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Abstract Motivated by the analysis of the multiple bubbling phenomenon (Bartolucci et al.
in Commun. Partial Differ. Equ. 29(7–8):1241–1265, 2004) for a singular mean field equa-
tion on the unit disk (Bartolucci and Montefusco in Nonlinearity 19:611–631, 2006), for
any N ≥ 3 we characterize a subset of the 2π/N -symmetric part of the critical set of the
N -vortex singular Hamiltonian. In particular we prove that this critical subset is of saddle
type. As a consequence of our result, and motivated by a recently posed open problem (Bar-
tolucci et al. in Commun. Partial Differ. Equ. 29(7–8):1241–1265, 2004), we can prove the
existence of a multiple bubbling sequence of solutions for the singular mean field equation.

Keywords Mean field equations · Concentrating and blow-up solutions · N -vortex
Hamiltonian

1 Introduction

We are motivated by the analysis of the multiple bubbling phenomenon [2] for the singular
mean field equation {−�u = λ eu∫

� eu − 4παδp=0 in �,

osc∂�u ≤ C on ∂�,
(1.1)

where � ⊂ R
2 is any open smooth and bounded domain, p = 0 ∈ �, λ > 0 and α > 0. The

analysis of the mean field equation (1.1) on two dimensional domains and on compact two
manifolds has recently attracted a lot of attention due its many applications in mathematical
physics. We refer the reader to [2–4, 7–13, 15–17, 21, 23, 29, 30, 32, 33], and the references
quoted therein for further details. In particular we refer to [8, 9, 19] and the introduction
of [3] for the application of (1.1) to the analysis of vortex-type configurations in turbulent
Euler flows.
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Let us recall that, by using the concentration compactness theory for solutions of Liou-
ville type equations [4, 7], one can see that any unbounded sequence of solutions for (1.1),
satisfying osc∂�un ≤ C and λn = O(1), admits a subsequence which satisfies,

λn

eun∫
�

eun
⇀ γ δz=0 + 8π

N∑
j=1

δz=ςj
, as n → +∞, (1.2)

weakly in the sense of measures in �, for some N ∈ N ∪ {0}, γ ∈ {0,8π(1 + α)},
{ς1, . . . , ςN } ⊂ � \ {p} and γ + 8πN 	= 0. Clearly λn → λ = γ + 8πN .

In particular, let us assume that concentration occurs at p, that is γ = 8π(1 + α). By
applying the results in [2], it follows that if α /∈ N, then, for any n large enough, there exist
C > 0 such that, for any given and small enough r > 0, we have∣∣∣∣un(z) − log

μ2
n|z|2α

(1 + ζnμn|z|2(1+α))2

∣∣∣∣≤ C, ∀z ∈ Br(p), (1.3)

where μ2
n → +∞, as n → +∞, and ζn = λn

8(1+α)2 . On the other side, it has been observed
in [2] that the assumption α /∈ N is not a mere technical condition. Indeed, it is still possible
for example that a sequence of solutions exist such that α = m ∈ N, and∣∣∣∣un(z) − log

μ2
n|z|2m

(1 + ζnμn|zm+1 − bm+1
n |2)2

∣∣∣∣≤ C, ∀z ∈ Br(p), (1.4)

with ζn as above, and

μn → +∞, bn → 0+, μn|bn|m+1 → +∞, as n → +∞. (1.5)

We refer to [2] for more details concerning this problem. This kind of multiple bubbling
behavior corresponds to the case where we have m+1 non overlapping bubbles, converging
simultaneously to the origin, but blowing up much faster and is in striking contrast with the
case where solutions concentrates at points ς 	= p. Indeed, it has been proved in [21] that
solutions take up the form (1.3) with α = 0 in this case. It is a challenging open problem,
already posed in [2], to establish whether or not (1.4) describes the full set of non radial
bubbling sequences for α ∈ N. As a first step toward the understanding of this problem, it
seems interesting to analyze the “simpler” case, that is � = D = {(x, y) ∈ R

2 : |(x, y)| < 1},
the two dimensional open unit disk, with the singularity located at the origin p = 0,{−�uα = λ euα∫

D euα
− 4παδp=0 in D,

uα = 0 on ∂D.
(1.6)

Indeed, in this particular situation, one can try to classify all the blow up sequences. This
program has been recently initiated in [3], in connection with a problem of independent
interest, that is the mean field limit [8, 9] for a turbulent Euler flow with one negative vortex
sink. In [3], the analysis of non radial [31], concentrating solutions [2, 11, 13, 17, 21], for the
singular mean field equation (1.6) has been worked out in case N = 1 and N = 2 in (1.2).
Here we will make a further step in this direction.

