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Abstract In some recent papers by the first two authors it was shown that for any algebraic
crossed product A, where A0, the subring in the degree zero component of the grading, is a
commutative ring, each non-zero two-sided ideal in A has a non-zero intersection with the
commutant CA(A0) of A0 in A. This result has also been generalized to crystalline graded
rings; a more general class of graded rings to which algebraic crossed products belong. In
this paper we generalize this result in another direction, namely to strongly graded rings
(in some literature referred to as generalized crossed products) where the subring A0, the
degree zero component of the grading, is a commutative ring. We also give a description of
the intersection between arbitrary ideals and commutants to bigger subrings than A0, and
this is done both for strongly graded rings and crystalline graded rings.
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1 Introduction

Dynamical systems, generated by the iteration of homeomorphisms of compact Hausdorff
spaces, lead to crossed product algebras of continuous functions on the space, by the action
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of the additive group of integers via composition of continuous functions with the iterations
of the homeomorphisms. In the context of C∗-algebras, the interplay between topological
properties of the dynamical system such as minimality, transitivity, freeness on one hand,
and properties of ideals, subalgebras and representations of the corresponding crossed prod-
uct on the other hand, has been a subject of intensive investigation at least since the 1960’s,
both for single map dynamics and for more general actions of groups and semigroups, that
is in particular iterations of several transformations called iterated function systems in the
literature on fractals and dynamical systems. Such constant and growing interest to this in-
terplay between dynamics, actions and non-commutative algebras can be explained by the
fundamental importance of this interplay and its implications for operator representations
of the corresponding crossed product algebras, spectral and harmonic analysis and non-
commutative analysis and non-commutative geometry fundamental for the mathematical
foundations of quantum mechanics, quantum field theory, string theory, integrable systems,
lattice models, quantization, symmetry analysis, renormalization, and recently in analysis
and geometry of fractals and in wavelet analysis and its applications in signal and image
processing (see [1–5, 7, 9–14, 19–21, 28–30, 33, 39, 42, 44, 55, 56, 58] and references
therein).

There has been a substantial progress on the interplay between C∗-algebras and dynamics
of iterations of continuous transformations and more general actions of groups on compact
Hausdorff spaces [2, 10, 44, 55–57]. However, the investigation of actions of not neces-
sarily continuous transformations on more general and more irregular spaces than Haus-
dorff spaces requires an extension of this interplay beyond C∗-algebras to a purely al-
gebraic framework of general algebras and rings. Only partial progress in this important
direction has been made. In [45–48], extensions and modifications of this result and the
interplay between dynamics and maximal commutativity properties of the canonical co-
efficient subalgebra, the degree zero component of the grading, and its intersection with
ideals was investigated for dynamical systems that are not topologically free on more gen-
eral spaces than Hausdorff spaces both in the context of algebraic crossed products by Z

and for the corresponding Banach algebra and C∗-algebra crossed products in the case
of single homeomorphism dynamical systems or more general dynamical systems gener-
ated by an invertible map. Also in these works, this interplay has been considered from
the point of view of representations as well as with respect to duality in the crossed
product algebras. Some results, that could be considered as related to this direction of
interplay, have been scattered within the purely algebraic literature on graded rings and
algebras [6, 8, 15–18, 22–27, 31–35, 40, 41, 43, 49–54]. In many of these related results,
very special properties are assumed for the coefficient subring or for the whole crossed
product or graded ring or algebra, such as being a ring without zero-divisors, semi-simple
or simple ring, etc. This has been motivated in most cases by the desire to use the alge-
braic constructions, tools and techniques that were available at the time. However, it turns
out that these restrictions often exclude for example many important classes of algebras
arising in physics and associated to actions on algebras and rings of functions on infinite
spaces or other algebras and rings with zero-divisors, and many other situations. Thus, it
is desirable to investigate the above mentioned interplay between actions and properties of
ideals and subalgebras for general graded rings and crossed product rings and algebras and
their generalizations, without any restrictive artificially imposed conditions. It turns out that
many interesting properties and results hold in such much greater generality and also as a
consequence, new previously not noticed results and constructions come to light.

In this paper we focus on the connections between the structure of ideals and the commu-
tant of subrings in generalizations of crossed product rings and in general classes of graded
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rings. This, in particular, provides a general understanding of the conditions for maximal
commutativity of the degree zero component subalgebra of the grading and properties of
more general subalgebras important for representation theory. In this paper we substantially
extend the approach and some of the key results in [36–38] to more general subrings than
the degree zero component of the grading in crossed products, or more general graded rings.

In Sect. 2 we briefly recall the basics of graded rings and crossed products. Given a ring
R and a subset S ⊆ R, we denote by

CR(S) = {r ∈ R | rs = sr, ∀s ∈ S}
the commutant of S in R. The following theorem was shown in [36].

Theorem 1 If R = ⊕
g∈G Rg is a G-crossed product where Re is ccommutative, then

I ∩ CR(Re) �= {0}
for every non-zero two-sided ideal I in R.

Given a normal subgroup N of G one can consider the subring RN = ⊕
n∈N Rn in R

and obtain a generalization of Theorem 1 by considering the intersection between arbitrary
non-zero ideals and CR(RN). This is done in Sect. 3 (Theorem 2).

