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Abstract In this paper, we consider both algebraic crossed products of commutative com-
plex algebras A with the integers under an automorphism of A, and Banach algebra crossed
products of commutative C∗-algebras A with the integers under an automorphism of A. We
investigate, in particular, connections between algebraic properties of these crossed prod-
ucts and topological properties of naturally associated dynamical systems. For example, we
draw conclusions about the ideal structure of the crossed product by investigating the dy-
namics of such a system. To begin with, we recall results in this direction in the context of
an algebraic crossed product and give simplified proofs of generalizations of some of these
results. We also investigate new questions, for example about ideal intersection properties
of algebras properly between the coefficient algebra A and its commutant A′. Furthermore,
we introduce a Banach algebra crossed product and study the relation between the structure
of this algebra and the topological dynamics of a naturally associated system.

Keywords Crossed product · Banach algebra · Ideal · Dynamical system · Maximal
Abelian subalgebra

1 Introduction

A lot of work has been done on the connection between certain topological dynamical sys-
tems and crossed product C∗-algebras. In [13, 14], for example, one starts with a homeo-
morphism σ of a compact Hausdorff space X and constructs the crossed product C∗-algebra
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C(X) �α Z, where C(X) is the algebra of continuous complex valued functions on X and α

is the Z-action on C(X) naturally induced by σ . One of many results obtained is equivalence
between simplicity of the algebra and minimality of the system, provided that X consists of
infinitely many points, see [2, 8, 13, 14] or, for a more general approach in the metrizable
case, [15]. In [9], a purely algebraic variant of the crossed product is considered, having
more general classes of algebras than merely continuous functions on compact Hausdorff
spaces as coefficient algebras. For example, it is proved there that, for such crossed products,
the analogue of the equivalence between density of non-periodic points of a dynamical sys-
tem and maximal commutativity of the coefficient algebra in the associated crossed product
C∗-algebra is true for significantly larger classes of coefficient algebras and associated dy-
namical systems. In [10], further work is done in this setup, mainly for crossed products of
complex commutative semi-simple completely regular Banach-algebras A (of which C(X)

is an example) with the integers under an automorphism of A. In particular, various proper-
ties of the ideal structure in such crossed products are shown to be equivalent to topological
properties of the naturally induced topological dynamical system on �(A), the character
space of A.

In this paper, we recall some of the most important results from [9, 10], and in a number
of cases provide significantly simplified proofs of generalizations of results occurring in
[10], giving a clearer view of the heart of the matter. We also include results of a new type
in the algebraic setup, and furthermore start the investigation of the Banach algebra crossed
product �σ

1 (Z,A) of a commutative C∗-algebra A with the integers under an automorphism
σ of A. In the case when A is unital, this algebra is precisely the one whose C∗-envelope is
the crossed product C∗-algebra mentioned above.

This paper is organized as follows. In Sect. 2 we give the most general definition of the
kind of crossed product that we will use throughout the first sections of this paper. We also
mention the elementary result that the commutant of the coefficient algebra is automatically
a maximal commutative subalgebra of the crossed product.

In Sect. 3 we prove that for any such crossed product A �� Z, the commutant A′ of the
coefficient algebra A has non-zero intersection with any non-zero ideal I ⊆ A �� Z. In [10,
Theorem 6.1], a more complicated proof of this was given for a restricted class of coefficient
algebras A.

In Sect. 4 we focus on the case when A is a function algebra on a set X with an auto-
morphism σ̃ of A induced by a bijection σ : X → X. According to [14, Theorem 5.4], the
following three properties are equivalent for a compact Hausdorff space X and a homeo-
morphism σ of X:

(i) The non-periodic points of (X,σ ) are dense in X;
(ii) Every non-zero closed ideal I of the crossed product C∗-algebra C(X) �α Z is such

that I ∩ C(X) �= {0};
(iii) C(X) is a maximal Abelian C∗-subalgebra of C(X) �α Z.

In Theorem 4.5 an analogue of this result is proved for our setup. A reader familiar
with the theory of crossed product C∗-algebras will easily recognize that if one chooses
A = C(X) for X a compact Hausdorff space in this theorem, then the algebraic crossed
product is canonically isomorphic to a norm-dense subalgebra of the crossed product C∗-
algebra coming from the considered induced dynamical system.

For a different kind of coefficient algebras A than the ones allowed in Theorem 4.5, we
prove a similar result in Theorem 4.6. Theorem 4.5 and Theorem 4.6 have no non-trivial
situations in common (Remark 4.8).

In Sect. 5 we show that in many situations we can always find both a subalgebra properly
between the coefficient algebra A and its commutant A′ (as long as A � A′, a property we
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have a precise condition for in Theorem 4.5) and a non-trivial ideal trivially intersecting
it, and a subalgebra properly between A and A′ intersecting every non-trivial ideal non-
trivially.