Let us recall that, by using the Pohozaev identity, one can see that there is no solution
for (1.6) with λ ≥ 8π(1 + α). As a consequence, it is easy to see that, for any concentrat-
ing sequence of solutions for (1.6), which then satisfies (1.2), either N = 0 and then γ =
8π(1 + α), or γ = 0 and then 1 ≤ N ≤ 1 + α.
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We observe at this point that by a result in [13], we know that for any 1 ≤ N < 1 + α

there exist a sequence of solutions for (1.6) which satisfies (1.2) with γ = 0. Among other
things, it has been proved in [3] that these concentrating sequences of solutions for (1.6)
satisfying (1.2) with 1 ≤ N < 1 + α exist in case N = 1,2 if and only if either,

N = 1, and |ς1| = ρ1(α) =
(

α

α + 2

)1/2

,

or,

N = 2, and ς1 = −ς2, |ς1| = |ς2| = ρ2(α) =
(

α − 1

α + 3

)1/4

.

In particular, it has been conjectured in [3] that for any 3 ≤ N < 1 +α, there exist a concen-
trating sequence of solutions for (1.6), satisfying (1.2) with γ = 0, such that {ς1, . . . , ςN }
are the vertices of a regular N -polygon which satisfies,

|ς1| = · · · = |ςN | = ρN(α) =
(

α − N + 1

α + N + 1

)1/2N

. (1.7)

Our first result is the following:

Theorem 1.1 For any 3 ≤ N < 1 + α, there exist a sequence of solutions {uα,n} for (1.6),
which satisfies (1.2) with {ς1, . . . , ςN } being the vertices of regular N -polygon, if and only
if (1.7) holds true.

We observe at this point that, going trough the arguments in [13, 17], and using the
symmetries of the problem, one can prove that indeed for any such N there exist a 2π/N -
symmetric sequence of solutions whose concentration points {ς1, . . . , ςN } lye on the vertices
of a regular N -polygon. It is an interesting open problem, which we will not discuss here,
to establish the uniqueness (modulo rotations) of these solutions.

Thus, to establish Theorem 1.1, what we really need to show is that ρ = ρN(α) =
( α−N+1

α+N+1 )1/2N is a necessary condition for the existence of such a concentration sequence.

This task may be accomplished by the analysis of the singular N -vortex Hamiltonian. In-
deed, it is well known, see for example [22], that those concentration points {ς1, . . . , ςN } of
blowing up solutions, must be critical points of the N -vortex Hamiltonian (1.8) below.

For any (x, y) ∈ D, we set z = x + ıy, z = x − ıy and denote by D∗ = {z ∈ C : 0 <

|z| < 1} the punctured disc. Fix N ≥ 2 and set �N = {{z1, . . . , zN } ⊂ (D)N : zm = zj ,

∀m 	= j}, and �N = (D∗)N \ �N . For any given α > 0, we define the N -vortex singular
Hamiltonian, Fα : �N �→ R,

Fα(z1, . . . , zN) = 2α

N∑
m=1

log |zm| + 2
N∑

m=1

log (1 − |zm|2) + 2
N∑

m	=j

log
|zmzj − 1|
|zm − zj | . (1.8)

Of course, F0 : DN \�N �→ R, in case α = 0.
The analysis of Fα is a problem of independent interest. It is motivated by the study

of the point vortex model for two dimensional Euler flows [25]. Let us consider an Euler
flow in D, with null velocity flux through the boundary and vorticity concentrated in small
“blobs” around N given points (z1, . . . , zN) ∈ DN \ �N . Assume that the vortex intensities
are all equal to 1. It can be rigorously proved, see [24], that the effect of the Euler dynamics is
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to let the vorticity centers positions (z1(t), . . . , zN(t)) obey to an approximate Hamiltonian
dynamics, whose Hamilton function (with respect to the symplectic form

∑N

j=1 dzj ∧ dzj )

is indeed 1
8π

F0. In case α > 0, we are including in the system the effect of a negative sink,
located at the origin z = 0, with vorticity intensity − α

2 . We refer the reader to [5, 6, 20, 24,
25, 27] for more details and references concerning the N -vortex problem.

