T (ε, s) to be a weakly meromorphic distribution-valued function on W ,
there must exist (i) a discrete set PT ⊆ C, and (ii) for each ω ∈ PT , an integer nω < ∞, such
that �(s) = 〈T (ε, s),ψ(ε)〉 is a meromorphic function of s ∈ W , and each pole ω of � lies
in PT and has multiplicity at most nω .
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To say that the distribution-valued function T : W → D
′ given by s �→ T (ε, s) is

(strongly) meromorphic means that, as a D
′-valued function, it is truly a meromorphic func-

tion, in the sense of the proof of Lemma A.6. Recall that we are working with the space of
distributions D

′, defined as the dual of the space of test functions D = C∞
c (0,∞).

Lemma A.6 If T is a weakly meromorphic distribution-valued function, then it is a
(strongly) meromorphic distribution-valued function.

Proof For ω /∈ PT , note that as s → ω,

T (ε, s) − T (ε,ω)

s − ω
(A.8)

converges to a distribution (call it T ′(ε,ω)) in D
′, by the Uniform Boundedness Principle

for a topological vector space such as D; see [35], Theorem 2.5 and Theorem 2.8. Hence,
the D

′-valued function T is holomorphic at ω.
For ω ∈ PT , apply the same argument to

lim
s→ω

1

(nω − 1)!
(

d

ds

)nω−1

((s − ω)nωT (ε, s)), (A.9)

which must therefore define a distribution, i.e., exist as an element of D
′. Thus T is truly a

meromorphic function with values in D
′, and with poles contained in PT . �

Theorem A.7 Under the hypotheses of Theorem 7.4 or Theorem 8.3, the tubular zeta func-
tion of a fractal spray or tiling

ζT (ε, s) = εd−sζs(s)

d∑

k=0

gs−k

s − k
κk (A.10)

is a distribution-valued (strongly) meromorphic function on W , with poles contained in DT .

Proof Let PT = DT and note that

〈ζT (ε, s),ψ(ε)〉 = ζs(s)

d∑

k=0

gs−k

s − k
κk

∫ ∞

0
εd−sψ(ε)dε

= ζs(s)ψ̃(d − s + 1)

d∑

k=0

gs−k

s − k
κk. (A.11)

By Corollary A.4, this is a finite sum of meromorphic functions and hence meromorphic
on W , for any test function ψ . Applying Lemma A.6, one sees that ζT is a meromorphic
function with values in D

′. �

Remark A.8 Note that for each ψ ∈ D, the poles of the C-valued function

s �→ 〈ζT (ε, s),ψ(ε)〉 (A.12)

are contained in DT . Further, if mω is the multiplicity of ω ∈ DT as a pole of ζs(s), then the
multiplicity of ω as a pole of (A.12) is bounded by mω + 1.
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Corollary A.9 The residue of ζT at a pole ω ∈ DT is a well-defined distribution.

Proof This follows immediately from the second part of the proof of Lemma A.6, with
PT = DT . �

Corollary A.10 The sum of residues appearing in Theorem 7.4 and Theorem 8.3 is distrib-
utionally convergent, and is thus a well-defined distribution.

Proof In view of the proof of Theorem A.7, this comes by applying the Uniform Bounded-
ness Principle to an appropriate sequence of partial sums, in a manner similar to the proof
of Lemma A.6. Again, see [30, Remark 5.21]. �

Appendix B: The Error Term and Its Estimate

In this appendix, we give the promised proof of the expression for the error term (7.5) and
its estimate (7.6), as stated in Theorem 7.4. Throughout Appendix B, we assume that the
hypotheses of Theorem 7.4 are satisfied. First, we require a definition.

Definition B.1 (Primitives of Distributions) Let Tη be a distribution defined by a measure
as 〈Tη,ψ〉 := ∫ ∞

0 ψdη. Then the kth primitive (or kth antiderivative) of Tη is defined by
〈T [k]

η ,ψ〉 := (−1)k〈Tη,ψ
[k]〉, where ψ [k] is the kth primitive of ψ ∈ C∞

c (0,∞) that vanishes
at ∞ together with all its derivatives. For k ≥ 1, for example,

〈T [k]
η ,ψ〉 =

∫ ∞

0

∫ ∞

y

(x − y)k−1

(k − 1)! ψ(x)dxdη(y). (B.1)

Theorem B.2 The Mellin transform of the kth primitive of a test function is given by
ψ̃ [k](s) = ψ̃(s + k)ξk(s), where ξk is the meromorphic function

ξk(s) :=
k−1∑

j=0

(
k−1
j

)
(−1)j

(k − 1)!(s + j)
. (B.2)

Proof By direct computation,

ψ̃ [k](s) =
∫ ∞

0
εs−1

∫ ∞

ε

(x − ε)k−1

(k − 1)! ψ(x)dxdε

= 1

(k − 1)!
∫ ∞

0

∫ ∞

ε

k−1∑

j=0

(
k − 1

j

)
xk−1−j (−ε)j εs−1ψ(x)dxdε

=
k−1∑

j=0

(
k−1
j

)
(−1)j

(k − 1)!
∫ ∞

0

∫ ∞

ε

xk−1−j εs+j−1ψ(x)dxdε

=
k−1∑

j=0

(
k−1
j

)
(−1)j

(k − 1)!
∫ ∞

0
xk−1−jψ(x)

∫ x

0
εs+j−1dεdx
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=
k−1∑

j=0

(
k−1
j

)
(−1)j

(k − 1)!(s + j)

∫ ∞

0
xs+k−1ψ(x)dx (B.3)

= ψ̃(s + k)ξk(s).

