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Abstract A signal is said to have finite rate of innovation if it has a finite number of degrees
of freedom per unit of time. Reconstructing signals with finite rate of innovation from their
exact average samples has been studied in Sun (SIAM J. Math. Anal. 38, 1389–1422, 2006).
In this paper, we consider the problem of reconstructing signals with finite rate of innovation
from their average samples in the presence of deterministic and random noise. We develop an
adaptive Tikhonov regularization approach to this reconstruction problem. Our simulation
results demonstrate that our adaptive approach is robust against noise, is almost consistent
in various sampling processes, and is also locally implementable.

Keywords Sampling · Signals with finite rate of innovation · Regularized least squares ·
Mean squared error · Wiener filter

1 Introduction

In digital signal processes, a continuous time signal is represented by its samples on a dis-
crete set. In the classical model, the Whittaker-Shannon sampling theorem states that a con-
tinuous time signal x(t) on R bandlimited to [−�,�] is uniquely determined by a set of
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uniformly spaced samples x(nT ),n ∈ Z, taken T seconds apart with T ≤ π/�,

x(t) =
∑

n∈Z

x(nT )sinc((t − nT )/T ), (1.1)

where the sinc function is defined by sinc(t) = sinπt
πt

.
Over the past decade, the paradigm for representing band-limited signals in the Shan-

non’s sampling theory has been extended to signals in shift-invariant spaces. It is well known
[1, 2, 32, 33] that any signal x in the shift-invariant space

V2(φ) :=
{∑

n∈Z

c(n)φ(t − n)

∣∣∣∣
∑

n∈Z

|c(n)|2 < ∞
}

generated by a function φ can be reconstructed from its uniformly-spaced samples {x(n)}n∈Z

via the following reconstruction formula:

x(t) =
∑

n∈Z

x(n)S(t − n) for all x ∈ V2(φ), (1.2)

where the Fourier transforms of the reconstruction function S and the generating function φ

are related by

Ŝ(f ) = φ̂(f )
∑

k∈Z
φ̂(f − k)

.

Recently, the paradigm for representing band-limited signals in the Shannon’s sampling
theory is further extended to represent signals with finite rate of innovation, which are neither
band-limited nor live in a shift-invariant space [3, 5, 11, 14, 15, 17, 24, 28, 34]. Here a signal
is said to have finite rate of innovation if it has a finite number of degrees of freedom per unit
of time, that is, if it can be specified from a finite number of samples per unit of time [34].
The number of samples per unit to specify a signal is called the innovative rate of the signal.
Prototypical examples of signals with finite rate of innovation include (i) band-limited sig-
nals x(t) = ∑

k∈Z
x(kT )sinc(t/T − k) where T > 0 [13, 16]; (ii) signals in a shift-invariant

space x(t) = ∑
k∈Z

c(k)φ(t − k), where (c(k)) is a square-summable sequence and φ is a
square-integrable function [1, 2, 32, 33]; (iii) stream of pulses

∑
k c(k)pk(t − tk) found in

GPS applications, cellular radio and ultra wide-band communication [4, 14]; (iv) bandlim-
ited signals with additive shot noise

∑
k∈Z

c(k)sinc(t − k) + ∑
l d(l)δ(t − tl) [17]; (v) sums

of bandlimited signals and non-uniform spline signals, convenient for modelling electrocar-
diogram signals [11].

A prototypical space VX(�),

VX(�) :=
{∑

λ∈�

c(λ)φλ

∣∣∣∣(cλ)λ∈� ∈ X

}
, (1.3)

was introduced in [30] to model signals with finite rate of innovation, where X is a sequence
space, � = (φλ)λ∈� is a family of generating functions, and � is an index set where each
λ ∈ � represents the location of the generating functions φλ. For instance, the space VX(�)

becomes the shift-invariant space V2(φ) generated by a function φ if the space 	2 of all
square-summable sequences is used as the sequence space X, � = (φ(· − n))n∈Z with each
generating function φ(· − n) in � being generated by the integer shifts of the function φ,
and � = Z with each index n ∈ � being thought of as the location of the generating function
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φ(· − n). The space VX(�) is suitable for modelling signals with finite rate of innovation,
and also suitable for taking into account of natural phenomena, real reconstruction devices,
as well as practical numerical implementation, see [30] for detailed discussion.

The usual assumption in sampling problems is that the samples are ideals. However, in
practice, the ideal sampling is impossible to implement. A practical model considers that
the samples are obtained by linear measurements. In a popular setting, for time signals in
a Hilbert space H with inner product 〈·, ·〉H , the sample yγ at the location γ ∈ � of a time
signal f is obtained by taking the inner product of f with the sampling function ψγ at
the location γ , i.e., yγ = 〈f,ψγ 〉H . We call 
 = (ψγ )γ∈� the average sampler, and Y =
(yγ )γ∈� the average samples. In [28], the third named author studied the average sampling
and reconstruction problem for signals in the space VX(�) from their exact average samples
Y , i.e.,

Y = 〈x,
〉 for some x ∈ VX(�)

when each generating function φλ in � and each sampling functional ψγ in the average
sampler 
 = (ψγ )γ∈� are assumed to be well-localized, and the sequence space X is the
space 	2.

As optimal approximation of a signal based on noisy samples is one of the leading prob-
lems in approximation, statistics, and information-based complexity, in this paper we con-
sider the reconstruction for signals in the space VX(�) from noisy average samples Y , i.e.,

Y = 〈x,
〉 + ω

for some signal x ∈ VX(�) and some deterministic or random noise ω.
The paper is organized as follows. In Sect. 2, we make a few basic assumptions on the

signals to be sampled and reconstructed, and on the average sampler 
 used for sampling
signals. Under these assumptions we show that the linear reconstruction procedure is the
same as solving a least squares problem. Inspired by that observation, we propose to adopt
the Tikhonov approach for our signal reconstruction from noisy samples. We consider recon-
structing signals from noisy samples by minimizing a regularized least squares functional
for deterministic noise (Sect. 3), and by minimizing the worst-case mean squares error and
stochastic mean squares error for random noise (Sect. 4). In Sect. 3, we provide an explicit
solution to the minimization problem of regularized least squares functional (Theorem 3.1).
We emphasize that the post-filter, regularization matrix and panel parameter are three im-
portant factors in the Tikhonov approach that affect the performance of our reconstruction.
Therefore in Sects. 3.2–3.4 we discuss the problem of selecting those three factors to make
the Tikhonov approach adaptive to our sampling-reconstruction process, and in Sect. 3.5 we
propose an adaptive Tikhonov approach.

In Sect. 4, we follow the work by Eldar and Unser [6] and consider reconstructing a sig-
nal with finite rate of innovation from its samples corrupted by random noise. We solve the
problem by minimizing the worst-case mean squared error and stochastic mean squared er-
ror. We give explicit solutions to those minimization problems (Theorems 4.1 and 4.6), and
observe that the reconstruction filter HWOR in Theorem 4.1 and the Wiener filter HW in The-
orem 4.6 become the time-varying reconstruction filter HTIK with post-filters, regularization
matrix and panel parameter appropriately chosen (see Remarks 4.2 and 4.7). In Sect. 4.2,
we also give a lower bound estimate for the stochastic mean squared error (Theorem 4.9)
and then show that lower bound estimate can be reached only when the average sampler 


is an orthonormal basis of the prototypical spaces in which the signals live (Remark 4.10).
In Sect. 5, we include various simulations to demonstrate the performance of the ap-

proach developed in this paper for reconstructing a signal with finite rate of innovation
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from its noisy samples. Our simulations show that our adaptive Tikhonov approach is robust
against noise, almost consistent in various sampling processes, and locally implementable.

In this paper, we will use the following notation. Given a discrete set �, let 	p(�),1 ≤
p ≤ ∞, be the space of all p-summable sequences on � with standard norm ‖ · ‖	p(�) or
‖ · ‖	p for short.

2 Preliminaries

We say that � is a relatively-separated subset of R
d if there are finitely many λ ∈ � in any

unit cube, more precisely

sup
t∈Rd

#
(
� ∩ (t + [−1/2,1/2]d)) < ∞, (2.1)

and a relatively dense subset of R
d if there are at least one and at most finitely many λ ∈ �

in any unit cube, more precisely

1 ≤ inf
t∈Rd

#
{
λ ∈ � ∩ t + [−1/2,1/2]d}

≤ sup
t∈Rd

#
{
λ ∈ � ∩ t + [−1/2,1/2]d} < ∞. (2.2)

2.1 Signals to Be Sampled and Reconstructed

In this paper, we make the following basic assumption on signals x to be sampled and
reconstructed:

Assumption 1 Signals x live in the space

V2(�) := V	2(�) =
{∑

λ∈�

c(λ)φλ

∣∣∣∣
∑

λ∈�

|c(λ)|2 < ∞
}

(2.3)

generated by � := (φλ)λ∈�, where the location set � of “impulse responses” φλ is a
relatively-separated subset of R

d ; the “impulse responses” φλ at the location λ ∈ � is en-
veloped by a λ-shifted function h(· − λ), i.e.,

|φλ(x)| ≤ h(x − λ), (2.4)

with h having compact support or certain decay at infinity; and the family � of the “impulse
responses” φλ is a Riesz basis of V2(�), i.e., there exist positive constants A and B such
that

A

(∑

λ∈�

|c(λ)|2
)1/2

≤
∥∥∥∥
∑

λ∈�

c(λ)φλ

∥∥∥∥
2

≤ B

(∑

λ∈�

|c(λ)|2
)1/2

for any sequence C = (c(λ))λ∈� ∈ 	2(�).