We will prove Theorem 1.1 by means of the following:

Theorem 1.2 Let (η1, . . . , ηn) ∈ �N be the vertices of a regular N -polygon satisfying,

|η1| = · · · = |ηN | = ρ.

Then (η1, . . . , ηn) is a critical point for Fα , if and only if N < 1 + α and

ρ = ρN(α) =
(

α − N + 1

α + N + 1

)1/2N

.

It seems natural at this point to seek an answer for the following:

Question 1 Does problem (1.6) admits 2π/m-symmetric concentrating solutions, satisfy-
ing (1.2) with 3 ≤ N < 1 + α and m < N?

In other words we cannot exclude a priori the existence of non radial N -point concen-
trating solutions, whose concentration points does not lye on the vertices of a regular N -
polygon. Of course, the answer is negative in case N = 1,2 by the above mentioned results
in [3]. In particular, this problem is closely related to the following:

Question 2 Does Fα with 3 ≤ N < 1+α admits 2π/m-symmetric critical points, satisfying
m < N?

We observe that indeed many of these 2π/m-symmetric critical points are known to exist
for the N -vortex Hamiltonian on R

2, see for example [20].
Questions 1 and 2, besides their interest for the vortex problem, are quite relevant for

the analysis of the multiple bubbling phenomenon associated with (1.4). We will be more
precise concerning this point in the final part of this introduction.

Our next aim, is then to make a first step toward the understanding of the global proper-
ties of Fα . We think at this result as to the first step toward the full description of the critical
set of Fα and then, via the results in [13, 17] of the concentrating solutions for (1.6). Indeed,
a crucial point in the construction of these concentrating solutions is the existence of “sta-
ble” critical points for Fα . In this context, “stability” of critical points means that, roughly
speaking, either sub-super levels corresponding to the given critical level are not topologi-
cally equivalent, or that the critical point is stable under C1-perturbations of the N -vortex
Hamiltonian. We refer to [13, 17] for further details.

To state our result concerning the global structure of Fα , let us set,

ξj = eı2π
j−1
N , j ∈ {1, . . . ,N},

to be the N -roots of unity and define,{
�

reg
N = {(z1, . . . , zN) ∈ �N | zj = rj ξj e

ıωj , ∀j = 1, . . . ,N}},
rj ∈ (0,1), ωj ∈ (− 2π

N
, 2π

N
), ∀j = 1, . . . ,N,
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and

AN =
{

(r1, . . . , rN ;ω1, . . . ,ωN) ∈ (0,1)N ×
(

−2π

N
,

2π

N

)N
}

.

Clearly

(r1, . . . , rN ;ω1, . . . ,ωN) ∈ AN ⇐⇒ (r1ξ1e
ıω1 , . . . , rNξNeıωN ) ∈ �

reg
N .

Set HN,α : AN �→ R,

HN,α(r1, . . . , rN ;ω1, . . . ,ωN) = Fα(r1ξ1e
ıω1 , . . . , rNξNeıωN ). (1.9)

We remark that the analysis of the critical set in case N = 1,2 is much easier and has been
already worked out in [3]. We will then provide full statements corresponding to the case
N = 2 for reader’s convenience.

Theorem 1.3 For any N ≥ 2 and for any α > N − 1, define

ρN(α) =
(

α − N + 1

α + N + 1

)1/2N

.

(a) For any N ≥ 2, for any α ∈ (0,+∞) and for any ρ ∈ (0,1), there exist a unique
function TN,ρ,α : (− 2π

N
, 2π

N
) �→ R, which does not depend on the choice of j ∈ {1, . . . ,N},

such that,

TN,ρ,α(ωj ) = HN,α(ρ, . . . , ρ;0, . . . ,ωj , . . . ,0), ∀j = 1, . . . ,N.

Moreover TN,ρ,α is even and strictly increasing in (0, 2π
N

). In particular TN,ρ,α(ω) → +∞
as ω → − 2π

N

+
and ω → + 2π

N

−
and has a unique critical point at ω = 0, where it attains its

unique absolute (strict) minimum.
(b) For any N ≥ 2, for any α ∈ (0,+∞) and for any ρ ∈ (0,1), there exist a unique

function RN,ρ,α : (0,1) �→ R, which does not depend on the choice of j ∈ {1, . . . ,N}, such
that,

RN,ρ,α(rj ) = HN,α(ρ, . . . , rj , . . . , ρ;0, . . . ,0), ∀j = 1, . . . ,N.