Again, the formula (B.2) for ξk is valid for Re s > k by (B.3), but then extends to being valid
for all s ∈ C by meromorphic continuation. �

Corollary B.3 We also have |ψ̃ [k](s)| ≤ |ψ̃(s + k)ξk(s)|.

Remark B.4 For s ∈ C, t = Im s, and cξ > 0, we also have

|ξk(s)| ≤ cξ

|t |k . (B.4)

We are now in a position to provide the proofs previously promised.

Theorem B.5 As stated in (7.5) of Theorem 7.4, the error term is given by

R(ε) = 1

2π i

∫

S

ζT (ε, s)ds, (B.5)

and is a well-defined distribution.

Proof Applying (6.14) to (7.24) for k = 0, . . . , d gives12

〈R, ϕ〉k = 1

2π i

∫

S

gs−k

s − k
ζs(s)κk

∫ ∞

0
εd−sψ(ε)dεds. (B.6)

To see that this gives a well-defined distribution R, we apply the descent method, as de-
scribed in [30], Remark 5.20. The first step is to show that 〈R[k],ψ〉k is a well-defined
distribution for sufficiently large k; specifically, for any integer k > � , where � is the or-
der of languidity, as in Definition 6.2. Note that we can break the integral along the screen
S into two pieces and work with each separately:

〈
R[k],ψ

〉
k
= (−1)k

2π i

∫

| Im s|>1

gs−k

s − k
ζs(s)κk

∫ ∞

0
εd−sψ [k](ε)dεds (B.7)

+ (−1)k

2π i

∫

| Im s|≤1

gs−k

s − k
ζs(s)κk

∫ ∞

0
εd−sψ [k](ε)dεds. (B.8)

Here and throughout the rest of this appendix, it is understood that such integrals (as in
(B.7)–(B.8)) are for s ∈ S. Since the screen avoids the integers 0, . . . , d by assumption,
the quantity |s − k| is bounded away from 0. Since the screen avoids the poles of ζs by

12In the proof of Theorem 7.4, the quantity (B.6) was denoted by 〈Rk,ψ〉, so that R could easily be written
(formally) as a function in (7.27). For clarity, since we work with test functions, this quantity is instead
denoted by 〈R,ψ〉k throughout this proof.
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hypothesis, ζs(s) is continuous on the compact set {s ∈ S ..
. | Im s| ≤ 1}. Therefore, it is clear

that (B.8) is a well-defined integral. We focus now on (B.7):
∣∣∣∣

κk

2π i

∫

| Im s|>1

gs−k

s − k
ζs(s)

∫ ∞

0
εd−sψ [k](ε)dεds

∣∣∣∣

≤ κk

2π

∫

Im s>1

∣∣∣∣g
s−k ζs(s)

s − k

∣∣∣∣ ·
∣∣∣ψ̃ [k](s − d + 1)

∣∣∣ds

≤ c1

∫ ∞

1
|t |M−1 ·

∣∣∣ψ̃(s − d + k + 1)

∣∣∣ · |ξk(s − d + 1)| dt

≤ c1

∫ ∞

1
ck|t |M−1 · cK‖ψ‖∞ · cξ

|t |k dt,

= C‖ψ‖∞
∫ ∞

1
|t |M−1−k dt, (B.9)

which is clearly convergent for k > M . The second inequality in (B.9) comes by condition
L2 of Definition 6.2. Also, recall (from the remark just after the statement of Lemma A.1)
that for s ∈ S, the real part of s is given by some function f which is Lipschitz (cf. De-
finition 6.1), and hence is almost everywhere differentiable and has a bounded derivative
(where it exists) on the support of ψ . The third comes by inequality (A.5) of Remark A.2,
along with Remark B.4. This establishes the validity of 〈R[k],ψ〉k and thus shows that R[k]
defines a linear functional on D.