From the above assumption, we see that there are finitely many “impulse responses” φλ

per unit time, and each “impulse response” φλ is well-localized in the neighborhood of the
impulse location λ. Therefore signals x to be considered in this paper have finite rate of
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Fig. 1 (a) A Dirac stream
∑N

n=1 cnδλn with innovative rate 1/μ; (b) A non-uniform mesh cubic spline
∑N

n=1 dnB3,λn with innovative rate 1/μ. Here N is an integer, μ > 0 is a positive density parameter, the

location set � = {λn}N
n=1 of impulse responses is iteratively defined by λn = λn−1 + xn + μ/2 if 1 ≤ n ≤ N

where λ0 = μ/2 and xn,1 ≤ n ≤ N , are numbers in [0,μ] chosen randomly, the coefficients cn,1 ≤ n ≤ N

and dn,1 ≤ n ≤ N belong to [−1,1] and are chosen randomly, and for each 1 ≤ n ≤ N , δλn is the delta
pulse located in the position λn while B3,λn is the normalized cubic spline with knots λn−2, λn−1, λn, λn+1
and λn+2 where λ−1 = 0, λ0 = μ/2, λN+1 = λN + μ,λN+2 = λN + 2μ. In this figure, N = 48,μ = 0.2,∑N

n=1 |cn|2 = 16.4930 and
∑N

n=1 |dn|2 = 13.3706

innovation. On the other hand, most signals with finite rate of innovation can be modelled
as living in some V2(�) when the “impulse responses” are chosen appropriately [30]. The
model signals to be considered in this paper are Dirac streams on a relatively-separated
subset � of R and non-uniform mesh cubic splines with a relatively dense subset � of R,
see Fig. 1.

2.2 Average Samplers

In this paper, we make the following basic assumption on the average sampler 
 = (ψγ )γ∈�

to sample signals x in V2(�). Here each index γ in � means that there is an acquisition
device located at that position, and for each index γ , the impulse response of the acquisition
device located at that position γ is described by the sampling functional ψγ .

Assumption 2 The location set � of acquisition devices is a relatively-separated subset
of R

d ; the impulse response ψγ of the acquisition device located at γ is enveloped by a
γ -shifted function g(· − γ ), i.e.,

|ψγ (x)| ≤ g(x − γ ), (2.5)

with g having compact support or certain decay at infinity; and the correlation matrix

A�,
 := (〈φλ,ψγ 〉)λ∈�,γ∈�

between the generator � and the average sampler 
 belongs to the Schur class, that is,

sup
λ∈�

∑

γ∈�

|〈φλ,ψγ 〉| + sup
γ∈�

∑

λ∈�

|〈φλ,ψγ 〉| < ∞. (2.6)
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Fig. 2 Gaussian sampler
exp(−|t |2/2)

We call 
 = (ψγ )γ∈� an average sampler [28]. From the above assumption on the
average sampler 
 , there are finitely many acquisition devices per unit of time, each ac-
quisition device is locally behaved, and every signal x in V2(�) can be sampled by the
average sampler 
 . The model examples of the average sampler 
 include the shifted
Gaussian sampler (ψγ (t) = exp(−|t − γ |2/(2σ 2)) where σ > 0), shifted squared sinc
sampler (ψγ (t) = sinc2((t − γ )/T ) where T > 0), the Dirac streams for ideal sampling
(ψγ (t) = δ(t − γ )), and non-uniform meshed B-spline (ψγ is a B-spline with knots in a
fixed neighborhood of γ ), see Fig. 2.

Remark 2.1 The average samplers considered in this paper include the case of multiple
sampling devices located at the same position. For instance, if � is the set of all posi-
tions where at least one acquisition devices are located, and the impulse responses of the
acquisition devices located at the position γ ∈ � are described by the sampling function-
als ψ1

γ , . . . ,ψk(γ )
γ respectively, where 1 ≤ k(γ ), then the new index set �̃ := ⋃

γ∈�{γ +
jε(γ ),1 ≤ j ≤ k(γ ) − 1} and the new average sampler 
̃ = (ψ̃γ̃ )γ̃∈�̃ are the location set
and the average sampler considered in this paper, where ε(γ ) ∈ [0,1)d is chosen so that
{γ + jε(γ ),0 ≤ j ≤ k(γ ) − 1} ∩ {γ ′ + jε(γ ′),0 ≤ j ≤ k(γ ′) − 1} = ∅ for all γ �= γ ′, and
ψ̃γ̃ = ψj

γ if γ̃ = γ + jε(γ ) ∈ �̃ for some γ ∈ � and 0 ≤ j ≤ k(γ ) − 1.

2.3 Sampling and Reconstructing

We take a signal x ∈ V2(�) and write

x = CT � (2.7)

by Assumption 1, where C = (c(λ))λ∈� ∈ 	2(�). Then the average sample Y of the signal
x via the average sampler 
 is given by

Y := 〈x,
〉 = A
,�C. (2.8)

The average sample of the Dirac streams and the non-uniform mesh cubic spline in Fig. 1
via the average samplers in Fig. 2 is given in Fig. 3.
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Fig. 3 On the left hand side is the sampling data Ydg := {∑N
n=1 cn exp(−2|λn − kT |2/T 2)|1 ≤ k ≤

[ (λN +2μ)
T

]+ 1} of the Dirac streams x = ∑N
n=1 cnδλn in Fig. 1, while on the right hand side is the sampling

data Ycg := {∑N
n=1 cn

∫
R

e−2|t−kT |2/T 2
B3,λn (t)dt |1 ≤ k ≤ [ (λN +2μ)

T
]+1} of the non-uniform mesh cubic

spline x = ∑N
n=1 cnB3,λn in Fig. 1. The average samplers from top to bottom are generated by the T -shifted

Gaussian sampler exp(−2|t −kT |2/T 2) with the ratios between the sampling rate 1/T of Gaussian sampling
devices and the innovative rate 1/μ of the given signal being 6/5,1,4/5 respectively
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By our basic assumptions on the generator � and the average sampler 
 , the average
sample Y is a square-summable sequence (i.e. Y ∈ 	2(�)), and the reconstruction of a signal
x ∈ V2(�) from the exact average sample Y reduces to solving the linear system

A
,�C = Y. (2.9)

2.4 Reconstructing a Signal from Its Exact Average Samples and Solving a Least Squares
problem

We say that the average sampler 
 is stable on the space V2(�) if the average sampling
operator S,

S : V2(�) � x 
−→ 〈x,
〉 ∈ 	2(�), (2.10)

is bounded and has bounded left-inverse [2, 28]. For a stable average sampler 
 , we see that
any signal x ∈ V2(�) is uniquely determined by its average sample Y := 〈x,
〉, and

x = Y T HIdeal� (2.11)

for some time-varying reconstruction filter

HIdeal := A
,�(A�,
A
,�)−1. (2.12)

We observe from (2.12) that the time-varying reconstruction filter HIdeal is the pseudo-
inverse of the correlation matrix A
,�, and therefore for the case that the average sample is
obtained exactly, the reconstruction of a signal in V2(�) from average sample Y reduces to
solving the least squares problem:

x = argminx̃∈V2(�)‖Y − 〈x̃,
〉‖2
	2 . (2.13)

This observation inspires us to follow the above fashion in Sects. 3 and 4, and to con-
sider reconstructing a signal in V2(�) from the given noisy average sample by minimizing
the (regularized) least squares functional in the deterministic setting for the noise, and by
minimizing certain mean squared error (MSE) in the random setting for the noise.

3 Time-Varying Reconstruction Filters: Deterministic Setting

In this section, we investigate the problem of reconstructing a signal x ∈ V2(�) from a given
noisy average sample Y = (yγ )γ∈� ∈ 	2(�) via the Tikhonov approach,

x = argminx̃∈V2(�)εTIK(x̃), (3.1)

where the regularized least-squares functional εTIK(x̃) is given by

εTIK(x̃) :=
P∑

p=1

‖Lp(Y − Ỹ )‖2
	2 + αCT AC, (3.2)

Lp,1 ≤ p ≤ P , are time-varying post-filters,

Ỹ = 〈x̃,
〉 := (〈x̃,ψγ 〉)γ∈� (3.3)
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represents the average samples derived from the signal x̃ := CT � ∈ V2(�), α is a non-
negative panel parameter, and the regularization matrix A is positive semi-definite, i.e.,
CT AC ≥ 0 for all C ∈ 	2. The reader may refer to [6, 7, 18–21, 26, 27] and references
therein for some aspects of the theory and applications of (regularized) least squares prob-
lems.