In Sect. 4 we consider general strongly graded rings R = ⊕
g∈G Rg , which are not neces-

sarily crossed products. Given any subgroup H of G we give a description of the commutant
of RH in R (Theorem 3) and prove the main theorem (Theorem 4). We obtain some inter-
esting corollaries (Corollaries 2, 4 and 5) which generalize the results obtained in Sect. 2
and generalize Theorem 1 to general strongly graded rings.

In Sect. 5 we recall the definition and basic properties of crystalline graded rings, a class
of graded rings which are not necessarily strongly graded (for more details see [34, 35, 38]).
Given a subgroup H of G we give a description of the commutant of AH in the crystalline
graded ring A and give sufficient conditions for each non-zero two-sided ideal I in A to
have a non-zero intersection with CA(AH ) (Theorem 5).

2 Preliminaries

Throughout this paper all rings are assumed to be unital and associative and we let G be an
arbitrary group with neutral element e.

A ring R is said to be G-graded if

R =
⊕

g∈G

Rg and Rg Rh ⊆ Rgh

for all g,h ∈ G, where {Rg}g∈G is a family of additive subgroups in R. The additive
subgroup Rg is called the homogeneous component of R of degree g ∈ G. Moreover, if
Rg Rh = Rgh holds for all g,h ∈ G, then R is said to be strongly graded by G and if we in
addition have

U(R) ∩ Rg �= ∅
for each g ∈ G, where U(R) denotes the group of multiplication invertible elements in R,
then R is said to be a G-crossed product.
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Suppose that we are given a group G, a ring Re and two maps σ : G → Aut(Re) and
α : G × G → U(Re) satisfying the following conditions

σg(σh(a))α(g,h) = α(g,h)σgh(a) (1)

α(g,h)α(gh, s) = σg(α(h, s))α(g,hs) (2)

α(g, e) = α(e, g) = 1Re (3)

for all g,h, s ∈ G and a ∈ Re . We may then choose a family of symbols {vg}g∈G and define
R′ to be the free left Re-module with basis {vg}g∈G and define a multiplication on the set
R′ by

(a1 vg)(a2 vh) = a1 σg(a2)α(g,h) vgh

for a1, a2 ∈ Re and g,h ∈ G. It turns out that R′ is an associative and unital ring with this
multiplication and that it is in fact a G-crossed product, where the homogeneous component
of degree g ∈ G is given by Re vg .

Conversely, given a G-crossed product R = ⊕
g∈G Rg , one can choose a family of el-

ements {ug}g∈G in R such that ug ∈ U(R) ∩ Rg for each g ∈ G and put ue = 1R . It is
clear that Rg = Re ug = ug Re and that the set {ug}g∈G is a basis for R as a left (and right)
Re-module. We may now define a map

σ : G → Aut(Re)

by ug a = σg(a)ug for all a ∈ R and g ∈ G. Furthermore, we define a map

α : G × G → U(Re)

by α(g,h) = ug uh u−1
gh and it is straight forward to check that these maps satisfy conditions

(1)–(3) above. Furthermore, one can use these maps together with G and Re and make the
previous construction and obtain a G-crossed product R′ which actually turns out to be
isomorphic to the G-crossed product R that we started with. For more details on this we
refer to [33, Propositions 1.4.1 and 1.4.2].

Remark 1 The above crossed product will be denoted by Re �
σ
α G, to indicate the maps σ

and α.

3 Subrings Graded by Subgroups

Given a G-graded ring R = ⊕
g∈G Rg and a non-empty subset X of G, we denote

RX =
⊕

x∈X

Rx .

In particular, if H is a subgroup of G, then RH = ⊕
h∈H Rh is a subring in R, and it is in

fact an H -graded ring. The following lemma can be found in [22, Proposition 1.7].

Lemma 1 If R = ⊕
g∈G Rg is a G-graded ring and N is a normal subgroup of G, then R

can be regarded as a G/N -graded ring, where the homogeneous components are given by

RgN =
⊕

x∈gN

Rx
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for gN ∈ G/N . Moreover, if R is a crossed product of G over Re , then R can also be
regarded as a crossed product of G/N over

RN =
⊕

x∈N

Rx .

Proposition 1 Let R = ⊕
g∈G Rg = Re �

σ
α G be a G-crossed product and suppose that N

is a subgroup of G. If the following conditions are satisfied:

(i) Re is commutative
(ii) N ⊆ Z(G)

⋂
ker(σ )

(iii) α(x, y) = α(y, x) for all (x, y) ∈ N × N

then RN is commutative.

Proof Let the family of elements {ug}g∈G be chosen as in Sect. 2. To prove that RN is
commutative, it suffices to show that for any g,h ∈ N and ag, bh ∈ Re the two elements
ag ug and bh uh commute. By our assumptions, we have

(ag ug) (bh uh) = ag σg(bh)α(g,h)ugh = ag bh α(g,h)ugh

= bh ag α(h,g)uhg = bh σh(ag)α(h,g)uhg = (bh uh) (ag ug)

and hence RN is commutative. �

Theorem 2 If R = ⊕
g∈G Rg = Re �

σ
α G is a G-crossed product and the following condi-

tions are satisfied:

(i) Re is commutative
(ii) N is a subgroup of G, such that N ⊆ Z(G)

⋂
ker(σ )

(iii) α(x, y) = α(y, x) for all (x, y) ∈ N × N

then

I ∩ CR(RN) �= {0}
for every non-zero two-sided ideal I in R.