For any N ≥ 2 and for any α ∈ (0,+∞), RN,ρ,α(r) → −∞ as r → 1−, and r → 0+. In
particular, RN,ρ,α admits r = ρ as a critical point if and only if α > N − 1 and ρ = ρN(α).

Note that Theorem 1.3 immediately implies Theorem 1.2. We may observe at this point
that some physical argument [9] suggests that critical points of Fα for N ≥ 2 should not be
relative maximums. We will prove this fact by a refined analysis of the function RN,ρ,α .

Theorem 1.4 Let RN,ρ,α be the function defined in Theorem 1.3. Then, r = ρN(α) is a strict
relative maximum for RN,ρN (α),α . Moreover, either,

• N = 2, and then for any α ∈ (0,+∞) and for any ρ ∈ (0,1), R2,ρ,α has a unique crit-
ical point r = r(2, ρ,α) ∈ (0,1) where it attains its unique relative and strict absolute
maximum. In particular, r(2, ρ,α) = ρ if and only if α > 1 and ρ = ρ2(α), or,
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• N ≥ 3, and then for any α ∈ [2N − 4,+∞) and for any ρ ∈ (0,1), RN,ρ,α has a unique
critical point r = r(N,ρ,α) ∈ (0,1) where it attains its unique relative and strict absolute
maximum. In particular, either N = 3 and then r(3, ρ,α) = ρ if and only if α > 2 and
ρ = ρ3(α), or N ≥ 4 and α ≥ 2N − 4, and then r(N,ρ,α) = ρ if and only if ρ = ρN(α).

Remark In case α = 0, we can prove a much stronger result, i.e. Fα has no critical points
at all for N ≥ 2. An elementary proof of this fact has been suggested to us by E. Caglioti.
Motivated by the N -vortex problem, we will discuss the structure of the critical set for the
N -vortex Hamiltonian with α = 0 on convex domains in a forthcoming paper [1].

We remark that, by using the principle of symmetrical criticality [26], the existence of
2π/N -symmetric critical points for Fα can be inferred a priori by the analysis of TN,ρ,α and
fN,α(r) defined in (3.1) below. We refer the reader to [20] for some remarkable application
of this method to the analysis of the N -vortex Hamiltonian on R

2. Of course this approach
no longer suffice to derive neither the full statement of Theorem 1.2, nor the qualitative
behavior for Fα as stated in Theorems 1.3, 1.4.

Concerning the proof of Theorem 1.4, we remark that the analysis of the derivatives
of RN,ρ,α involves the study of the sign and roots of a polynomial of degree 2N , whose
coefficients are polynomials in ρ of degree ranging from N − 1 to 2N − 2, see the definition
(4.2) of the polynomial PN(r;ρ,α) in Lemma 4.1. We will use a recursion formula to find
out the explicit expressions of those coefficients, see Lemma 4.1. Then, in order to prove
that RN,ρ,α has at most one critical point, we analyze the number of sign changes of the
coefficients sequence, see Lemmas 4.3, 4.4, and apply the celebrated Descartes’ Rule of
Signs [28]. We stated the case N = 2 separately in Theorem 1.4 since we obtain in this
particular situation the kind of result that is likely to hold in case N ≥ 3 as well.

Indeed, we believe that RN,ρ,α admits a unique critical point also in case N ≥ 3 and
α ∈ (0,2N − 4). A strong support to this conjecture comes from numerical arguments. Oth-
erwise, by using the above mentioned explicit expressions for the coefficients, one may ar-
gue directly and discuss one by one the cases where N is low. We will not discuss this issues
here. Instead, we support our conjecture by showing that for any N ≥ 3 and α ∈ (0,+∞),
then RN,ρ,α admits a unique critical point provided ρ is large enough, see Remark 5.1 in
Sect. 5. Actually, this result is stronger than Theorem 1.3, but we state it separately to sim-
plify the exposition.

Finally, we will use the knowledge of the explicit expression of the concentration radius
ρN(α), to prove the existence of multiple bubbling sequence of solutions for (1.6) which
concentrates at the origin. The incoming discussion will also clarify the relevance of Ques-
tions 1 and 2 above for the analysis of the multiple bubbling phenomenon.