In the first subsection below we solve the above reconstruction problem when post-filters,
regularization matrices and panel parameters are known. In the next three subsections we
discuss the problem of selecting post-filters, regularization matrices and panel parameters,
which are three key factors that affect the performance of our reconstruction process. In
the last subsection, we propose an adaptive Tikhonov approach for reconstructing a signal
with finite rate of innovation from its samples corrupted by deterministic noises. The sim-
ulations in Sect. 5 show that the adaptive Tikhonov approach is robust against noise and is
almost consistent irrespective of the value of the ratio between the sampling rate of sampling
process and the innovative rate of signals to be sampled. More importantly the adaptive ap-
proach can be implemented locally and then can be used in real-time reconstruction where
sample data in the future are unknown a priori, or in the partial reconstruction where partial
sample data are missing.

3.1 Solution of the Regularized Least Squares Problem

The following theorem gives an explicit solution to the regularized least squares prob-
lem (3.2) where the post-filters, the regularization matrix and the panel parameter are given.

Theorem 3.1 Let Lp,1 ≤ p ≤ P , be time-varying post-filters, α ≥ 0 be a nonnegative para-
meter, the regularization matrix A be positive semi-definite, � be a Riesz basis of the space
V2(�), and 
 be the average sampler that satisfies (2.6). Set L = ∑P

p=1 L∗
p Lp . Assume that

A�,
LA
,� + αA has bounded inverse. Then

(i) For any given average sample Y ∈ 	2(�), there exists a unique signal x ∈ V2(�) that
minimizes the regularized least-squares functional in (3.2).

(ii) For any given average sample Y ∈ 	2(�), the signal x ∈ V2(�), that minimizes the
regularized least squares in (3.2), depends linearly on the noisy average sample Y .
Moreover,

x = Y T HTIK� (3.4)

where the time-varying reconstruction filter HTIK is given by

HTIK := LA
,�(A�,
LA
,� + αA)−1. (3.5)

(iii) If Y is obtained by average sampling x0 := CT
0 � ∈ V2(�) (i.e. Y = 〈x0,
〉), then the

signal x0 is the minimizer of the regularized least squares εTIK in (3.2) if and only if
αAC0 = 0.

Proof The theorem can be proved in a standard way. For the completeness of this paper, we
include a proof here.

Take any x̃ = CT � ∈ V2(�) with CT �= Y T HTIK. Noticing that correlation matrices A
,�

and A�,
 are related by taking the matrix transfer operation, i.e. (A
,�)T = A�,
 , we have

εTIK(x̃) =
P∑

p=1

‖Lp(Y − A
,�C)‖2
	2 + αCT AC
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= (Y T − CT A�,
)L(Y − A
,�C) + αCT AC

= Y T (I − HTIKA�,
)L(I − A
,�HT
TIK)Y + αY T HTIKAHT

TIKY

+(CT − Y T HTIK)(A�,
LA
,� + αA)(C − HT
TIKY )

> ε
opt
TIK,

where ε
opt
TIK is the value of the regularized least squares functional associated with the signal

x = Y T HTIK�. This proves the first two conclusions.
For Y = 〈x0,
〉 for some x0 = CT

0 � ∈ V2(�), it follows from (3.4) and (3.5) that the
reconstructed signal x is given by

x = CT
0 A�,
LA
,�(A�,
LA
,� + αA)−1�.

Therefore, x = x0 if and only if CT
0 A�,
LA
,�(A�,
LA
,� + αA)−1 = CT

0 if and only if
αCT

0 A = 0 if and only if αAC0 = 0. The third conclusion is proved. �

Remark 3.2 If A is a positive definite matrix, i.e., there exists m > 0 such that CT AC ≥
m CT C for all C ∈ 	2, then we can write the time-varying filter HTIK in (3.5) as the following
two equivalent formulations:

HTIK = LA
,�A−1/2(A−1/2A�,
LA
,�A−1/2 + αI)−1A−1/2 (3.6)

and

HTIK = L1/2(L1/2A
,�A−1A�,
L1/2 + αI)−1L1/2A
,�A. (3.7)

The above two equivalent formulations will be used later to find the optimal panel parame-
ter α, see Sect. 3.4 for details.

Remark 3.3 If the cardinality of the set � is large, it will be costly and numerically unstable
to find the time-varying reconstruction filter HTIK by computing the inverse of the matrix
A�,
LA
,� + αA. As our purpose is to reconstruct the signal x from its noisy sample Y or
equivalently to find the left action of the filter HTIK on Y T , we may circumvent the inversion
problem as usual by solving the following linear system

(A�,
LA
,� + αA)C = A�,
LY (3.8)

numerically. In our average sampling and reconstruction problem, the generator � of the
space V2(�) and the average sampler 
 usually have polynomial decay (or subexponential
decay, or exponential decay) at infinity, i.e.

sup
x∈Rd ,λ∈�

u(x − λ)|φλ(x)| < ∞ (3.9)

and

sup
x∈Rd ,γ∈�

u(x − γ )|ψγ (x)| < ∞, (3.10)

where u is the polynomial weight (1 + |x|)α with α > d for the polynomial decay case, the
subexponential weight exp(β|x|δ) with 0 < δ < 1,0 < β < ∞ for the subexponential decay
case, and the exponential weight exp(ε|x|) with 0 < ε < ∞ for the exponential decay case.
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Thus the correlation matrices A
,� and A�,
 are in the Gohberg-Baskakov-Sjöstrand class
C∞,u(�,�) and C∞,u(�,�) with polynomial (resp. subexponential or exponential) weight
u respectively, where the Gohberg-Baskakov-Sjöstrand class of infinite matrices [25, 29] is
defined by

C∞,u(�,�) :=
{
(a(λ, γ ))λ∈�,γ∈� : sup

λ∈�,γ∈�

|a(λ, γ )|u(λ, γ ) < ∞
}
.

Therefore by the Wiener’s lemma [12, 25, 29], the time-varying reconstruction filter HTIK is
also a matrix in the Gohberg-Baskakov-Sjöstrand class with polynomial (resp. subexponen-
tial or exponential) weight (hence HTIK is a numerically sparse matrix) if the generator � of
the signal space V2(�) and the average sampler 
 have polynomial decay (resp. subexpo-
nential or exponential decay) at infinity, and the time-varying post-filters Lp,1 ≤ p ≤ P , and
the regularized matrix A belong to the Gohberg-Baskakov-Sjöstrand class C∞,u(�,�) and
C∞,u(�,�) with polynomial (resp. subexponential or exponential) weight u respectively.
Our demonstration confirms that theoretical result and shows that the number of numeri-
cally large entries in the time-varying reconstruction filter HTIK depends almost linearly on
the size of the filter, and the numerically nonzero entries of the matrices A�,
LA
,� + αA

and its inverse lie in a fixed band around the diagonal. From that observation on the time-
varying reconstruction filter HTIK and the fact that the matrix A�,
LA
,� + αA is positive
definite, well known effective numerical methods, such as finite section method and conju-
gate gradient algorithm with preconditioning, may be useful to solve the linear system (3.8)
efficiently [8–10, 22].

3.2 Post-Filters in Tikhonov Approach

The post-filters Lp,1 ≤ p ≤ P , are usually determined (or selected) by the reconstruction
problem including the pattern of deterministic noises. For instance, in the global reconstruc-
tion problem where all (noisy) average samples are given, the post-filters Lp,1 ≤ p ≤ P ,
are usually selected either to be all-pass filters in the sense that

L : 	2(�) ∈ c 
−→ (L1(c), . . . , LP (c))T ∈ (	2(�))P

is bounded and has bounded inverse, or to be preconditioners in the sense that Lp,1 ≤
p ≤ P , are diagonal matrices with diagonal entries forming a sequence of weights (Uγ )γ∈� ,
where Uγ > 0 [8, 26, 27].

On the other hand, in the local reconstruction problem where only average samples on
a finite set �̃ ⊂ � are given (or could be used such as in real-time implementation), the
post-filters Lp,1 ≤ p ≤ P , should be local in the sense that

LpP�̃ = Lp, 1 ≤ p ≤ P,

where P�̃ is the projection operator from 	2(�) to 	2(�̃) defined by

(P�̃c)(γ ) =
{

c(γ ) if γ ∈ �̃

0 if γ /∈ �̃
for c = (c(γ ))γ∈�.