Proof It is clear that N is normal in G and it follows from Lemma 1 that Re �
σ
α G =

RN �
σ ′
α′ G/N for some maps σ ′ and α′. By our assumptions and Proposition 1 we see that

RN is commutative, and hence by Theorem 1 it follows that each non-zero two-sided ideal
in R has a non-zero intersection with CR(RN). �

Corollary 1 If R = ⊕
g∈G Rg = Re �

σ G is a G-graded skew group ring where Re is
commutative and N ⊆ Z(G) ∩ ker(σ ) is a subgroup of G, then

I ∩ CR(RN) �= {0}
for every non-zero two-sided ideal I in R.

Remark 2 Let R = ⊕
g∈G Rg be a G-graded ring. If

{e} ⊆ · · · ⊆ Gk ⊆ Z(G) ⊆ Gn ⊆ · · · ⊆ G
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is an increasing chain of subgroups of G, then we get

Re ⊆ · · · ⊆ RGk
⊆ RZ(G) ⊆ RGn ⊆ · · · ⊆ R

as an increasing chain of subrings in R and the corresponding

CR(Re) ⊇ · · · ⊇ CR(RGk
) ⊇ CR(RZ(G)) ⊇ CR(RGn) ⊇ · · · ⊇ CR(R) = Z(R)

as a decreasing chain of subrings in R. The existence of non-trivial subgroups N of G

satisfying the conditions of Theorem 2 therefore provides more precise information about
the ideals in the crossed product than the previous Theorem 1. By the arguments made above
it is clear that N = Z(G) ∩ ker(σ ), the biggest normal subgroup to fit into our theorems, is
the most interesting case to consider since it makes CR(RN) as small as possible.

4 Strongly Graded Rings

In this section we let R = ⊕
g∈G Rg be a strongly G-graded ring, not necessarily a crossed

product. It follows that 1R ∈ Re since R is G-graded (see [33, Proposition 1.1.1]), and that
Rg Rg−1 = Re for each g ∈ G since R is strongly G-graded. Thus, for each g ∈ G there

exists a positive integer ng and elements a(i)
g ∈ Rg , b

(i)

g−1 ∈ Rg−1 for i ∈ {1, . . . , ng}, such
that

ng∑

i=1

a(i)
g b

(i)

g−1 = 1R. (4)

For every λ ∈ CR(Re), and in particular for every λ ∈ Z(Re) ⊆ CR(Re), and g ∈ G we
define

σg(λ) =
ng∑

i=1

a(i)
g λb

(i)

g−1 . (5)

Remark 3 The definition of σg is independent of the choice of the a(i)
g ’s and b

(i)

b−1 ’s. In-

deed, given positive integers ng,n
′
g and elements a(i)

g , c
(j)
g ∈ Rg , b

(i)

g−1 , d
(j)

g−1 ∈ Rg−1 for
i ∈ {1, . . . , ng} and j ∈ {1, . . . , n′

g} such that

ng∑

i=1

a(i)
g b

(i)

g−1 = 1R and

n′
g∑

j=1

c(j)
g d

(j)

g−1 = 1R,

for λ ∈ CR(Re) we get

(
ng∑

i=1

a(i)
g λb

(i)

g−1

)

−
⎛

⎝

n′
g∑

j=1

c(j)
g λd

(j)

g−1

⎞

⎠

= 1R

(
ng∑

i=1

a(i)
g λb

(i)

g−1

)

−
⎛

⎝

n′
g∑

j=1

c(j)
g λd

(j)

g−1

⎞

⎠ 1R
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=
n′
g∑

j=1

ng∑

i=1

c(j)
g d

(j)

g−1 a(i)
g

︸ ︷︷ ︸
∈Re

λ b
(i)

g−1 −
n′
g∑

j=1

ng∑

i=1

c(j)
g λd

(j)

g−1 a(i)
g b

(i)

g−1

=
n′
g∑

j=1

ng∑

i=1

c(j)
g λd

(j)

g−1 a(i)
g b

(i)

g−1 −
n′
g∑

j=1

ng∑

i=1

c(j)
g λd

(j)

g−1 a(i)
g b

(i)

g−1 = 0.

Lemma 2 Let R = ⊕
g∈G Rg be a strongly G-graded ring. If a ∈ R is such that

a Rg = {0}
for some g ∈ G, then a = 0.

Proof Suppose that a Rg = {0} for some g ∈ G, a ∈ R. We then have a Rg Rg−1 = {0} or
equivalently a Re = {0}. From the fact that 1R ∈ Re , we conclude that a = 0. �

For the convenience of the reader we include the following lemma from [22, Proposi-
tion 1.8].