Section 6 is concerned with the algebraic crossed product of a complex commutative
semi-simple Banach algebra A with the integers under an automorphism σ of A, natu-
rally inducing a homeomorphism σ̃ of the character space �(A) of A. We extend results
from [10].

In Sect. 7 we introduce the Banach algebra crossed product �σ
1 (Z,A) for a commutative

C∗-algebra A and an automorphism σ of A. In Theorem 7.4 we give an explicit description
of the closed commutator ideal in this algebra in terms of the dynamical system naturally
induced on �(A). We determine the characters of �σ

1 (Z,A). The modular ideals which are
maximal and contain the commutator ideal are precisely the kernels of the characters.

2 Definition and a Basic Result

Let A be an associative commutative complex algebra and let � : A → A be an algebra
automorphism. Consider the set

A �� Z = {f : Z → A | f (n) = 0 except for a finite number of n}.
We endow it with the structure of an associative complex algebra by defining scalar multi-
plication and addition as the usual pointwise operations. Multiplication is defined by twisted
convolution, ∗, as follows;

(f ∗ g)(n) =
∑

k∈Z

f (k) · �k(g(n − k)),

where �k denotes the k-fold composition of � with itself. It is trivially verified that A�� Z

is an associative C-algebra under these operations. We call it the crossed product of A and
Z under � .

A useful way of working with A �� Z is to write elements f,g ∈ A �� Z in the form
f = ∑

n∈Z
fnδ

n, g = ∑

m∈Z
gmδn, where fn = f (n), gm = g(m), addition and scalar mul-

tiplication are canonically defined, and multiplication is determined by (fnδ
n) ∗ (gmδm) =

fn · �n(gm)δn+m, where n,m ∈ Z and fn, gm ∈ A are arbitrary.
Clearly one may canonically view A as an Abelian subalgebra of A �� Z, namely as

{f0δ
0 | f0 ∈ A}. The following elementary result is proved in [9, Proposition 2.1].

Proposition 2.1 The commutant A′ of A is Abelian, and thus it is the unique maximal
Abelian subalgebra containing A.

3 Every Non-Zero Ideal Has Non-Zero Intersection with A′

Throughout the whole paper, when speaking of an ideal we shall always mean a two-sided
ideal. We shall now show that any non-zero ideal in A �� Z has non-zero intersection with
A′. This result, Theorem 3.1, should be compared with Theorem 4.5, which says that a non-
zero ideal may well intersect A solely in 0. An analogue of Theorem 3.1 in the context of
crossed product C∗-algebras is found in [11, Theorem 4.3]. Note that in [10] a proof of
Theorem 3.1 was given for the case when A was completely regular semi-simple Banach
algebra, and that this proof heavily relied upon A having these properties. The present proof
is elementary and valid for arbitrary commutative algebras.
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Theorem 3.1 Let A be an associative commutative complex algebra, and let � : A → A be
an automorphism. Then every non-zero ideal of A �� Z has non-zero intersection with the
commutant A′ of A.

Proof Let I be a non-zero ideal, and let f = ∑

n fnδ
n ∈ I be non-zero. Suppose that f /∈

A′. Then there must be an fni
and a ∈ A such that fni

· a �= 0. Hence f ′ := (
∑

n fnδ
n) ∗

�−ni (a)δ−ni is a non-zero element of I , having fni
· a as coefficient of δ0 and having at

most as many non-zero coefficients as f . If f ′ ∈ A′ we are done, so assume f ′ /∈ A′. Then
there exists b ∈ A such that F := b ∗ f ′ − f ′ ∗ b �= 0. Clearly F ∈ I and it is easy to see that
F has strictly less non-zero coefficients than f ′ (the coefficient of δ0 in F is zero), hence
strictly less than f . Now if F ∈ A′, we are done. If not, we repeat the above procedure.
Ultimately, if we do not happen to obtain a non-zero element of I ∩ A′ along the way, we
will be left with a non-zero monomial G := gmδm ∈ I . If this does not lie in A′, there is an
a ∈ A such that gm · a �= 0. Hence G ∗ �−m(a)δ−m = gm · a ∈ I ∩ A ⊆ I ∩ A′. �

Note that the fact that all elements in A �� Z are finite sums of the form
∑

n fnδ
n is

crucial for the argument used in the proof.

4 Automorphisms Induced by Bijections

Fix a non-empty set X, a bijection σ : X → X, and an algebra of functions A ⊆ C
X that

is invariant under σ and σ−1, i.e., such that if h ∈ A, then h ◦ σ ∈ A and h ◦ σ−1 ∈ A.
Then (X,σ ) is a discrete dynamical system (the action of n ∈ Z on x ∈ X is given by
n : x 
→ σn(x)) and σ induces an automorphism σ̃ : A → A defined by σ̃ (f ) = f ◦ σ−1 by
which Z acts on A via iterations.

In this section we will consider the crossed product A �σ̃ Z for the above setup, and
explicitly describe the commutant A′ of A. Furthermore, we will investigate equivalences
between properties of non-periodic points of the system (X,σ ), and properties of A′. First
we make a few definitions.