For those post-filters satisfying the above local property, the average samples outside the
finite set �̃ will not be used in the minimization problem based on the regularized least
squares.
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Given a finite set �̃ ⊂ �, let Y�̃ denote the given sample on �̃, 
̃ = (ψγ )γ∈�̃ be the

subfamily of sampling functionals ψγ located in some position γ ∈ �̃, and Lp,�̃ be the sub-

matrix obtained by taking all γ -rows of the post-filter Lp with γ ∈ �̃. Given a finite set
�̃ ⊂ �, we let �̃ be the set of all λ ∈ � such that the supports of the generating function
φλ and the sampling functional ψγ located in the position γ have nonempty intersection for
some γ ∈ �̃. Let also �̃ = (φλ)λ∈�̃ be a subfamily of functions φλ whose supports having
nonempty intersection to that of some sampling functionals in 
̃ . Then in the local recon-
struction problem where only average samples on a finite set �̃ ⊂ � are given (or can be
used) we can show that minimizing the regularized least-squares functional in (3.2) is the
same as solving another minimization problem of small size, if we further assume that the
generating functions φλ and the average sampling functionals ψγ are supported in a fixed
compact set and if the regularization matrix A is a diagonal matrix diag(aλ)λ∈�. Precisely
we need only to minimize the following least-squares functional

εLTIK(x̃) :=
P∑

p=1

‖Lp,L(YL − ỸL)‖2
	2 + αCT ÃC, (3.11)

where ỸL = 〈x̃, 
̃〉 := (〈x̃,ψγ 〉)γ∈�̃ represents the average samples derived from the signal

x̃ = CT �̃ and the regularization matrix Ã = diag(aλ)λ∈�̃ is the diagonal matrix with the in-
dex in the diagonal elements included in �̃. The solution of the above minimization problem
is

x = Y T
L L̃A
̃,�̃(A�̃,
̃ L̃A
̃,�̃ + αÃ)−1�̃, (3.12)

where L̃ = ∑P

p=1 L∗
p,LLp,L. The above argument shows that the Tikhonov approach can be

implemented locally when local post-filters are selected and the regularization matrix is a
diagonal matrix.

3.3 Regularization Matrix in Tikhonov Approach

The regularization matrix A in the regularized least squares is adjusted accordingly to the
various sampling and reconstruction situations such as in the reconstruction of signals with
finite duration or with low frequency. In most applications, the regularization matrix A in
the Tikhonov approach is given by a regularizer R on the space V2(�) in the sense that

CT AC = 〈Rx̃,Rx̃〉 = CT AR�,R�C (3.13)

where x̃ = CT � ∈ V2(�). Typical examples of the regularizer R in the average sampling
problems are (i) (Rx)(t) = x(t)w(t) for some weight w in the time domain, such as w(t) =
(1 +|t |)α,α ≥ 0, and (ii) R̂x(f ) = x̂(f )ŵ(f ) for some weights ŵ in the frequency domain,
such as Rx = x ′′. The first type of regularity operator can be used to reconstruct signals with
fast decay in the time domain, while the second one with low frequency in the frequency
domain. For instance, for the spline case, � is a family of splines on non-uniform meshes,
we usually take m-th derivative Rx = x(k) for some k ≥ 0 as the regularity operator [23, 35].

3.4 Panel Parameter in Tikhonov Approach

For better performance of the reconstruction process, it could be crucial to select an ap-
propriate panel parameter α so that the regularized least squares minimization problem is



Reconstructing Signals from Noisy Samples 351

consistent (or almost consistent), the average sample of the reconstructed signal is “close”
to the noisy sample, the reconstruction signal has certain regularity, and the reconstruction
process is numerically stable and robust against noise. Here, the consistency of the regu-
larized least squares minimization problem means that for the average sampler Y obtained
by average sampling a signal x0 ∈ V2(�), the signal x that minimizes the regularized least
squares has its average samples the same as the average samples of the original signal x0

[33]. We use the above consistency instead of the more popular “strong” consistency where
the reconstruction signal is the same as the original signal for considering undersampling
problem where the reconstruction process is not unique in general.

In this subsection, we introduce three quantities to measure the sampling error, regu-
larization of the reconstructed signal, and numerical stability of the reconstruction process
respectively. For this purpose, we always assume that A is a positive definite in this subsec-
tion.

Let

eq(α) = ‖L1/2(Y − 〈x,
〉)‖q

	q (3.14)

be the 	q sampling error between the noisy sampling data Y and the sampling data 〈x,
〉
of the reconstructed signal x = Y T HTIK�, where 1 ≤ q ≤ 2 and L = ∑P

p=1 L∗
p Lp . We note

that

lim
α→∞ eq(α) = ‖L1/2Y‖q

	q . (3.15)

For q = 2, the sampling error e2(α) is the first term in the regularized least squares εTIK(x),
and has the following explicit expression

e2(α) = Y T LY − Y T LA
,�Bα

×(A�,
LA
,� + 2αA)BαA�,
LY (3.16)

by (3.4) and (3.5), where

Bα := (A�,
LA
,� + αA)−1. (3.17)

Therefore

de2(α)

dα
= 2αY T LA
,�BαABαABαA�,
LY ≥ 0 (3.18)

and

e2(α) is an increasing function on (0,∞). (3.19)

Our numerical results show that e1(α) is also increasing function. Thus

Claim 1 The sampling data of the reconstructed signal has smaller sampling error to the
observed noisy sampling data for smaller panel parameter α ≥ 0.

Let

r(α) := Y T HTIKAHT
TIKY = Y T LA
,�BαABαA�,
LY (3.20)

be the second term in the regularized least squares functional εTIK(x) to measure the regu-
larity of the reconstruction signal x = Y T HTIK�. Then

lim
α→+∞ r(α) = 0 (3.21)
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and

r(α) is a decreasing function on (0,∞), (3.22)

as

dr(α)

dα
= −2Y T LA
,�BαABαABαA�,
LY < 0. (3.23)

Therefore

Claim 2 The reconstruction signal has better regularity for larger panel parameter α ≥ 0.

Define

c1(α) = ‖(A−1/2A�,
LA
,�A−1/2 + αI)−1‖ ‖A−1/2A�,
LA
,�A−1/2‖, (3.24)

c2(α) = ‖(L1/2A
,�A−1A�,
L1/2 + αI)−1‖ ‖L1/2A
,�AA�,
L1/2‖, (3.25)

and

c(α) = min(c1(α), c2(α)), (3.26)

where ‖·‖ is the operator norm of a matrix. Because of the equivalent formulations (3.6) and
(3.7) of the time-varying reconstruction filter HTIK, we use c(α) to measure the numerical
stability of the reconstruction process. We notice that

c(α) is a decreasing function on (0,∞), (3.27)

with

lim
α→+∞ c(α) = 0. (3.28)

Hence

Claim 3 The process of obtaining the reconstructed signal from the observed noisy sam-
pling data has better numerical stability for larger panel parameter α.

The above claims suggest a trade-off to select the panel parameter α.

3.5 Adaptive Tikhonov Approach

In this subsection, we use the three claims in the last subsection to select the panel parameter
α appropriately and then develop an adaptive Tikhonov approach for reconstructing a signal
with finite rate of innovation from its noisy samples.

Before we apply the three claims in the last subsection, we first normalize the measure-
ments there. In fact, we normalize the sampling error eq(α) by negative logarithm of the
relative sampling error,

Eq(α) = − log10
eq(α)

eq(+∞)
, 1 ≤ q ≤ 2;



Reconstructing Signals from Noisy Samples 353

the regularization measurement r(α) by logarithm of the ratio between the regularization
measurement r(α) and the energy of the noisy sample Y ,

R(α) := log10

(
r(α)

Y T LY
× ‖A�,
A
,�‖‖L‖

‖A‖
)

; (3.29)

and numerical stability constant c(α) by its logarithm

C(α) = log10 c(α). (3.30)

In Fig. 4, we present a simulation result of the logarithm Eq(α) of the relative sampling error
between the given noisy sample data and the sample data of the reconstruction signal, the
logarithm R(α) of relative regularization measurement of the reconstruction signal, and the
logarithm C(α) of numerical stability number of the reconstruction process. If we use the
popular signal-to-noise ratio (SNR) in decibels, 10 times the logarithm of the power ratio
between the exact sample Ye and the additive noise Y −Ye , then the SNRs of the above addi-
tive noise are 24.7397db, 24.3544db, 24.8322db for figures on the right hand side from top
to bottom and 24.7701db, 23.9798db, 24.5314db figures on the left hand side from top to
bottom. Figure 4 confirms the monotonicity of the functions E1(α),E2(α),R(α),C(α) (ex-
cept the functions E1(α) and E2(α) in Fig. 4(e) for small α due to the numerical instability)
and the side-effect of over-regularization for large panel parameter α.

Now let us select the panel parameter α. To judge the reasonability of the reconstruction
procedure via regularization, we require that the normalized regularization measurement
R(α) should satisfy

R(α) ≤ log10 R (3.31)

where R is a positive constant. From our simulation, we let R = 102.
For the stability of the reconstructed procedure, it is reasonable to require that

C(α) ≤ log10 S (3.32)

where S is a positive constant. From our simulation, we let S = 103 for reconstructing Dirac
streams and S = 106 for reconstructing cubic splines.