Lemma 3 Let R = ⊕
g∈G Rg be a strongly G-graded ring, g ∈ G and write

∑ng

i=1 a(i)
g b

(i)

g−1 =
1R for some ng > 0 and a(i)

g ∈ Rg , b
(i)

g−1 ∈ Rg−1 for i ∈ {1, . . . , ng}. For each λ ∈ CR(Re)

define σg(λ) by σg(λ) = ∑ng

i=1 a(i)
g λb

(i)

g−1 . The following properties hold:

(i) σg(λ) is a unique element of R satisfying

rg λ = σg(λ) rg, ∀ rg ∈ Rg. (6)

Furthermore, σg(λ) ∈ CR(Re) and if λ ∈ Z(Re), then σg(λ) ∈ Z(Re).
(ii) The group G acts as automorphisms of the rings CR(Re) and Z(Re), with each g ∈ G

sending any λ ∈ CR(Re) and λ ∈ Z(Re), respectively, into σg(λ).
(iii) Z(R) = {λ ∈ CR(Re) | σg(λ) = λ, ∀g ∈ G}, i.e. Z(R) is the fixed subring CR(Re)

G

of CR(Re) with respect to the action of G.

Proof (i) Let g ∈ G. If rg ∈ Rg , then b
(i)

g−1 rg ∈ Rg−1 Rg = Re and so b
(i)

g−1rg commutes with
λ ∈ CR(Re) for each i ∈ {1, . . . , ng}. It follows that

σg(λ) rg =
ng∑

i=1

a(i)
g λb

(i)

g−1 rg =
ng∑

i=1

a(i)
g b

(i)

g−1 rg λ = rg λ.

Take an arbitrary λ ∈ CR(Re) and let x ∈ R be an element satisfying a(i)
g λ = x a(i)

g for all
i ∈ {1, . . . , ng}. This yields

σg(λ) =
ng∑

i=1

a(i)
g λb

(i)

g−1 =
ng∑

i=1

x a(i)
g b

(i)

g−1 = x

which shows that σg(λ) is a unique element satisfying (6). By the strong gradation it follows
that if λ ∈ Re , then σg(λ) ∈ Re . In particular if λ ∈ Z(Re) ⊆ CR(Re), then σg(λ) ∈ Z(Re).
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Indeed, for λ ∈ Z(Re) and c ∈ Re we have

c σg(λ) = 1R c σg(λ) =
ng∑

i=1

n′
g∑

j=1

a′(j)
g b

′(j)

g−1 c a(i)
g

︸ ︷︷ ︸
∈Re

λ b
(i)

g−1

=
ng∑

i=1

n′
g∑

j=1

a′(j)
g λ b

′(j)

g−1 c a(i)
g b

(i)

g−1 = σg(λ) c 1R = σg(λ) c

where
∑n′

g

j=1 a
′(j)
g b

′(j)

g−1 = 1R, and hence it only remains to verify that σg(λ) ∈ CR(Re) for
an arbitrary λ ∈ CR(Re). If rg ∈ Rg and z ∈ Re , then z rg ∈ Re Rg = Rg , so we have

(σg(λ) z) rg = σg(λ) (z rg) = (z rg) λ

= z (rg λ) = z (σg(λ) rg) = (z σg(λ)) rg

which means that (σg(λ) z − zσg(λ)) Rg = {0}. By Lemma 2 we conclude that σg(λ) z =
zσg(λ) and hence σg(λ) ∈ CR(Re).

(ii) Since 1R ∈ Re , we have for each λ ∈ CR(Re) that

λ = 1R λ = σe(λ)1R = σe(λ).

If g,h ∈ G, rg ∈ Rg and rh ∈ Rh, then rg rh ∈ Rgh and for λ ∈ CR(Re) we have

σgh(λ) (rg rh) = (rg rh) λ = rg (rh λ) = rg (σh(λ) rh)

= (rg σh(λ)) rh = (σg(σh(λ)) rg) rh = σg(σh(λ)) (rg rh)

The products of the form rg rh generate the submodule Rgh and by Lemma 2 we conclude
that

σg(σh(λ)) = σgh(λ)

proving that (g,λ) �→ σg(λ) is an action of G on the set CR(Re). Now take an arbitrary
g ∈ G and fix it. By the definition of σg(λ), the map λ �→ σg(λ) is clearly additive. For some
positive integer ng−1 we may choose c

(j)

g−1 ∈ Rg−1 and d
(j)
g ∈ R for j ∈ {1, . . . , ng−1}, such

that 1R = ∑n
g−1

j=1 c
(j)

g−1 d
(j)
g and define σg−1 following (5). Then, for each λ ∈ CR(Re), we get

σg−1(σg(λ)) =
n
g−1
∑

j=1

c
(j)

g−1

(
ng∑

i=1

a(i)
g λb

(i)

g−1

)

d(j)
g =

n
g−1
∑

j=1

c
(j)

g−1

(
ng∑

i=1

a(i)
g λ b

(i)

g−1 d(j)
g

︸ ︷︷ ︸
∈Re

)

=
n
g−1
∑

j=1

c
(j)

g−1

(
ng∑

i=1

a(i)
g b

(i)

g−1 d(j)
g λ

)

=
n
g−1
∑

j=1

c
(j)

g−1

(
ng∑

i=1

a(i)
g b

(i)

g−1

)

︸ ︷︷ ︸
=1R

d(j)
g λ

=
n
g−1
∑

j=1

c
(j)

g−1 d(j)
g

︸ ︷︷ ︸
=1R

λ = λ
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and hence σg−1 is the inverse of σg . For any λ, t ∈ CR(Re) and rg ∈ Rg , we get

σg(λt) rg = rg (λt) = (rg λ) t = (σg(λ) rg) t

= σg(λ) (rg t) = σg(λ) (σg(t) rg) = (σg(λ)σg(t)) rg.