Assume that {αn} ⊂ [0,+∞), αn → α ∈ [0,+∞), λn → λ ∈ [0,8π(1 + α)] and let
{uαn,n} be a sequence of solutions for (1.6) satisfying (1.2). As already remarked above,
by using the quantization results in [4], we see that if γ 	= 0, then necessarily λ = γ =
8π(1 + α) and N = 0. On the other side, if m ∈ N and αn → m+, then the concentration ra-
dius ρm+1(αn) of the sequences blowing up at the vertices of an N = m + 1 regular polygon
satisfies,

ρm+1(αn) =
(

αn − m

αn + m + 2

) 1
2(m+1) → ρm+1(m) = 0, as n → +∞.

By using this observation, it has been proved in [3] that multiple bubbling solutions blowing
up at the origin exist if αn → 1+, i.e. if m = 1. By using Theorem 1.1 and the results in
[13, 17, 21], we obtain the following,
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Theorem 1.5 For any m ≥ 2, there exist a sequence αn → m+, as n → +∞, and a sequence
of solutions {un} for (1.6) such that,

λn → 8π(1 + m) and λn

eun∫
D

eun
→ 8π(1 + m)δp=0, as n → +∞,

weakly in the sense of measures in D and in C2
loc(D

∗
). Moreover, there exist n ∈ N, a se-

quence of positive numbers {σn} and sequences of complex numbers {z(j)
n }j=1,...,N such that:

(S)1 For any j = 1, . . . ,m+1 and for any n > n, z(j)
n is the unique absolute maximum point

for un(z) − 2αn log |z| in Bσn(z
(j)
n ) := {z ∈ D||z − z

(j)
n | < σn} and

un(z
(j)
n ) − 2αn log |z(j)

n | → +∞, as n → +∞.

(S)2 For any j = 1, . . . ,m + 1,

z(j)
n → 0, and σn → 0+,

σn

|z(j)
n | → 0+,

|z(j)
n − ρm+1(αn)e

2πı
j−1
m+1 |

σn

→ 0+

as n → +∞.

(S)3 For any j 	= i, Bσn(z
(j)
n ) ∩ Bσn(z

(i)
n ) = ∅, for any n > n.

(S)4 For any j = 1, . . . ,m + 1,

λn

∫
Bσn (z

(j)
n )

eun∫
D

eun
→ 8π, as n → +∞.

While we were preparing the final version of this manuscript we have been aware by
G. Tarantello of the following preprint [14], where the existence of multiple bubbling-type
solutions for mean field equations with a Dirac source is derived on simply connected do-
mains.

We conclude this introduction with a short discussion concerning the main ideas behind
the results we obtained in this paper and more general interdisciplinary motivations.

The main idea behind this work is very simple. We use some information concerning the
solution’s set of certain elliptic equations to make some guesses concerning the structure of
the critical set of the singular N -vortex Hamiltonian. Then, by using the Descartes’ Rule of
Signs, the analysis of those guesses is worked out rigorously by the study of the zeroes of
various special polynomials, providing also some feed-back about the equation itself. For
example, we obtain the explicit expressions of the coordinates of the vortex points for a
“simple” model of the mean field equation for Euler flows with one negative sink.

We believe that this analysis, behind its interest for the study of semilinear elliptic equa-
tions, has many interesting connections with other disciplines. Of course the explicit ex-
pressions of the vortex points mentioned above, as well as the study of the structure of the
singular N -vortex Hamiltonian, can be of some interest from the point of view of Fluids
Physics. In particular, we believe that a better knowledge of the N -vortex configurations in
this simple case may help the understanding of the local structures often observed in nature
in connection with almost two dimensional turbulence, as for example the transition layer
of two dimensional shear flows.

Moreover, it turns out that a more detailed analysis of the problem calls up for the study of
the properties of general polynomials of high degree with a peculiar structure induced by the
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interaction of the N -vortices with the singularity. In particular, one may use the information
gained about the critical set of N -vortex Hamiltonian to make some guesses concerning
the structure of the zeroes of those non-trivial special polynomials. Of course, the rigorous
analysis of those guesses will provide a feed-back concerning the N -vortex Hamiltonian and
the corresponding mean field equation.