The entries in the matrix A
,� are usually obtained by numerical quadrature, which leads
to an error e0. As impulse responses of the original signal and the sampling devices at each
location are localized, the error of each entry of the matrix A�,
LA
,� in (3.6) and the
matrix A
,�A−1A�,
 in (3.7) obtained by numerical quadrature is controlled by a scalar
multiple of e0‖LA
,�‖ and e0‖A
,�A−1‖ respectively. So it is reasonable to have certain
regularization,

α ≥ sinf := e0‖LA
,�A−1‖. (3.33)

From our simulation, we will let e0 = 10−9 for Dirac stream signal and e0 = 10−7 for cubic
spline signal.

The sampling error e2(α) between the noisy sampling data Y and the sampling data
〈x,
〉 of the reconstructed signal x = Y T HTIK� should not exceed certain percentage p of
the energy of the noisy data Y T LY , i.e.,

E2(α) ≥ − log10 p (3.34)
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Fig. 4 The functions E1(10s ) (dashed line), E2(10s ) (solid line), R(10s ) (dash-dotted line), C(10s ) (dotted
line) of the Dirac streams in Fig. 1 (the left hand side) and of the nonuniform cubic spline in Fig. 1 (the
right hand side). The average sampler 
 from top to bottom is generated by the T -shifted Gaussian function

exp(−2|t − kT |2/T 2),1 ≤ k ≤ [ λN +2μ
T

] + 1, with μ/T = 6/5,1,4/5 respectively. The noisy data Y are
given by Y = Ye + σ0 max(|Ye|)(r(γ ))γ∈� where the noise level σ0 is 0.05, r(γ ), γ ∈ � are numbers in
[−1,1] chosen randomly and where the sampling data Ye for figures on the left and right hand sides are the
sampling data Ydg and Ycg given in Fig. 3 respectively. The postfilter is Lg in (5.3), and the regularization
matrix is Ad in (5.1) for figures on the left hand side and Ac in (5.2) for figures on the right hand side
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otherwise either the sampling data Y is too noisy or our reconstruction procedure via regu-
larization is over-regularized. Therefore by (3.16) we have

Y T LA
,�Bα(2αA + A�,
LA
,�)BαA�,
LY ≥ (1 − p)Y T LY.

This together with

2α−1A−1 ≥ Bα(2αA + A�,
LA
,�)Bα

implies that the panel parameter α should satisfy

α ≤ ssup := 2(1 − p)−1‖L1/2A
,�A−1A�,
L1/2‖. (3.35)

From our simulation, we will let p = 10%.
So we propose to select the smallest α ∈ [sinf, ssup] satisfying (3.31) and (3.32) as the

panel parameter αop in the Tihonov approach for reconstructing signals with finite rate of
innovation from noisy samples. In our simulation, we will use the following simple algorithm
on the logarithmic scale of the panel parameter to determine the adaptive parameter αop :

Panel Parameter Algorithm:
1. Input noisy sample data Y and correlation matrix A
,�.
2. Input postfilter L, and regularization matrix A.
3. Input sinf in (3.33) and ssup in (3.35).
4. Input N0,R,S (In our simulation, N0 = 30,R = 100 and S = 1000

for reconstructing Dirac streams and S = 106 for
reconstructing cubic splines)

5. Define a = log10 sinf, b = log10 ssup.
For k = 1 to N0

m = (a + b)/2,p2 = R(10m),p3 = C(10m);
if p2 ≤ log10 R and p3 ≤ log10 S

a = a, b = m;
else
a = m,b = b;
end

6. αop = m.
7. Input �.
8. Define the reconstruction signal xre from noisy

sample data Y by

xre = Y T LA
,�(A�,
LA
,� + αopA)−1�.

4 Time-Varying Reconstruction Filters: Random Setting

Following the work by Eldar and Unser [6], we introduce in this section two design criteria
for reconstructing a signal x̃ ∈ V2(�) from the noisy average sampling data Y = (yγ )γ∈� of
the following form:

yγ = 〈x0,ψγ 〉 + wγ , γ ∈ � (4.1)

for some x0 ∈ V2(�) and discrete additive noise w = (wγ )γ∈� with zero mean and known
covariance matrix W .
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4.1 Worst-Case MSE

Given a reconstruction filter H , a positive number δ0, a positive definite regularization ma-
trix A, and a linear functional M on V2(�), we define the worst-case mean squared error
εWOR := εWOR(H, δ0,A, M) by

εWOR = max
x∈V2(�),‖x‖A≤δ0

E{|M(x − x̃)|2} (4.2)

where ‖x‖A := √
CT AC for x = CT � ∈ V2(�),

x̃ = (〈x,
T 〉 + wT )H� (4.3)

is the reconstructed signal from the noisy sample Y = 〈x,
〉 + w via a reconstruction fil-
ter H , and w = (wγ )γ∈� is additive noise with zero mean and with covariance matrix W .

The next result gives the solution to the reconstruction problem based on the minimiza-
tion of the worst-case mean squared error.

Theorem 4.1 Let δ0 > 0, � and � be finite sets, A be a positive definite matrix, M a
linear functional on V2(�), � a Riesz basis of V2(�) ⊂ L2, and 
 an average sampler that
satisfies (2.6). Assume that the additive noise w = (wγ )γ∈� has zero mean and covariance
matrix W , and that δ2

0A
,�A−1A�,
 + W has bounded inverse. Then the reconstruction
filter

HWOR := δ2
0

(
δ2

0A
,�A−1A�,
 + W
)−1

A
,�A−1 (4.4)

minimizes the worst-case MSE εWOR(H, δ0,A, M) in (4.2), that is,

HWOR = argminH εWOR(H, δ0,A, M). (4.5)

Proof For any x = CT A−1/2� with ‖C‖	2 ≤ δ0,

x̃ = (CT A−1/2A�,
 + ωT )H�, (4.6)

where H is the reconstruction filter, and w is the additive noise with zero mean and covari-
ance matrix W . Then we obtain

εWOR(H, δ0,A, M)

= max
‖C‖

	2 ≤δ0
E

(∣∣CT A−1/2(A�,
H − I )(M�) + wT H(M�)
∣∣2)

= max
‖C‖

	2 ≤δ0
|CT A−1/2(A�,
H − I )(M�)|2 + (M�)T HT WH(M�)

= δ2
0(M�)T (HT A
,� − I )A−1(A�,
H − I )(M�) + (M�)T HT WH(M�)

= εWOR(HWOR, δ0,A, M) + (M�)T (H − HWOR)T

× (
δ2

0A
,�A−1A�,
 + W
)
(H − HWOR)(M�)

≥ εWOR(HWOR, δ0,A, M).

Hence the conclusion (4.4) follows. �
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Remark 4.2 The construction filter HWOR in the worst-case MSE coincides with the con-
struction filter HTIK when the covariance matrix W and the post-filters Lp,1 ≤ p ≤ P ,
satisfy WL = δ2

0αI , where L = ∑P

p=1 L∗
p Lp . From the above observation, we see that for

the case that average samples are corrupted by white Gaussian noise with zero mean and
variance σ 2

0 , our approach could have better performance if post-filters is trivial (i.e. L = I )
and σ 2

0 /δ2
0 is selected as the panel parameter α.

Remark 4.3 The model example of the linear functional M in the worst-case MSE is the
evaluation functional at time t (i.e. M� = �(t)) when � is continuous [6, 31]. Our simu-
lation shows that the reconstruction filter HWOR does not minimize the following worst-case
weighted MSE

ε̃WOR = max
x∈V2(�),‖x‖A≤δ0

∫

Rd

E{|x(t) − x̃(t)|2}dμ(t), (4.7)

where μ(t) is a probability measure on R
d . But observing from Theorem 4.1 that the recon-

struction filter HWOR is independent of the linear functional M, we have that the reconstruc-
tion filter HWOR also minimizes the following linearized worst-case weighted MSE,

εWOR =
∫

T

max
x∈V2(�),‖x‖A≤δ0

E{|x(t) − x̃(t)|2}dμ(t), (4.8)

where μ(t) is a probability measure.

Remark 4.4 For the case that 
 is an interpolating average sampler on V2(�), i.e. there
exist two positive constants A and B such that

A‖c‖	2 ≤ ‖A�,
c‖	2 ≤ B‖c‖	2 for all c ∈ 	2(�), (4.9)

the operator norm ‖HWOR‖ of the reconstruction filter HWOR can be bounded by a constant
independent of the parameter δ0 and the covariance matrix W because

‖HWOR‖ ≤ δ2
0

∥∥(
δ2

0A
,�A−1A�,
 + W
)−1∥∥‖A
,�‖‖A−1‖

≤ ∥∥(A
,�A−1A�,
)−1
∥∥‖A
,�‖‖A−1‖ < ∞.