Definition 4.1 For any nonzero n ∈ Z we set

Sepn
A(X) = {x ∈ X | ∃h ∈ A : h(x) �= σ̃ n(h)(x)},

PernA(X) = {x ∈ X | ∀h ∈ A : h(x) = σ̃ n(h)(x)},
Sepn(X) = {x ∈ X | x �= σn(x)},
Pern(X) = {x ∈ X | x = σn(x)}.

Furthermore, let

Per∞A (X) =
⋂

n∈Z\{0}
Sepn

A(X),

Per∞(X) =
⋂

n∈Z\{0}
Sepn(X).

Finally, for f ∈ A, put

supp(f ) = {x ∈ X | f (x) �= 0}.
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It is easy to check that all these sets, except for supp(f ), are Z-invariant and that if A

separates the points of X, then Sepn
A(X) = Sepn(X) and PernA(X) = Pern(X). Note also that

X \ PernA(X) = Sepn
A(X), and X \ Pern(X) = Sepn(X). Furthermore Sepn

A(X) = Sep−n
A (X)

with similar equalities for n and −n (n ∈ Z) holding for PernA(X), Sepn(X) and Pern(X) as
well.

Definition 4.2 We say that a non-empty subset of X is a domain of uniqueness for A if
every function in A that vanishes on it, vanishes on the whole of X.

For example, using results from elementary topology one easily shows that for a com-
pletely regular topological space X, a subset of X is a domain of uniqueness for C(X) if and
only if it is dense in X. In the following theorem we recall some elementary results from
[9].

Theorem 4.3 The unique maximal Abelian subalgebra of A �σ̃ Z that contains A is pre-
cisely the set of elements

A′ =
{

∑

n∈Z

fnδ
n
∣

∣

∣fn �Sepn
A

(X)≡ 0 for all n ∈ Z

}

.

So if A separates the points of X, then

A′ =
{

∑

n∈Z

fnδ
n
∣

∣

∣ supp(fn) ⊆ Pern(X) for all n ∈ Z

}

.

Furthermore, the subalgebra A is maximal Abelian in A �σ̃ Z if and only if, for every
n ∈ Z \ {0}, Sepn

A(X) is a domain of uniqueness for A.

We now focus solely on topological contexts. In order to prove one of the main theorems
of this section, we need the following topological lemma.

Lemma 4.4 Let X be a Baire space which is also Hausdorff, and let σ : X → X be a
homeomorphism. Then the non-periodic points of (X,σ ) are dense if and only if Pern(X)

has empty interior for all positive integers n.

Proof Clearly, if there is a positive integer n such that Pern(X) has non-empty interior, the
non-periodic points are not dense. For the converse we note that we may write

X\Per∞(X) =
⋃

n>0

Pern(X).

If the set of non-periodic points is not dense, its complement has non-empty interior, and as
the sets Pern(�(A)) are clearly all closed since X is Hausdorff, there must exist an integer
n0 > 0 such that Pern0(X) has non-empty interior since X is a Baire space. �

We are now ready to prove the following theorem.

Theorem 4.5 Let X be a Baire space which is also Hausdorff, and let σ : X → X be a
homeomorphism inducing, as usual, an automorphism σ̃ of C(X). Suppose A is a subalge-
bra of C(X) that is invariant under σ̃ and its inverse, separates the points of X and is such
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that for every non-empty open set U ⊆ X there is a non-zero f ∈ A that vanishes on the
complement of U . Then the following three statements are equivalent.

(i) A is a maximal Abelian subalgebra of A �σ̃ Z;
(ii) Per∞(X) is dense in X;

(iii) Every non-zero ideal I ⊆ A �σ̃ Z is such that I ∩ A �= {0}.

Proof Equivalence of the first two statements is precisely the result in [9, Theorem 3.7]. The
first property implies the third by Proposition 2.1 and Theorem 3.1. Finally, to show that
the third statement implies the second, assume that Per∞(X) is not dense. It follows from
Lemma 4.4 that there exists an integer n > 0 such that Pern(X) has non-empty interior. By
the assumptions on A there exists a non-zero f ∈ A such that supp(f ) ⊆ Pern(X). Consider
now the non-zero ideal I generated by f + f δn. It is spanned by elements of the form
aiδ

i ∗ (f + f δn) ∗ aj δ
j , (f + f δn) ∗ aj δ

j , aiδ
i ∗ (f + f δn) and f + f δn. Using that f

vanishes outside Pern(X), so that f δn ∗ aj δ
j = ajf δn+j , we may for example rewrite

aiδ
i ∗ (f + f δn) ∗ aj δ

j

= [ai · (aj ◦ σ̃−i )δi] ∗ [f δj + f δn+j ]
= [ai · (aj ◦ σ̃−i ) · (f ◦ σ̃−i )]δi+j + [ai · (aj ◦ σ̃−i ) · (f ◦ σ̃−i )]δi+j+n.