By Lemma 2 this implies σg(λt) = σg(λ)σg(t). Therefore, for each g ∈ G, the map λ �→
σg(λ) is an automorphism of the ring CR(Re).

(iii) Since R = ⊕
g∈G Rg is strongly G-graded, we have

Z(R) =
⋂

g∈G

CR(Rg) = {λ ∈ CR(Re) | λ ∈ CR(Rg), ∀g ∈ G}

and the result now follows from the fact that an element λ ∈ CR(Re) centralizes Rg ,
g ∈ G, if and only if σg(λ) = λ. Indeed, if σg(λ) = λ for some λ ∈ CR(Re), then clearly
λ centralizes Rg . Conversely, if we suppose that Rg is centralized by some λ ∈ CR(Re),
then we have (σg(λ) − λ) Rg = {0} and hence by Lemma 2 we have σg(λ) = λ. �

Remark 4 We have shown that G acts as automorphisms of CR(Re). However, note that
since Re is not assumed to be commutative, we may have Re �⊆ CR(Re) and hence G does
not necessarily act as automorphisms of Re . This should be compared to the case of an
algebraic crossed product as described in the previous section. For crossed products, if Re

is commutative, then we see that G acts as automorphisms of Re , but in general this is not
true.

Lemma 4 Let R = ⊕
g∈G Rg be a strongly G-graded ring and σ : G → Aut(CR(Re))

defined as in (5). If Re is maximal commutative in R, then ker(σ ) = {e}.

Proof By our assumption Re = CR(Re) is maximal commutative in R and hence for each
g �= e and all rg ∈ Rg , there must exist some λ ∈ Re such that λrg �= rg λ = σg(λ) rg , using
the definition of σ : G → Aut(Re). Hence σg �= idRe for each g �= e. �

We shall now state an obvious, but useful lemma.

Lemma 5 If R = ⊕
g∈G Rg is a strongly G-graded ring, then

CR(Re) =
{

λ =
∑

g∈G

λg ∈ R
∣
∣
∣ λg ∈ Rg, re λg = λg re, ∀g ∈ G,∀re ∈ Re

}

=
{

λ =
∑

g∈G

λg ∈ R
∣
∣
∣ λg ∈ Rg ∩ CR(Re), ∀g ∈ G

}

=
⊕

g∈G

(
Rg ∩ CR(Re)

)
.

The following theorem is a generalization of (iii) of Lemma 3.
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Theorem 3 Let R = ⊕
g∈G Rg be a strongly G-graded ring, H a subgroup of G and denote

RH = ⊕
h∈H Rh. If σ : G → Aut(CR(Re)) is the action defined in (5), then it follows that

CR(RH ) =
{

λ =
∑

g∈G

λg ∈ R
∣
∣
∣ λg ∈ CR(Re) ∩ Rg, σh(λg) = λhgh−1 , ∀g ∈ G,∀h ∈ H

}

= {λ ∈ CR(Re) | σh(λ) = λ, ∀h ∈ H } .

Proof Let λ = ∑
g∈G λg ∈ CR(RH ), with λg ∈ Rg , be arbitrary. Since Re ⊆ RH , we have

λ ∈ CR(Re) and from Lemma 5 we see that λg ∈ CR(Re) for each g ∈ G. For every
rh ∈ Rh, h ∈ H , we have

rh

∑

g∈G

λg =
∑

g∈G

λgrh

since λ ∈ CR(RH ), but λg ∈ CR(Re) so from (6) we get

∑

g∈G

σh(λg)rh =
∑

g∈G

λgrh

which is an equality in R = ⊕
g∈G Rg . If we look in the RhRg Rh−1 Rh = Rhg component,

for all g ∈ G,h ∈ H , we deduce that

σh(λg) rh = λhgh−1 rh, ∀ rh ∈ Rh

since the sum R = ⊕
g∈G Rg is direct. Applying the above equality to the elements a

(i)
h of

Rh in (4), we get

σh(λg) a
(i)
h = λhgh−1 a

(i)
h

for each i ∈ {1, . . . , nh}, which implies

σh(λg) = σh(λg)1R = σh(λg)

nh∑

i=1

a
(i)
h b

(i)

h−1 =
nh∑

i=1

σh(λg) a
(i)
h b

(i)

h−1

=
nh∑

i=1

λhgh−1 a
(i)
h b

(i)

h−1 = λhgh−1

nh∑

i=1

a
(i)
h b

(i)

h−1 = λhgh−1 .