Hence the reconstruction process from average samples via the reconstruction filter HWOR

is uniformly stable.
For the case that 
 is a stable average sampler on V2(�), i.e. (2.10) holds, we may not

be able to find an upper bound of the operator norm ‖HWOR‖ that is independent of the para-
meter δ0 and the covariance matrix W . For instance for � = {χ[0,1]},
 = {χ[0,1/2], χ[1/2,1]},
A = 1, and W = (

(δ−1)2 δ2−1

δ2−1 (δ+1)2

)
, the reconstruction filter HWOR := ( 1+δ

1−δ

)
, has its operator

norm tending to infinity as δ → +∞. But as the additive noise w is the white Gaussian
noise with zero mean and variance σ0 (that is, W = σ 2

0 I ), the operator norm ‖HWOR‖ of the
reconstruction filter HWOR can be bounded by a constant independent of the parameter δ0

and the variance σ0, since in that case the reconstruction filter HWOR can also be written as

HWOR = δ2
0A
,�(δ2

0A
−1A�,
A
,� + σ 2

0 I )−1A−1. (4.10)

Remark 4.5 The assumption that both � and � are finite sets is a technical assumption
in Theorem 4.1. From the proof of Theorem 4.1, we see that the filter HWOR is still the
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reconstruction filter that minimizes the worst-case MSE εWOR if the finite-cardinality as-
sumption on the sets � and � in Theorem 4.1 is replaced by some technical conditions on
the noise w, the random signal x, and the reconstruction filter H in the minimization pro-
cedure, and the filter HWOR in (4.4). For instance, we may assume that the random signal
x = CT � ∈ V2(�), the random noise w = (wγ )γ∈� , the construction filter H in the mini-
mization problem and the optimal reconstruction filter HW satisfy the following conditions:
(i) cλ ∈ [−Aλ,Aλ], λ ∈ � for some sequence Aλ,λ ∈ � with

∑
λ∈� |Aλ|2 < ∞ where C =

(cλ)λ∈�, (ii) wγ ∈ [−Bγ ,Bγ ] for some sequence Bγ , γ ∈ � with BT |H |,BT |HWOR| ∈ 	2(�)

where B = (Bγ )γ∈� , the (γ,λ) entries of the matrices |H | and |HWOR| are the moduli of
the one of the matrices H and HWOR respectively. From the above assumption, we see that
the sparseness of the reconstruction filter HWOR is an extremely important requirement in
the reconstruction process where the average samples are corrupted by random noise. As
discussed before (Remark 3.3), the reconstruction filter HWOR has polynomial decay (resp.
subexponential or exponential decay) if the generator � of the space V2(�) in which signals
live, the average sampler 
 , the regularized matrix A, and the covariance matrix W have
polynomial decay (resp. subexponential or exponential decay).

4.2 Stochastic MSE

Given a regularization matrix A and a reconstruction filter H , we define the stochastic mean
squared error (MSE) εMSE := εMSE(H,A) by

εMSE := E{(C − C̃)T A(C − C̃)}, (4.11)

where x := CT � is a zero-mean random process in V2(�) with covariance function
cov(x(t), x(t ′)), x̃ := C̃T � = Y T H� is the reconstruction signal from the noisy average
sampler Y = 〈x,
〉 + w via the reconstruction filter H , and w = (wγ )γ∈� is an additive
zero-mean noise independent of x and with covariance matrix W . In the case that the reg-
ularization matrix A in (4.11) is given by a regularity operator R on the space V2(�) as in
(3.13), the mean squared error εMSE in (4.11) becomes E{‖R(x − x̃)‖2}.

Theorem 4.6 Let �,� be finite sets, A be a positive definite matrix, � be a Riesz ba-
sis of V2(�), and 
 be an average sampler that satisfies (2.6). Assume that x is a zero-
mean random process in V2(�) with covariance function cov(x(t), x(t ′)), w = (wγ )γ∈� is
an additive zero-mean noise that is independent of x and has covariance matrix W , and
A
,�A−1

�,�Cov(x)A−1
�,�A�,
 + W has bounded inverse where

Cov(x) :=
∫

Rd

∫

Rd

cov(x(t), x(t ′))�(t)(�(t ′))T dtdt ′. (4.12)

Then the Wiener filter HW defined by

HW = (A
,�A−1
�,�Cov(x)A−1

�,�A�,
 + W)−1A
,�A−1
�,�Cov(x)A−1

�,�, (4.13)

is the reconstruction filter that minimizes the functional εMSE in (4.11), i.e.,

HW = argminH εMSE(H,A). (4.14)

Proof For any x ∈ V2(�), we write x = CT � for some C ∈ 	2(�). One may then verify that
the covariance matrix associated with the random sequence C and the covariance function
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associated with the random signal x are related as follows:

cov(C) = (A�,�)−1Cov(x)(A�,�)−1. (4.15)

For x = CT � ∈ V2(�), the reconstruction signal x̃ := C̃T � from the noisy samples via the
reconstruction filter H is given by

x̃ = (CT A�,
 + wT )H�,

where w is additive noise with zero mean and covariance matrix W . Therefore

εMSE = E{(C − C̃)T A(C − C̃)}
= E

{
CT (A�,
H − I )A(HT A
,� − I )C

} + E
{
wT HAHT w

}

= trace
(
cov(C)(A�,
H − I )A(HT A
,� − I )

) + trace
(
WHAHT

)

= trace
(
(HT A
,� − I )cov(C)(A�,
H − I )A

) + trace
(
HT WHA

)

= ε
opt
MSE + E(wT (H − HW)A(H − HW)T w)

+E(CT A�,
(H − HW)A(H − HW)T A
,�C)

≥ ε
opt
MSE, (4.16)

where trace(B) is the trace of a square matrix B , and ε
opt
MSE is the MSE associated with the

reconstruction filter HW . The conclusion in Theorem 4.6 then follows. �

Remark 4.7 The Wiener filter (4.13) in the stochastic MSE is independent of the regular-
ization matrix A in (4.11), and coincides with the reconstruction filter (4.4) in the minimax
MSE if the regularization matrix A in (4.3) is chosen so that

cov(x(t), x(t ′)) = δ2
0(�(t))T A−1�(t ′). (4.17)

Remark 4.8 Similar to the worst-case MSE, we define the linearized mean squared error
(LMSE)

εLMSE = E{|M(x − x̃)|2}, (4.18)

where M is a linear functional with M� ∈ 	2(�), x is zero-mean random process in V2(�)

with covariance function cov(x(t), x(t ′)), x̃ is the reconstruction signals from the noisy
average sampler Y = 〈x,
〉+w via the reconstruction filter H , w = (wγ )γ∈� is an additive
zero-mean noise independent of x and with covariance matrix W . One may then verify that
the Wiener filter HW in (4.13) is also the reconstruction filter that minimizes the linearized
MSE εLMSE in (4.18).

The next result gives a lower bound estimate of the stochastic MSE εMSE for identically
distributed random signal x ∈ V2(�) and noise w with zero means.

Theorem 4.9 Let � and � be finite sets, � = (φλ)λ∈� be an orthonormal basis of its span
V2(�), and 
 = (ψγ )γ∈� be a stable average sampler on V2(�), i.e. (2.10) holds. Assume
that x is an identically distributed random signal in V2(�) that has zero mean and covari-
ance function

cov(x(t), x(t ′)) = σ 2
0 �(t)T �(t ′) (4.19)
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for some σ0 > 0, and that w is the identically distributed random noise that has zero mean
and the covariance matrix

W = σ 2
1 I (4.20)

for some σ1 ≥ 0. Then the stochastic MSE εMSE in (4.11) satisfies

εMSE ≥ N2σ 2
0 σ 2

1

‖
‖2σ 2
0 + Nσ 2

1

+ (M − N)σ 2
0 (4.21)

where ‖
‖ = (
∑

γ∈� ‖ψγ ‖2
2)

1/2, and M and N are the cardinality of the sets � and �

respectively. The inequality (4.21) becomes an equality if and only if the Wiener filter HW is
used as the reconstruction filter and 
 ⊂ V2(�) is a tight frame for V2(�), i.e., there exists
a positive constant B such that

∑

γ∈�

|〈f,ψγ 〉|2 = B‖f ‖2
2 for all f ∈ V2(�).