A similar calculation for the other three kinds of elements that span I now makes it clear
that any element in I may be written in the form

∑

i (biδ
i +biδ

n+i ). As i runs only through a
finite subset of Z, this is not a non-zero monomial. In particular, it is not a non-zero element
in A. Hence I intersects A trivially. �

We also have the following result for a different kind of subalgebras of C(X).

Theorem 4.6 Let X be a topological space, σ : X → X a homeomorphism, and A a
non-zero subalgebra of C(X), invariant both under the usual induced automorphism σ̃ :
C(X) → C(X) and under its inverse. Assume that A separates the points of X and is such
that every non-empty open set U ⊆ X is a domain of uniqueness for A. Then the following
three statements are equivalent.

(i) A is maximal Abelian in A �σ̃ Z;
(ii) σ is not of finite order;

(iii) Every non-zero ideal I ⊆ A �σ̃ Z is such that I ∩ A �= {0}.

Proof Equivalence of the first two statements is precisely the result in [9, Theorem 3.11].
That the first statement implies the third follows immediately from Proposition 2.1 and
Theorem 3.1. Finally, to show that the third statement implies the second, assume that there
exists an n, which we may clearly choose to be non-negative, such that σn = idX . Now take
any non-zero f ∈ A and consider the non-zero ideal I = (f + f δn). Using an argument
similar to the one in the proof of Theorem 4.5 one concludes that I ∩ A = {0}. �

Corollary 4.7 Let M be a connected complex manifold and suppose the function σ :
M → M is biholomorphic. If A ⊆ H(M) is a subalgebra of the algebra of holomorphic
functions that separates the points of M and which is invariant under the induced automor-
phism σ̃ of H(M) and its inverse, then the following three statements are equivalent.

(i) A is maximal Abelian in A �σ̃ Z;
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(ii) σ is not of finite order;
(iii) Every non-zero ideal I ⊆ A �σ̃ Z is such that I ∩ A �= {0}.

Proof On connected complex manifolds, open sets are domains of uniqueness for H(M).
See for example [5]. �

Remark 4.8 It is worth mentioning that the required conditions in Theorem 4.5 and Theo-
rem 4.6 can only be simultaneously satisfied in case X consists of a single point and A = C.
This is explained in [9, Remark 3.13]

5 Algebras Properly Between the Coefficient Algebra and Its Commutant

From Theorem 4.5 it is clear that for spaces X which are Baire and Hausdorff and subalge-
bras A ⊆ C(X) with sufficient separation properties, A is equal to its own commutant in the
associated crossed product precisely when the aperiodic points, Per∞(X), constitute a dense
subset of X. This theorem also tells us that whenever Per∞(X) is not dense there exists a
non-zero ideal I having zero intersection with A, while the general Theorem 3.1 tells us that
every non-zero ideal has non-zero intersection with A′, regardless of the system (X,σ ).

Definition 5.1 We say that a subalgebra has the intersection property if it intersects every
non-zero ideal non-trivially.

A subalgebra B such that A � B � A′ is said to be properly between A and A′. Two
natural questions comes to mind in case Per∞(X) is not dense:

(i) Do there exist subalgebras properly between A and A′ having the intersection property?
(ii) Do there exist subalgebras properly between A and A′ not having the intersection prop-

erty?

We shall show that for a significant class of systems the answer to both these questions is
positive.

Proposition 5.2 Let X be a Hausdorff space, and let σ : X → X be a homeomorphism
inducing, as usual, an automorphism σ̃ of C(X). Suppose A is a subalgebra of C(X) that
is invariant under σ̃ and its inverse, separates the points of X and is such that for every
non-empty open set U ⊆ X there is a non-zero f ∈ A that vanishes on the complement of U .
Suppose furthermore that there exists an integer n > 0 such that the interior of Pern(X)

contains at least two orbits. Then there exists a subalgebra B such that A � B � A′ which
does not have the intersection property.

Proof Using the Hausdorff property of X and the fact that Pern(X) contains two orbits we
can find two non-empty disjoint invariant open subsets U1 and U2 contained in Pern(X).
Consider

B =
{

f0 +
∑

k �=0

fkδ
k : f0 ∈ A, supp(fk) ⊆ U1 ∩ Perk(X) for k �= 0

}

.

Then B is a subalgebra and B ⊆ A′. The assumptions on A and the definitions of U1 and
U2 now make it clear that A � B � A′ since there exist, for example, non-zero functions
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F1,F2 ∈ A such that supp(F1) ⊆ U1 and supp(F2) ⊆ U2, and thus F1δ
n ∈ B \ A and F2δ

n ∈
A′ \ B . Consider the non-zero ideal I generated by F2 + F2δ

n. Using an argument similar
to the one used in the proof of Theorem 4.5 we see that I ∩ A = {0}. It is also easy to see
that I ⊆ {∑k fkδ

k : supp(fk) ⊆ U2} since U2 is invariant. As U1 ∩ U2 = ∅, we see from the
description of B that I ∩ B ⊆ A, so that I ∩ B ⊆ I ∩ A = {0}. �

We now exhibit algebras properly between A and A′ that do have the intersection prop-
erty.