Conversely, let λ = ∑
g∈G λg ∈ R, where λg ∈ CR(Re) ∩ Rg and σh(λg) = λhgh−1 , for

all g ∈ G,h ∈ H . Then, for every rh ∈ Rh,

rh λ =
∑

g∈G

rh λg =
∑

g∈G

σh(λg) rh =
∑

g∈G

λhgh−1 rh =
∑

k∈G

λk rh = λrh

and hence λ ∈ CR(RH ). This concludes the proof. �

Remark 5 If Re is commutative, then Re = Z(Re). Thus, if Re is commutative, then G acts
as automorphisms of the ring Re .
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Theorem 4 Let R = ⊕
g∈G Rg be a strongly G-graded ring where Re is commutative

and ker(σ ) is the kernel of the previously defined action σ : G → Aut(Re), i.e. ker(σ ) =
{g ∈ G | σg(λe) = λe, ∀λe ∈ Re}. If H is a subgroup of G which is contained in ker(σ ) ∩
Z(G), then

I ∩ CR(RH ) �= {0}
for every non-zero two-sided ideal I in R.

Proof Let I be an arbitrary non-zero two-sided ideal in R. For every h ∈ H and rh ∈ Rh we
define a kill operator

Drh : R → R, Drh

(∑

g∈G

λg

)

= rh

∑

g∈G

λg −
∑

g∈G

λgrh =
∑

k∈G

dk.

Note that for every non-zero summand λg ∈ Rg of λ = ∑
g∈G λg , we take a summand dhg =

rhλg − λgrh ∈ Rgh = Rhg of Drh(λ) which may be zero or nonzero, but

dh = rh λe − λe rh = σh(λe) rh − λe rh = λe rh − λerh = 0.

Thus, for λ = ∑
g∈G λg ∈ R with λe �= 0 and Drh(λ) = ∑

k∈G dk , we get

# supp(λ) = #{s ∈ G | λs �= 0} > #{s ∈ G | ds �= 0} = # supp(Drh(λ)).

Furthermore, note that for all rh ∈ Rh, I is invariant under Drh and

CR(RH ) =
⋂

h∈H,rh∈Rh

ker(Drh).

Now, let λ = ∑
g∈G λg ∈ I be non-zero. We can assume that λe �= 0. Otherwise there exists

some non-zero λ′ = ∑
g∈G λ′

g ∈ I with λ′
e �= 0. Indeed, λ �= 0 so there exists t ∈ G such that

λt �= 0. There exists, as well, some j ∈ {1, . . . , nt } such that b
(j)

t−1λt �= 0, where b
(j)

t−1 ∈ Rt−1

is as in (4), because if b
(i)

t−1λt = 0, ∀i ∈ {1, . . . , nt }, then

λt = 1R · λt =
nt∑

i=1

a
(i)
t b

(i)

t−1λt = 0.

Thus, for every non-zero element λ of I we can have an element b
(j)

t−1λ = λ′ = ∑
g∈G λ′

g of

I with λ′
e = b

(j)

t−1λt �= 0, and # supp(λ) ≥ # supp(λ′) ≥ 1.
We return to the element λ = ∑

g∈G λg ∈ I with λe �= 0. If λ ∈ CR(RH ) we have nothing
to prove. If λ /∈ CR(RH ), then there exists h ∈ H and rh ∈ Rh such that Drh(λ) �= 0. But
Drh(λ) ∈ I so we have a new element of I with smaller support. If we continue in the same
way, the procedure must eventually end, because supp(λ) < ∞. So, there will be a stop of
this procedure which gives an element μ = ∑

g∈G μg ∈ I ∩ CR(RH ), with μe �= 0. �

The following corollary generalizes Theorem 2 to the situation when RN need not nec-
essarily be commutative.

Corollary 2 If R = ⊕
g∈G Rg = Re �

σ ′
α′ G is a G-crossed product and both of the following

conditions are satisfied:
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(i) Re is commutative
(ii) N is a subgroup of G, such that N ⊆ Z(G) ∩ ker(σ ′)

then

I ∩ CR(RN) �= {0}
for every non-zero two-sided ideal I in R.

Proof For each g ∈ G we may choose ug ∈ U(R) ∩ Rg . It follows from [33, Proposi-
tion 1.1.1] that (ug)

−1 ∈ Rg−1 . Clearly ug u−1
g = 1R and following (5) we define σg(a) =

ug a u−1
g for all a ∈ CR(Re). In particular Re ⊆ CR(Re) since Re is commutative, and it is

now clear that the restriction of σg to Re is equal to σ ′
g for each g ∈ G. From Theorem 4

it now follows that each non-zero two-sided ideal in R has a non-zero intersection with
CR(RN). �

The following corollary generalizes [36, Theorem 2] from G-crossed products to strongly
G-graded rings.

Corollary 3 If R = ⊕
g∈G Rg is a strongly G-graded ring where Re is commutative, then

I ∩ CR(Re) �= {0}
for every non-zero two-sided ideal I in R.

Proof Consider the subgroup {e} of G. Clearly {e} ⊆ Z(G) ∩ ker(σ ) and since Re is com-
mutative it follows from Theorem 4 that I ∩ CR(Re) �= {0} for each non-zero two-sided
ideal I in R. �

Corollary 4 If R = ⊕
g∈G Rg is a strongly G-graded ring where Re is maximal commuta-

tive in R, then

I ∩ Re �= {0}
for every non-zero two-sided ideal I in R.