Proof By (4.16), (4.19) and (4.20), the stochastic MSE εMSE in (4.11) is larger than or equal
to

trace
(
cov(C)(A�,
HW − I )A(HT

WA
,� − I )
) + trace

(
WHWAHT

W

)

= trace
(−cov(C)A�,
(A
,�cov(C)A�,
 + W)−1A
,�cov(C)A + cov(C)A

)

= σ 2
0 σ 2

1 trace
(
(σ 2

0 A
,�A�,
 + σ 2
1 I )−1

)
, (4.22)

where we have used the fact that trace(AB) = trace(BA) for any matrices A and B . Let
λk,1 ≤ k ≤ N , are eigenvalues of the matrix A�,
A
,�. Noting that all eigenvalues of the
matrix A�,
A
,� are positive by the stability of the average sampler 
 , and that the sets
of nonzero eigenvalues of the matrices A
,�A�,
 and A�,
A
,� are the same, we then
have that N ≤ M and λ1, . . . , λN ,0, . . . ,0 are all eigenvalues of the matrix A
,�A�,
 . This
together with (4.22) implies that

εMSE = σ 2
0 σ 2

1

N∑

k=1

(σ 2
0 λk + σ 2

1 )−1 + (M − N)σ 2
0

≥ Nσ 2
0 σ 2

1

(
σ 2

0

∑
γ∈� ‖Pψγ ‖2

2

N
+ σ 2

1

)−1

+ (M − N)σ 2
0

≥ N2σ 2
0 σ 2

1

‖
‖2σ 2
0 + Nσ 2

1

+ (M − N)σ 2
0 , (4.23)

where we have the facts that

N∑

k=1

λk = trace(A�,
A
,�) =
∑

γ∈�

‖Pψγ ‖2 ≤
∑

γ∈�

‖ψγ ‖2 = ‖
‖2,

to obtain the first and second inequalities, and P is the project operator from L2 to V2(�).
From the above argument, we see that all inequalities in (4.22) and (4.23) become equal-

ities if and only if the Wiener filter HW in (4.13) is used as the reconstruction filter and all
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eigenvalues of the matrix A�,
A
,� are equal. Therefore the second conclusion in Theo-
rem 4.9 follows. �

Remark 4.10 We say that the average sampler 
 = {ψγ }γ∈� is normalized if ‖ψγ ‖2 = 1, γ ∈ �.
In this case, the lower bound estimate in (4.21) becomes

εMSE ≥ N2σ 2
0 σ 2

1

Mσ 2
0 + Nσ 2

1

+ (M − N)σ 2
0 ≥ Nσ 2

0 σ 2
1

σ 2
0 + σ 2

1

,

where we have used the fact that M ≥ N to obtain the second inequality. This indicates
that an orthonormal basis of the space V2(�) (for instance the generator �) is the best
normalized average sampler on that space V2(�).

5 Numerical Simulations

In this section, we present the results of some numerical simulations for reconstructing a
signal with finite rate of innovation from the given noisy samples.

5.1 Adaptive Tikhonov Approach

In the following simulation, we use the adaptive Tikhonov approach developed in Sect. 3 to
reconstruct Dirac streams and cubic splines from their corrupted average samples. For this
purpose, we use the following regularization matrix

Ad = diag

(
2

λ2 − λ1
,

λ3 − λ1

(λ2 − λ1)(λ3 − λ2)
, . . . ,

λN − λN−2

(λN−1 − λN−2)(λN − λN−1)
,

2

λN − λN−1

)
(5.1)

for the Dirac streams x = ∑N

n=1 cnδλn , and the following regularization matrix

Ac =
(∫

R

B3,δn (t)B3,δm(t)dt

)

1≤n,m≤N

+
(∫

R

B ′′
3,δn

(t)B ′′
3,δm

(t)dt

)

1≤n,m≤N

, (5.2)

for the nonuniform mesh cubic spline signal y = ∑N

n=1 cnB3,λn . Also for the sampling func-
tional 
 = {ψγn}γn∈� with γ1 < γ2 < · · · < γK we will use the following preconditioner:

Lg :=
P∑

p=1

L∗
p Lp = diag(γ̃1, . . . , γ̃K) (5.3)

where γ̃1 = (γ2 − γ1)
−1, γ̃k = (γk+1 − γk−1)

−1 if 2 ≤ k ≤ K − 1, and γ̃K = (γK − γK−1)
−1.

In Fig. 5, we present the reconstructed signals from noisy sampling data via the adaptive
Tikhonov approach developed in Sect. 3, i.e., the Tikhonov approach with the panel para-
meter αop being obtained in the Optimal Parameter Algorithm.
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Fig. 5 The reconstructed Dirac streams
∑N

n=1 c̃nδλn (the left hand side) and the nonuniform

mesh cubic spline
∑N

n=1 d̃nB3,λn (the right hand side) via the adaptive Tikhonov approach.
The sampling functionals 
 := (ψγ ) from top to bottom are the T -shifted Gaussian sampler

exp(−2|t − kT |2/T 2),1 ≤ k ≤ [ λN +2μ
T

] + 1, with the ratios between sampling rate 1/T of Gaussian sam-
pling devices and innovative rate 1/μ of signal x being 6/5,1,4/5 respectively. The noisy data Y are given
in Fig. 4, the postfilter is the matrix Lg in (5.3), and the regularization matrix is the matrix Ad in (5.1) for
figures on the left hand side and the matrix Ac in (5.2) for figures on the right hand side respectively
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The difference between the reconstructed signal x̃ := ∑N

n=1 c̃nδλn and the original Dirac
stream x = ∑N

n=1 cnδλn , and the difference between the sample 〈x̃,
〉 of the constructed sig-
nal x̃ and the given noisy sample Y are presented on the left hand side and on the right hand
side of Fig. 6 respectively. In the noiseless sampling environment (i.e. σ0 = 0 in Fig. 4), the
	2-norm (

∑N

n=1 |c̃n − cn|2)1/2 of the difference for the reconstructed signal x̃ = ∑N

n=1 c̃nδλn

and the original Dirac stream x = ∑N

n=1 cnδλn is 1.0784×10−8,0.5637,1.7062 for the ratios
between sampling rate 1/T of Gaussian sampling devices and innovative rate 1/μ of signal
x being 6/5,1,4/5 respectively. In the same noiseless sampling environment, our simulation
shows that the 	2 norm of the difference between the sample 〈x̃,
〉 of the reconstructed sig-
nal x̃ and the given noiseless sample Y = 〈x,
〉 is 1.1563 × 10−9,0.0093,3.2993 × 10−7,
while the 	2 norm of the given noiseless sample Y = 〈x,
〉 is 3.7050,3.7265,3.6214 for
the ratio between sampling rate 1/T of Gaussian sampling devices and innovative rate 1/μ

of signal x being 6/5,1,4/5 respectively.
The difference between the reconstructed nonuniform mesh cubic spline ỹ =∑N

n=1 d̃nB3,λn and the original nonuniform mesh cubic spline y = ∑N

n=1 dnB3,λn , and
the difference between the sample 〈ỹ,
〉 of the constructed signal ỹ and the given
noisy sample Y are presented on the left hand side and on the right hand side of
Fig. 7 respectively. In the noiseless environment (i.e. σ0 = 0 in Fig. 4), the 	2-norm
(
∑

n=1 |d̃n − dn|2)1/2 of the difference between the reconstructed nonuniform mesh cubic
spline ỹ = ∑N

n=1 d̃nB3,λn and the original nonuniform mesh cubic spline y = ∑N

n=1 dnB3,λn

is given by 0.0162,0.6101,1.5942 for the ratio between sampling rate 1/T of Gaussian
sampling devices and innovative rate 1/μ of signal x being 6/5,1,4/5 respectively. The 	2

norm of the difference between the sample data 〈ỹ,
〉 of the reconstructed cubic spline ỹ

and the given noiseless sample data 〈y,
〉 is 3.3688 × 10−4,0.0075,2.6447 × 10−4; and
the 	2 norm of the given noiseless sample data 〈y,
〉 is 0.5466,0.5835,0.6286 for the ratio
between sampling rate 1/T of Gaussian sampling devices and innovative rate 1/μ of signal
x being 6/5,1,4/5 respectively.

From the above demonstration, we notice that our reconstruction procedure is almost
consistent in the noiseless sampling procedure, and robust against noise. We also observe
that the procedure has better performance for the oversampling case than for the undersam-
pling case, and has much smaller error between the sampling data of our reconstructed signal
and the given noisy sampling data than the error between the reconstructed signal and the
original signal.