To check that the action of R[k] is continuous on D, let ψn → 0 in D, so that there is a
compact set K which contains the support of every ψn, and ‖ψn‖∞ → 0. Then

∣∣〈R[k],ψn〉
∣∣ ≤ C ·

∣∣∣ψ̃n(s − d + k + 1)

∣∣∣ ≤ cK‖ψn‖∞
n→∞−−−−→ 0, (B.10)

by following (B.9) and then applying Lemma A.1, along with its extensions as stated in
Remark A.2. Thus, R[k] is a well-defined distribution. If we differentiate it distributionaly
k times, we obtain R. This shows that R is a well-defined distribution and concludes the
proof. �

Before finally checking the error estimate, we define what is meant by the expression
T (x) = O(xα) as x → ∞, when T is a distribution.

Definition B.6 When R(x) = O(xα) as x → ∞ (as in (6.13)), we say as in [30], Sect. 5.4.2,
that R is of asymptotic order at most xα as x → ∞. To understand this expression, first
define

ψa(x) := 1

a
ψ

(x

a

)
, (B.11)

for a > 0 and for any test function ψ . Then “R(x) = O(xα) as x → ∞” means that

〈R,ψa〉 = O(aα), as a → ∞,

for every test function ψ . The implied constant may depend on ψ . Similarly, “R(x) =
O(xα) as x → 0+” (as in (6.18) and (7.6)) is defined to mean that

〈R,ψa〉 = O(aα), as a → 0+,

for every test function ψ .
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Theorem B.7 (Error Estimate) As stated in Theorem 7.4, the error term R(ε) in (B.5) is
estimated by

R(ε) = O(εd−supS), as ε → 0+. (B.12)

Proof As in the proof of Theorem B.5, we use the descent method and begin by splitting
the integral into two pieces. Since

〈R[k],ψa〉 = (−1)k〈R, (ψa)
[k]〉,

we work with

〈
R, (ψa)

[k]〉
k
= κk

2π i

∫

| Im s|>1

gs−k

s − k
ζs(s)

∫ ∞

0
εd−s(ψa)

[k](ε)dεds (B.13)

+ κk

2π i

∫

| Im s|≤1

gs−k

s − k
ζs(s)

∫ ∞

0
εd−s(ψa)

[k](ε)dεds. (B.14)

The kth primitive of ψa is given by

(ψa)
[k](ε) =

∫ ∞

ε

(u − ε)k−1

(k − 1)!
1

a
ψ

(u

a

)
du =

∫ ∞

ε/a

(au − ε)k−1

(k − 1)! ψ(u)du. (B.15)

By following the same calculations as in Theorem B.2, one observes that

∣∣∣∣
∫ ∞

0

εd−s

s − k

∫ ∞

ε/a

(au − ε)k−1

(k − 1)! ψ(u)dudε

∣∣∣∣

=
∣∣∣∣∣

∫ ∞

0

∫ au

0 s − k

k−1∑

j=0

(
k−1
j

)
(−1)j

(k − 1)! (au)k−1−j εd−s+jψ(u)dε du

∣∣∣∣∣

≤ 1

|s − k|
k−1∑

j=0

(
k−1
j

)
(−1)j

(k − 1)!
∫ ∞

0

∣∣(au)k−1−jψ(u)
∣∣
∫ au

0

∣∣εd−s+j dε
∣∣ du

≤ ck

|s − k|ξk(d − Re s + 1)

∫ ∞

0
(au)k−1−j (au)d−Re s+j+1|ψ(u)|du

= ad−Re s+k ck

|s − k|ξk(d − Re s + 1) ˜|ψ |(d − Re s + k). (B.16)

Using (B.4) for ξk and (A.3) for ˜|ψ | (see Remark A.2), we bound (B.13) by

ck

2π

∫

| Im s|>1
ad−Re s+k · |gs−kζs(s)|

|s − i| · cψ

|t |k · cK‖ψ‖∞ds (B.17)

≤ ad−supS+k

(
C

∫ ∞

1
|t |M−1−k dt

)
, (B.18)

for any 0 < a < 1, as in (B.9). Since the integral in (B.18) clearly converges for k > M ,
we have established the estimate for R[k], along the part of the integral where | Im s| > 1.
Recall that all our contour integrals are taken along the screen S. The proof for (B.13), where
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| Im s| > 1, readily follows from the corresponding argument in the proof of Theorem B.5.
Thus we have established that

∣∣〈R[k](ε),ψa(ε)〉
∣∣ ≤ ad−supS+kck, for all 0 < a < 1. (B.19)

In (B.19)–(B.21), the constants ck may depend on the test function ψ .13

By iterating the following calculation:

∣∣〈R[k−1](ε),ψa(ε)〉
∣∣ =

∣∣∣∣

〈
R[k](ε),

(
1

a
ψ

( ε

a

))′〉∣∣∣∣

=
∣∣∣∣
1

a
〈R[k](ε), (ψ ′)a(ε)〉

∣∣∣∣

≤ ad−supS+k−1ck−1, (B.20)

one sees that

|〈R(ε),ψa(ε)〉| ≤ ad−supSc0, for all 0 < a < 1. (B.21)

By Definition B.6, this implies that R(ε) = O(εd−supS) as ε → 0+. �
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