Proof By the assumption Re is maximal commutative in R, i.e. CR(Re) = Re , and hence
the desired conclusion follows immediately from Corollary 3. �

Corollary 5 If R = ⊕
g∈G Rg is a twisted group ring, where Re is commutative and G is

abelian, then

I ∩ Z(R) �= {0}
for every non-zero two-sided ideal I in R.

Proof Since R is a twisted group ring, all homogeneous elements commute with Re .
Hence, ker(σ ) = G and moreover G = Z(G) since G is abelian. Consider the subgroup
ker(σ ) ∩ Z(G) = G ∩ G = G of G and note that CR(RG) = Z(R). By our assumptions Re

is commutative and it now follows from Theorem 4 that

I ∩ Z(R) �= {0}
for each non-zero two-sided ideal I in R. �
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Remark 6 It was shown in [43, Theorem 2] that if R is a semiprime P.I. ring, then I ∩
Z(R) �= {0} for each non-zero ideal I in R.

5 Crystalline Graded Rings

We shall begin this section by recalling the definition of a crystalline graded ring. We would
also like to emphasize that rings of this class are in general not strongly graded.

Definition 1 (Pre-crystalline graded ring) An associative and unital ring A is said to be
pre-crystalline graded if:

(i) there is a group G (with neutral element e),
(ii) there is a map u : G → A, g �→ ug such that ue = 1A and ug �= 0 for every g ∈ G,

(iii) there is a subring A0 ⊆ A containing 1A,

such that the following conditions are satisfied:

(P1) A = ⊕
g∈G A0 ug ;

(P2) For every g ∈ G, ug A0 = A0 ug and this is a free left A0-module of rank one;
(P3) The decomposition in P1 makes A into a G-graded ring with A0 = Ae .

Lemma 6 (see [34]) With notation and definitions as above:

(i) For every g ∈ G, there is a set map σg : A0 → A0 defined by ug a = σg(a)ug for
a ∈ A0. The map σg is a surjective ring morphism. Moreover, σe = idA0 .

(ii) There is a set map α : G × G → A0 defined by us ut = α(s, t) ust for s, t ∈ G. For any
triple s, t,w ∈ G and a ∈ A0 the following equalities hold:

α(s, t)α(st,w) = σs(α(t,w))α(s, tw) (7)

σs(σt (a))α(s, t) = α(s, t)σst (a) (8)

(iii) For every g ∈ G we have α(g, e) = α(e, g) = 1A0 and α(g,g−1) = σg(α(g−1, g)).

A pre-crystalline graded ring A with the above properties will be denoted by A0♦α
σ G and

each element of this ring is written as a sum
∑

g∈G rg ug with coefficients rg ∈ A0, of which
only finitely many are non-zero. In [34] it was shown that for pre-crystalline graded rings,
the elements α(s, t) are normalizing elements of A0, i.e. A0 α(s, t) = α(s, t) A0 for each
s, t ∈ G. For a pre-crystalline graded ring A0♦α

σ G, we let S(G) denote the multiplicative
set in A0 generated by {α(g,g−1) | g ∈ G} and let S(G × G) denote the multiplicative set
generated by {α(g,h) | g,h ∈ G}.

Lemma 7 (see [34]) If A = A0♦α
σ G is a pre-crystalline graded ring, then the following

assertions are equivalent:

(i) A0 is S(G)-torsion free.
(ii) A is S(G)-torsion free.

(iii) α(g,g−1) a0 = 0 for some g ∈ G implies a0 = 0.
(iv) α(g,h)a0 = 0 for some g,h ∈ G implies a0 = 0.
(v) A0 ug = ug A0 is also free as a right A0-module, with basis ug , for every g ∈ G.

(vi) For every g ∈ G, σg is bijective and hence a ring automorphism of A0.
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Definition 2 (Crystalline graded ring) A pre-crystalline graded ring A0♦α
σ G, which is

S(G)-torsion free, is said to be a crystalline graded ring.

Examples of crystalline graded rings are given by the algebraic crossed products, the gen-
eralized twisted group rings, the Weyl algebras, the quantum Weyl algebra, the generalized
Weyl algebras, quantum sl2, etc. For more examples we refer to [34].

Proposition 2 Let A = A0♦α
σ G be a pre-crystalline graded ring, H a subgroup of G and

consider the subring AH = A0♦α
σ H in A. The commutant of AH in A is

CA(AH ) =
{∑

g∈G

rg ug ∈ A
∣
∣
∣ rth−1 α(th−1, h) = σh(rh−1t ) α(h,h−1t),

rt σt (a) = a rt , ∀a ∈ A0, ∀h ∈ H, ∀t ∈ G

}

.

Proof Suppose that
∑

g∈G rg ug ∈ CA(AH ). Clearly A0 ⊆ AH and hence for any a ∈ A0,
we have

a

(∑

g∈G

rg ug

)

=
(∑

g∈G

rg ug

)

a ⇐⇒
∑

g∈G

a rg ug =
∑

g∈G

rg σg(a)ug

⇐⇒ a rg = rg σg(a), ∀g ∈ G.