5.2 Local Implementation of Adaptive Tikhonov Approach

In the following simulation, we want to demonstrate that our adaptive Tikhonov approach
can be implemented locally. The setting in the simulation is as follows: the nonuniform mesh
cubic spline x = ∑N

n=1 dnB3,λn in Fig. 1 is taken as the original signal, the average sampler

 = {δkT }K

k=1 is generated by the delta functional on the set � = {kT }K
k=1 with T = 5

6μ and
K = [(λN + 2μ)/T ] + 1, the exact sample Ycd is given by

Ycd =
{

N∑

n=1

dnB3,λn (kT )|1 ≤ k ≤ K

}
, (5.4)

and the noisy sample Y is generated by

Y = Ycd + σ0 max(|Ycd |)(r(γ ))γ∈� (5.5)
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Fig. 6 The difference between the reconstructed Dirac streams x̃ = ∑N
n=1 c̃nδλn in Fig. 5 and the original

Dirac streams x = ∑N
n=1 c̃nδλn (the left hand side), and the difference between the sample 〈x̃,
〉 of the

reconstructed Dirac streams x̃ and the given noisy data Y in Fig. 5 (the right hand side). From top to bottom,
the 	2-norms (

∑N
n=1 |c̃n −cn|2)1/2 of the difference of three signals are 0.1992,0.6009,1.7326 respectively,

while the 	2-norm (
∑N

n=1 |cn|2)1/2 of the original signal is 4.0612; the 	2-norms of the difference 〈x̃,
〉−Y

of three sample data are 0.0589,0.0154,3.2593 × 10−7 respectively, and the 	2-norms of the given noisy
samples are 3.7185,3.7392,3.6461 respectively
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Fig. 7 The difference between the reconstructed cubic spline ỹ = ∑N
n=1 d̃nB3,λn

in Fig. 5 and

the original cubic spline y = ∑N
n=1 dnB3,λn

(the left hand side), and the difference between
sampling data 〈ỹ,
〉 of the reconstructed cubic spline ỹ and the given noisy data Y (the right
hand side). On the left hand side from top to bottom, the 	2-norms (

∑
n=1 |d̃n − dn|2)1/2 of the

difference of three signals are 0.2056,0.7243,1.6116 while the 	2-norm (
∑N

n=1 |dn|2)1/2 of the

original cubic spline signal y is 3.6566. On the right hand side from top to bottom, the 	2-norms
of the difference 〈ỹ,
〉−Y of three sample data are 0.0076,0.0073,0.0003, and the 	2-norm of
the original samples Y are 0.5568,0.5907,0.6365, respectively
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Fig. 8 The locally-reconstructed cubic spline
∑

λn∈�k0,R
d̃n,RB3,λn (the left hand side) and its difference

to the original signal
∑

λn∈�k0,R
dn,RB3,λn (the right hand side) from its noisy sample data Yk0,R located

on (k0 − R)T , . . . , (k0 + R)T , where R = 5,10,15 from top to bottom. Here N = 50 and k0 = 15. The local
error measurement for the difference of the locally-reconstructed cubic spline and the original spline is given
in Fig. 9
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Fig. 9 The error measurement
D(R) = (

∑
λn∈�k0,5

×
|dn,R − dn|2)1/2 between the
locally-reconstructed cubic spline∑

λn∈�k0,R
d̃n,RB3,λn and the

original signal∑
λn∈�k0,R

dn,RB3,λn from

noisy samples with the noise
level σ0 in Fig. 4 being
0,0.025,0.05 are presented by
solid line, dashed line and
dash-dotted line respectively

where the noise level σ0 is 0.05 and r(γ ), γ ∈ � are numbers in [−1,1] chosen randomly,
the post-filter L is given by

L :=
P∑

p=1

L∗
p Lp = diag(0, . . . ,0, γ̃k0−R, . . . , γ̃k0+R,0, . . . ,0) (5.6)

where γ̃k,1 ≤ k ≤ K , are defined in (5.3), and the regularization matrix A is determined
by (5.2).

Now let us define the localized versions of the sample Y , the post-filter L, the reg-
ularization matrix A, the generator �, the average sampler 
 . Given 1 ≤ k0 ≤ N and
R < min(k0,N − k0), define �k0,R = {kT }k0+R

k=k0−R and �k0,R = {λn}n1
n=n0 where n0 is the

index such that λn0+2 > (k0 − R)T and λn0+1 ≤ (k0 − R)T and n1 is the index such
that λn0−2 ≤ (k0 + R)T and λn0−1 > (k0 + R)T . Using these two index sets, we define

R = {δμ}μ∈�̃R

as the local version of the average sampler 
 , �k0,R = {B3,λn}λn∈�k0,R
as the

local version of the generator �, Lk0,R = diag(γ̃k0−R, . . . , γ̃k0+R) as the local version of the
post-filter L in (5.6), the matrix AK0,R obtained by taking all λn-columns and rows of the
regularization matrix Ac in (5.2) where λn ∈ �k0,R as the local version of the regularization
matrix Ac , and the sequence Yk0,R = (y(γ ))γ∈�k0,R

as the local version of the noisy sample
Y = (y(γ ))γ∈� in (5.5).

We will use the reconstruction formula (3.12) to reconstruct signal from its noisy sam-
pling data Yk0,R obtained at locations γk0−R, . . . , γk0+R , and the panel parameter α is selected
by the Panel Parameter Algorithm with the noisy sample Y , the post filter L, the regular-
ization matrix A, the generator � and the average sampler 
 being replaced by their local
versions Yk0,R,Lk0,R,Ak0,R,�k0,R,
k0,R respectively.

We observe that this regularization matrix A in this simulation is not a diagonal matrix,
but we still use (3.12) to reconstruct signal from local sample data because it is the solution
that minimizes the regularized least squares functional εTIK(x̃) with x̃ ∈ V2(�k0,R) (instead
of its superspace V2(�)).

In Fig. 8 we let N = 50 and k0 = 15. On the left hand side of Fig. 8 we present the
reconstruction cubic spline

∑
λn∈�k0,R

d̃n,RB3,λn for R = 5,10,15 (from top to bottom) from

noisy sampling data Yk0,R . On the right hand side of Fig. 8 is the difference
∑

λn∈�k0,R
(d̃n,R −
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Fig. 10 The reconstructed Dirac streams x̃ (the left hand side) obtained by applying the filter HWOR in
(4.4), and the difference between the reconstructed Dirac streams and the original Dirac streams (the right
hand side). From top to bottom the ratios between sampling rate 1/T of Gaussian sampling devices and
innovative rate 1/μ of signal x are 6/5,1,4/5 respectively. The average sampler 
 and the regularization
matrix A are the same as in Fig. 4, the noisy sample Y in (4.1) is the same as the noisy sample in Fig. 4, and
the covariance matrix W for the additive noises is 2

3 σ 3
0 max(|Ydg |)3I with σ0 = 0.05 and Ydg given in Fig. 4
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Fig. 11 The reconstructed cubic spline ỹ (the left hand side) obtained by applying the filter HWOR in (4.4),
and the difference between the reconstructed cubic spline and the original cubic spline (the right hand side).
From top to bottom the ratios between sampling rate 1/T of Gaussian sampling devices and innovative rate
1/μ of signal x are 6/5,1,4/5 respectively. The average sampler 
 is the same as in Fig. 4, the regularization
matrix A is given in (3.13) with the regularizer R being the identity operator, the noisy sample Y in (4.1) is the
same as the noisy sample in Fig. 4, and the covariance matrix W for the additive noises is 2

3 σ 3
0 max(|Ycg |)3

with σ0 = 0.05 and Ycg given in Fig. 4
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Fig. 12 The difference (e1(γ ))γ∈� between sampling data 〈x̃,
〉 of the reconstructed Dirac stream x̃ in
Fig. 10 and the given noisy data Y (the left hand side), and the difference (e2(γ ))γ∈� between sampling
data 〈ỹ,
〉 of the reconstructed cubic spline ỹ in Fig. 11 and the given noisy data Y (the right hand side).
From top to bottom the ratios between sampling rate 1/T of Gaussian sampling devices and innovative
rate 1/μ of signal x are 6/5,1,4/5 respectively. From top to bottom, the errors (

∑
γ∈� |e1(γ )|2)1/2 for

reconstructing Dirac streams are 0.0621, 0.0228, 0.0217, respectively, while the errors (
∑

γ∈� |e2(γ )|2)1/2

for reconstructing cubic splines are 0.0081, 0.0039, 0.0036, respectively



Reconstructing Signals from Noisy Samples 371

dn)B3,λn of the reconstruction cubic spline and the original cubic spline with R = 5,10,15
(from top to bottom).

We will use

D(R) :=
( ∑

λn∈�k0,5

|dn,R − dn|2
)1/2

to measure the coefficient difference between the reconstructed cubic spline and the original
cubic spline near the position λn close to the center k0T of the given sampling location, see
Fig. 9.

From Figs. 8 and 9, we see that there is some boundary effect in our local reconstruction
but the boundary effect fades away in the center of the sampling location as we have more
sampling data around that center. This, in the other words, means that our adaptive Tikhonov
approach can be implemented locally and could be possibly used in real-time implementa-
tion.

5.3 Tikhonov Approach for Random Noise

In Figs. 10, 11, and 12, we present the reconstructed Dirac streams and cubic splines ob-
tained by applying the filter HWOR in (4.4), the difference between the reconstructed signal
and the original signal, and the difference between sampling data of the reconstructed signal
and the given noisy sample data.

From the above simulation, we observe that the reconstructed signal from our recon-
struction procedure have better approximation to the original for the oversampling case than
for the undersampling case, while on the other hand the sampling data of the reconstructed
signal has smaller error to the given sampling data for the undersampling case than for the
oversampling case. The reason behind this observation could be that there is much less free-
dom for the oversampling case than for the undersampling case to recovery signals from the
given sample.

Acknowledgements The authors would like to thank Professor Akram Aldroubi and the reviewer for their
suggestions to the improvement.
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