Proposition 5.3 Let X be a Hausdorff space, and let σ : X → X be a homeomorphism
inducing, as usual, an automorphism σ̃ of C(X). Suppose A is a subalgebra of C(X) that
is invariant under σ̃ and its inverse, separates the points of X and is such that for every
non-empty open set U ⊆ X there is a non-zero f ∈ A that vanishes on the complement of U .
Suppose furthermore that there exist an integer n > 0 such that the interior of Pern(X) con-
tains a point x0 which is not isolated, and an f ∈ A with supp(f ) ⊆ Pern(X) and f (x0) �= 0.
Then there exists a subalgebra B such that A � B � A′ which has the intersection property.

Proof Define

B =
{

∑

k∈Z

fkδ
k ∈ A′

∣

∣

∣fk(x0) = 0 for all k �= 0

}

,

where x0 is as in the statement of the theorem. Clearly B is a subalgebra and A ⊆ B . Since
x0 is not isolated, we can use the assumptions on A and the fact that X is Hausdorff to
first find a point different from x0 in the interior of Pern(X) and subsequently a non-zero
function g ∈ A such that supp(g) ⊆ Pern(X) and g(x0) = 0. Then gδn ∈ B \ A. Also, by the
assumptions on A there is a non-zero f ∈ A with supp(f ) ⊆ Pern(X) such that f (x0) �= 0,
whence f δn ∈ A′ \ B . This shows that B is a subalgebra properly between A and A′. To
see that it has the intersection property, let I be an arbitrary non-zero ideal in the crossed
product and note that by Theorem 3.1 there is a non-zero F = ∑

k∈Z
fkδ

k in I ∩ A′. Now
if for all k �= 0 we have that fk(x0) = 0, we are done. So suppose there is some k �= 0 such
that fk(x0) �= 0. Since fk is continuous and x0 is not isolated, we may use the Hausdorff
property of X to conclude that there exists a non-empty open set V contained in the interior
of Pern(X) such that x0 /∈ V and fk(x) �= 0 for all x ∈ V . The assumptions on A now imply
that there is an h ∈ A such that h(x0) = 0 and h(x1) �= 0 for some x1 ∈ V ⊆ supp(fn).
Clearly 0 �= h ∗ F ∈ I ∩ B . �

Theorem 5.4 Let X be a Baire space which is Hausdorff and connected. Let σ : X → X be
a homeomorphism inducing an automorphism σ̃ of C(X) in the usual way. Suppose A is a
subalgebra of C(X) that is invariant under σ̃ and its inverse, such that for every open set
U ⊆ X and x ∈ U there is an f ∈ A such that f (x) �= 0 and supp(f ) ⊆ U . Then precisely
one of the following situations occurs:

(i) A = A′, which happens precisely when Per∞(X) is dense;
(ii) A � A′ and there exist both subalgebras properly between A and A′ which have the

intersection property, and subalgebras which do not. This happens precisely when
Per∞(X) is not dense and X is infinite;

(iii) A � A′ and every subalgebra properly between A and A′ has the intersection property.
This happens precisely when X consists of one point.
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Proof By Theorem 4.5, (i) is clear and we may assume that Per∞(X) is not dense. Suppose
first that X is infinite and note that by Lemma 4.4 there exists n0 > 0 such that Pern0(X) has
non-empty interior. If this interior consists of one single orbit then as X is Hausdorff every
point in the interior is both closed and open, so that X consists of one point by connected-
ness, which is a contradiction. Hence there are at least two orbits in the interior of Pern0(X).
Furthermore, no point of X can be isolated. Thus by Proposition 5.2 and Proposition 5.3
there are subalgebras properly between A and A′ which have the intersection property, and
subalgebras which do not. Suppose next that X is finite, so that X = {x} by connected-
ness. Then σ is the identity map, and A = C. In this case, A �σ̃ Z may be canonically
identified with C[t, t−1]. Let B be a subalgebra such that C � B � C[t, t−1], and let I be
a non-zero ideal of C[t, t−1]. We will show that I ∩ B �= {0} and hence may assume that
I �= C[t, t−1]. Since C[t, t−1] is the ring of fractions of C[t] with respect to the multiplica-
tively closed subset {tn |n is a non-negative integer} and C[t] is a principal ideal domain, it
follows from [1, Proposition 3.11, (i)] that I is of the form (t − α1) · · · (t − αn)C[t, t−1] for
some n > 0 and α1, . . . , αn ∈ C. There exists a non-constant f in B , and then the element
(f − f (α1)) · · · (f − f (αn)) is a non-zero element of B . It is clearly also in I since it van-
ishes at α1, . . . , αn and hence has (t −α1) · · · (t −αn) as a factor. Hence I ∩B �= {0} and the
proof is completed. �

It is interesting to mention that arguments similar to the ones used in Propositions 5.2
and 5.3 work in the context of the crossed product C∗-algebra C(X) �α Z where X is a
compact Hausdorff space and α the automorphism induced by a homeomorphism of X. See
[11, Sect. 5] for details.