Furthermore, let h ∈ H be arbitrary. Since uh ∈ AH we have

uh

(∑

g∈G

rg ug

)

=
(∑

g∈G

rg ug

)

uh

⇐⇒
∑

g∈G

σh(rg)α(h,g)uhg =
∑

g∈G

rg α(g,h)ugh

⇐⇒
∑

t∈G

σh(rh−1t ) α(h,h−1t) ut =
∑

t∈G

rth−1 α(th−1, h)ut

⇐⇒ σh(rh−1t ) α(h,h−1t) = rth−1 α(th−1, h), ∀t ∈ G.

Conversely, suppose that the coefficients of an element
∑

g∈G rg ug satisfy the following two
conditions:

1. rt σt (a) = a rt for all a ∈ A0 and t ∈ G.
2. rth−1 α(th−1, h) = σh(rh−1t ) α(h,h−1t) for all h ∈ H , t ∈ G.

By carrying out calculations similar to the ones presented above, for any
∑

h∈H bh uh ∈ AH

we get
(∑

h∈H

bh uh

)(∑

g∈G

rg ug

)

=
∑

h∈H

bh

(∑

g∈G

rg ug

)

uh =
∑

h∈H

(∑

g∈G

rg ug

)

bh uh

=
(∑

g∈G

rg ug

)(∑

h∈H

bh uh

)

which shows that
∑

g∈G rg ug ∈ CA(AH ). This concludes the proof. �
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Remark 7 By putting H = {e} respectively H = G we get expressions for CA(A0) respec-
tively Z(A).

Theorem 5 If A = A0♦α
σ G is a crystalline graded ring, where A0 is commutative and H is

a subgroup of G contained in Z(G) ∩ ker(σ ), then

I ∩ CA(AH ) �= {0}
for every non-zero two-sided ideal I in A.

Proof Let I be an arbitrary non-zero two-sided ideal in A and assume that A0 is commuta-
tive. For each g ∈ G we define a map

Tg : A → A,
∑

s∈G

as us �→
(

∑

s∈G

as us

)

ug.

Note that, for each g ∈ G, I is invariant under Tg . We have

Tg

(
∑

s∈G

as us

)

=
(

∑

s∈G

as us

)

ug =
∑

s∈G

as α(s, g)usg

for every g ∈ G. Suppose that
∑

s∈G as us is such that ae = 0 but ap �= 0 for some p �= e.
Then, we get Tp−1(

∑
s∈G as us) = ∑

s∈G as α(s,p−1)usp−1 . In particular we see that the
coefficient in front of ue is given by ap α(p,p−1) and since A is assumed to have no
S(G)-torsion and A0 is assumed to be commutative, we see by (iii) in Lemma 7 that
ap α(p,p−1) �= 0. It is now clear that for each non-zero element c ∈ A it is always pos-
sible to choose some g ∈ G and let Tg operate on c to end up with an element where the
coefficient in front of ue is non-zero. For each b ∈ A0 and h ∈ H , we define a map

Dbuh
: A → A,

∑

s∈G

as us �→ b uh

(
∑

s∈G

as us

)

−
(

∑

s∈G

as us

)

b uh.

Note that, for each b ∈ A0 and h ∈ H , I is invariant under Dbuh
. Furthermore, due to the

fact that H ⊆ Z(G) ∩ ker(σ ), we have

Dbuh

(
∑

s∈G

as us

)

=
(

∑

s∈G

b σh(as)α(h, s)uhs

)

−
(

∑

s∈G

as σs(b)α(s,h)ush

)

=
∑

s∈G

(b as α(h, s) − as σs(b)α(s,h))uhs =
∑

t∈G\{h}
dt ut

since dh = (b ae α(h, e) − ae σe(b)α(e,h)) = 0. It is important to note that

CA(AH ) =
⋂

b∈A0,h∈H

ker(Dbuh
)

and hence for any
∑

s∈G as us ∈ A \ CA(AH ) we are always able to choose b ∈ A0 and
h ∈ H and the corresponding Dbuh

and have
∑

s∈G as us �∈ ker(Dbuh
). Therefore we can

always pick an operator Dbuh
which kills the coefficient dh (coming from ae) without killing
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everything. Hence, if ae �= 0, the number of non-zero coefficients of the resulting element
will always be reduced by at least one.

The ideal I is assumed to be non-zero, which means that we can pick some non-zero
element

∑
s∈G rs us ∈ I . If

∑
s∈G rs us ∈ CA(AH ), then we are finished, so assume that this

is not the case. Note that rs �= 0 for finitely many s ∈ G. Recall that the ideal I is invariant
under Tg and Dbuh

for all g ∈ G, b ∈ A0 and h ∈ H . We may now use the operators {Tg}g∈G

and {Dbuh
}b∈A0,h∈H to generate new elements of I . More specifically, we may use the Tg :s

to translate our element
∑

s∈G rs us into a new element which has a non-zero coefficient in
front of ue (if needed) after which we use the Dbuh

operator to kill this coefficient and end
up with yet another new element of I which is non-zero but has a smaller number of non-
zero coefficients. We may repeat this procedure and in a finite number of iterations arrive
at an element of I which lies in CA(AH ) \ A0, and if not we continue the above procedure
until we reach an element in A0 \ {0}. In particular A0 ⊆ CA(AH ) since A0 is commutative
and hence I ∩ CA(AH ) �= {0}. �
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