6 Semi-Simple Banach Algebras

In what follows, we shall focus on cases where A is a commutative complex Banach algebra,
and freely make use of the basic theory for such A, see e.g. [6]. As conventions tend to
differ slightly in the literature, however, we mention that we call a commutative Banach
algebra A completely regular (the term regular is also frequently used in the literature) if,
for every subset F ⊆ �(A) (where �(A) denotes the character space of A) that is closed in
the Gelfand topology and for every φ0 ∈ �(A) \ F , there exists an a ∈ A such that â(φ) = 0
for all φ ∈ F and â(φ0) �= 0. All topological considerations of �(A) will be done with
respect to its Gelfand topology.

Now let A be a complex commutative semi-simple completely regular Banach algebra,
and let σ : A → A be an algebra automorphism. As in [9], σ induces a map σ̃ : �(A) →
�(A) defined by σ̃ (μ) = μ ◦ σ−1,μ ∈ �(A), which is automatically a homeomorphism
when �(A) is endowed with the Gelfand topology. Hence we obtain a topological dynamical
system (�(A), σ̃ ). In turn, σ̃ induces an automorphism σ̂ : ̂A → ̂A (where ̂A denotes the
algebra of Gelfand transforms of all elements of A) defined by σ̂ (̂a) = â ◦ σ̃−1 = ̂σ(a).
Therefore we can form the crossed product ̂A �σ̂ Z.

In what follows, we shall make frequent use of the following fact. Its proof consists of a
trivial direct verification.

Theorem 6.1 Let A be a commutative semi-simple Banach algebra and σ an automor-
phism, inducing an automorphism σ̂ : ̂A → ̂A as above. Then the map 	 : A�σ Z → ̂A�σ̂ Z

defined by
∑

n∈Z
anδ

n 
→ ∑

n∈Z
ânδ

n is an isomorphism of algebras mapping A onto ̂A.
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We shall now conclude that, for certain A, two different algebraic properties of A �σ Z

are equivalent to density of the non-periodic points of the naturally associated dynamical
system on the character space �(A). The analogue of this result in the context of crossed
product C∗-algebras is [14, Theorem 5.4]. We shall also combine this with a theorem from
[9] to conclude a stronger result for the Banach algebra L1(G), where G is a locally compact
Abelian group with connected dual group.

Theorem 6.2 Let A be a complex commutative semi-simple completely regular Banach al-
gebra, σ : A → A an automorphism and σ̃ the homeomorphism of �(A) in the Gelfand
topology induced by σ as described above. Then the following three properties are equiva-
lent:

(i) The non-periodic points Per∞(�(A)) of (�(A), σ̃ ) are dense in �(A);
(ii) Every non-zero ideal I ⊆ A �σ Z is such that I ∩ A �= {0};

(iii) A is a maximal Abelian subalgebra of A �σ Z.

Proof As A is completely regular, and �(A) is Baire since it is locally compact and Haus-
dorff, it is immediate from Theorem 4.5 that the following three statements are equivalent.

(i) The non-periodic points Per∞(�(A)) of (�(A), σ̃ ) are dense in �(A);
(ii) Every non-zero ideal I ⊆ ̂A �σ̂ Z is such that I ∩ ̂A �= {0};

(iii) ̂A is a maximal Abelian subalgebra of ̂A �σ̂ Z.

Now applying Theorem 6.1 we can pull everything back to A�σ Z and the result follows. �

The following result for a more specific class of Banach algebras is an immediate conse-
quence of Theorem 6.2 together with [9, Theorem 4.16].

Theorem 6.3 Let G be a locally compact Abelian group with connected dual group and let
σ : L1(G) → L1(G) be an automorphism. Then the following three statements are equiva-
lent.

(i) σ is not of finite order;
(ii) Every non-zero ideal I ⊆ L1(G) �σ Z is such that I ∩ L1(G) �= {0};

(iii) L1(G) is a maximal Abelian subalgebra of L1(G) �σ Z.

To give a more complete picture, we also include the results [10, Theorem 5.1] and [10,
Theorem 7.6].

Theorem 6.4 Let A be a complex commutative semi-simple completely regular unital Ba-
nach algebra such that �(A) consists of infinitely many points, and let σ be an automor-
phism of A. Then

(i) A �σ Z is simple if and only if the associated system (�(A), σ̃ ) on the character space
is minimal.

(ii) A �σ Z is prime if and only if (�(A), σ̃ ) is topologically transitive.

7 The Banach Algebra Crossed Product �σ
1 (Z,A) for a Commutative C∗-Algebra A

Let A be a commutative C∗-algebra with spectrum �(A) and σ : A → A an automorphism.
We identify the set �1(Z,A) with the set {∑n∈Z

fnδ
n|fn ∈ A,

∑

n∈Z
‖fn‖ < ∞} and endow
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it with the same operations as for the finite sums in Sect. 2. Using that σ is isometric one
easily checks that the operations are well defined, and that the usual norm on this set is an
algebra norm with respect to the convolution product.

We denote this algebra by �σ
1 (Z,A), and note that it is a Banach algebra. By ba-

sic theory of C∗-algebras, we have the isometric automorphism A ∼= ̂A = C0(�(A)).
As in Sect. 6, σ induces a homeomorphism, σ̃ : �(A) → �(A) and an automorphism
σ̂ : C0(�(A)) → C0(�(A)) and we have a canonical isometric isomorphism of �σ

1 (Z,A)

onto �σ̂
1 (Z,C0(�(A))) as in Theorem 6.1.

We will work in the concrete crossed product �σ̂
1 (Z,C0(�(A))). We shall describe the

closed commutator ideal C in terms of (�(A),σ ). In analogy with the notation used in [12],
we make the following definitions.

Definition 7.1 Given a subset S ⊆ �(A), we set

ker(S) = {f ∈ C0(�(A)) | f (x) = 0 for all x ∈ S},

Ker(S) =
{

∑

n∈Z

fnδ
n ∈ �σ̂

1 (Z,C0(�(A)))

∣

∣

∣fn(x) = 0 for all x ∈ S,n ∈ Z

}

.

Clearly Ker(S) is always a closed subspace, and in case S is invariant, it is a closed ideal.
We shall also need the following version of the Stone-Weierstrass theorem.

Theorem 7.2 Let X be a locally compact Hausdorff space and let C be a closed subset
of X. Let B be a self-adjoint subalgebra of C0(X) vanishing on C. Suppose that for any
pair of points x, y ∈ X, with x �= y, such that at least one of them is not in C, there exists
f ∈ B such that f (x) �= f (y). Then B = {f ∈ C0(X) : f (x) = 0 for all x ∈ C}.

Proof This follows from the more general result [3, Theorem 11.1.8], as it is well known
that the pure states of C0(�(A)) are precisely the point evaluations on the locally compact
Hausdorff space �(A), and that a pure state of a sub-C∗-algebra always has a pure state
extension to the whole C∗-algebra. By passing to the one-point compactification of �(A),
one may also easily derive the result from the more elementary [4, Theorem 2.47]. �

Definition 7.3 Let A be a normed algebra. An approximate unit of A is a net {Eλ}λ∈� such
that for every a ∈ A we have limλ ‖Eλa − a‖ = limλ ‖aEλ − a‖ = 0.

Recall that any C∗-algebra has an approximate unit such that ‖Eλ‖ ≤ 1 for all λ ∈ �. In
general, however, an approximate identity need not be bounded. We are now ready to prove
the following result, which is the analogue of the first part of [12, Proposition 4.9].

Theorem 7.4 C = Ker(Per1(�(A))).

Proof It easily seen that C ⊆ Ker(Per1(�(A))). For the converse inclusion we choose an ap-
proximate identity {Eλ}λ∈� for C0(�(A)) and note first of all that for any f ∈ C0(�(A)) we
have f ∗(Eλδ)−(Eλδ)∗f = Eλ(f −f ◦ σ̃−1)δ ∈ C. Hence as C is closed, (f −f ◦ σ̃−1)δ ∈
C for all f ∈ C0(�). Clearly the set J = {g ∈ C0(�(A)) |gδ ∈ C} is a closed subalgebra
(and even an ideal) of C0(�(A)). Denote by I the (self-adjoint) ideal of C0(�(A)) gener-
ated by the set of elements of the form f − f ◦ σ̃−1. Note that I vanishes on Per1(�(A))

and that it is contained in J . Using complete regularity of C0(�(A)), it is straightforward
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to check that for any pair of distinct points x, y ∈ �(A), at least one of which is not in
Per1(�(A)), there exists a function f ∈ I such that f (x) �= f (y). Hence by Theorem 7.2 I

is dense in ker(Per1(�(A))), and thus {f δ |f ∈ ker(Per1(�(A)))} ⊆ C since J is closed. So
for any n ∈ Z and f ∈ ker(Per1(�(A))) we have (f δ) ∗ (Eλ ◦ σ̃ )δn−1 = (f Eλ)δ

n ∈ C. This
converges to f δn, and hence C ⊇ Ker(Per1(�(A))). �

Denote the set of non-zero multiplicative linear functionals of �σ̂
1 (Z,C0(�(A))) by �.

We shall now determine a bijection between � and Per1(�(A)) × T. It is a standard result
from Banach algebra theory that any μ ∈ � is bounded and of norm at most one. Since
one may choose an approximate identity {Eλ}λ∈� for C0(�(A)) such that ‖Eλ‖ ≤ 1 for all
λ ∈ � it is also easy to see that ‖μ‖ = 1. Namely, given μ ∈ � we may choose an f ∈
C0(�(A)) such that μ(f ) �= 0. Then by continuity of μ we have μ(f ) = limλ μ(f Eλ) =
μ(f ) limλ(Eλ) and hence limλ μ(Eλ) = 1.

Lemma 7.5 The limit ξ := limλ μ(Eλδ) exists for all μ ∈ �, and is independent of the
approximate unit {Eλ}λ∈�. Furthermore, ξ ∈ T and limλ μ(Eλδ

n) = ξn for all integers n.

Proof By continuity and multiplicativity of μ we have that limλ μ(f )μ(Eλδ) = μ(f δ)

for all f ∈ C0(X). So for any f such that μ(f ) �= 0 we have that limλ μ(Eλδ) = μ(f δ)

μ(f )
.

This shows that the limit ξ exists and is the same for any approximate unit, and us-
ing a similar argument one easily sees that limλ μ(Eλδ

n) also exists and is independent
of {Eλ}λ∈�. For the rest of the proof, we fix an approximate unit {Eλ}λ∈� such that
‖Eλ‖ ≤ 1 for all λ ∈ �. As we know that ‖μ‖ = 1, we see that |ξ | ≤ 1. Now sup-
pose |ξ | < 1. It is easy to see that limλ μ(Eλ) = 1 = ξ 0. Hence also 1 = limλ μ(Eλ)

2 =
limλ μ(E2

λ) = limλ μ((Eλδ) ∗ ((Eλ ◦ σ̃ )δ−1)) = limλ μ((Eλδ)) · limλ μ((Eλ ◦ σ̃ )δ−1). Now
as we assumed |ξ | < 1, this forces | limλ μ([(Eλ ◦ σ̃ )δ−1])| > 1, which is clearly a contra-
diction since ‖μ‖ = 1. To prove the last statement we note that for any n, {Eλ ◦ σ̃−n}λ∈�

is an approximate unit for C0(X), and that if {Fλ}λ∈� is another approximate unit for
C0(X) indexed by the same set �, we have that {EλFλ}λ∈� is an approximate unit as
well. Now note that μ(Eλδ) · μ(Eλδ) = μ((Eλδ) ∗ (Eλδ)) = μ(Eλ(Eλ ◦ σ̃−1)δ2). Us-
ing what we concluded above about independence of approximate units, this shows that
ξ 2 = limλ μ(Eλδ)

2 = limλ μ(Eλ(Eλ ◦ σ̃−1)δ2) = limλ μ(Eλδ
2). Inductively, we see that

limλ μ(Eλδ
n) = ξn for non-negative n. As μ((Eλδ

−1) ∗ (Eλδ)) = μ(Eλ(Eλ ◦ σ̃ )), we con-
clude that limλ μ(Eλδ

−1) = ξ−1, and an argument similar to the one above allows us to draw
the desired conclusion for all negative n. �

We may use this to see that � = ∅ if (�(A), σ̃ ) lacks fixed points. This is because the re-
striction of a map μ ∈ � to C0(�(A)) must be a point evaluation, μx say, by basic Banach al-
gebra theory. If x �= σ(x) there exists an h ∈ C0(�(A)) such that h(x) = 1 and (h ◦σ)(x) =
0. By Lemma 7.5 we see that μ(hδ) = limλ μ(hEλδ) = limλ μ(h)μ(Eλδ)) = h(x)ξ = ξ

and likewise μ(hδ−1) = ξ−1. But then 1 = ξ−1ξ = μ((hδ−1) ∗ (hδ)) = μ(h · (h ◦ σ)) =
h(x) · (h ◦ σ)(x) = 0, which is a contradiction.

Now for any x ∈ Per1(�(A)) and ξ ∈ T there is a unique element μ ∈ � such that
μ(fnδ

n) = fn(x)ξn for all n and by the above every element of � must be of this form
for a unique x and ξ . Thus we have a bijection between � and Per1(�(A)) × T. Denote by
I (x, ξ) the kernel of such μ. This is clearly a modular ideal of �σ̂

1 (Z,C0(�(A))) which is
maximal and contains C by multiplicativity and continuity of elements in �.

Theorem 7.6 The modular ideals of �σ̂
1 (Z,C0(�(A))) which are maximal and contain the

commutator ideal C are precisely the ideals I (x, ξ), where x ∈ Per1(�(A)) and ξ ∈ T.



Dynamical Systems Associated with Crossed Products 559

Proof One inclusion is clear from the discussion above. For the converse, let M be such
an ideal and note that it is easy to show that a maximal ideal containing C is not properly
contained in any proper left or right ideal. Thus as �σ̂

1 (Z,C0(�(A))) is a spectral algebra,
[7, Theorem 2.4.13] implies that �σ̂

1 (Z,C0(�(A)))/M is isomorphic to the complex field.
This clearly implies that M is the kernel of a non-zero element of �. �
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