This paper is organized as follows. In Sect. 2 we prove Theorems 1.1 and 1.5. In Sect. 3
we prove Theorems 1.3 and 1.2. In Sect. 4 we provide the proofs of various results, needed
in Sect. 5 for the proof of Theorem 1.4.

2 The Proofs of Theorems 1.1 and 1.5

In this section, by using Theorem 1.2, we prove both Theorems 1.1 and 1.5.

The Proof of Theorem 1.1 By arguing as in [13, 17], and by using the symmetries of the
problem, for any 3 ≤ N < 1 + α, one can reduce the problem of finding a 2π/N -symmetric
sequence of concentrating solutions for (1.6), satisfying (1.2) with {ς1, . . . , ςN } being the
vertices of a regular N -polygon, to that of the existence of an absolute maximum for the
function fN,α defined in (3.1) below. The existence of that maximum can be easily derived,
see either [18] or Proposition 3.2 below. Otherwise, by using Theorems 1.3 and 1.4, one
can easily check that for any 3 ≤ N < 1 + α, the set of vertices {η1, . . . , ηN } of a reg-
ular N -polygon of radius ρ = ρN(α) = ( α−N+1

α+N+1 )1/2N , is a non degenerate critical set for
Fα according to the definition of [13]. In any case, we come up with the existence of at
least one concentrating sequence of solutions satisfying the desired properties for some
ρ ∈ (0,1). Thus, we just need to prove that if such a kind of concentrating solutions ex-
ist, then ρ = ρN(α). Since the blow up points {ς1, . . . , ςN } must be critical points of Fα , see
for example [22], then the conclusion follows immediately by Theorem 1.2. �

The Proof of Theorem 1.5 Let m ≥ 2 be any given integer. By using Theorem 1.1, for any
α > m, we obtain a sequence of solutions {uα,n} for (1.6), satisfying (1.2), whose concen-
tration points lie on the vertices of a regular N -polygon {η1, . . . , ηN }, with N = m + 1 and
ρ = ρm+1(α). Clearly, λn → 8π(1 + m), as n → +∞.

Let {αk} be any definitively monotone sequence satisfying αk → m+, as k → +∞. For
any given k ∈ N, by the results in [21], there exist subsequences, still denoted by {uαk,n} and
{λn,k}, and there exist nk ∈ N, σ k > 0, and m + 1 sequences {{z(1)

n,k}, . . . , {z(m+1)
n,k }}, such that:

(i −1) For any j = 1, . . . ,m+1 and for any n > nk , z(j)

n,k is the unique absolute maximum

point for un,αk
(z) − 2αk log |z| in Bσk

(z
(j)

n,k) := {z ∈ D||z − z
(j)

n,k| < σk} and

un(z
(j)

n,k) − 2αk log |z(j)

n,k| → +∞, as n → +∞.

(i − 2) For any j = 1, . . . ,m + 1, z
(j)

n,k → ηj , as n → +∞.

(i − 3) For any j = 1, . . . ,m + 1, j 	= l, Bσk
(z

(j)

n,k) ∩ Bσk
(z

(l)
n,k).

(i − 4) For any j = 1, . . . ,m + 1,

λn,k

∫
Bσk

(z
(j)
n,k

)

euαk ,n∫
D

euαk,n
→ 8π, as n → +∞.
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At this point, observe that, for any k ∈ N, we can find a sequence {σ (k)
n }, such that,

0 < σ(k)
n < σk, σ (k)

n → 0+,
σ (k)

n

|z(j)

n,k|
→ 0+, as n → +∞,

λn,k

∫
B

σ
(k)
n

(z
(j)
n,k

)

euαk,n∫
D

euαk,n
→ 8π, as n → +∞,

and

|z(j)

n,k − ρm+1(αk)e
2πı

j−1
m+1 |

σ
(k)
n

→ 0+ as n → +∞.

Hence, by means of a diagonal argument, we can find sub-subsequences,

{σn} := {σ (kn)
n }, {z(j)

n } := {z(j)

n,kn
}, {αn} := {αkn},

{un} := {uαn,n}, {λn} := {λkn},
such that (S)1, (S)2, (S)3, (S)4 are satisfied. �

3 Analysis of the Critical Set of Fα

In this section we prove Theorems 1.2 and 1.3. We divide the proof in three main steps, cor-
responding to Propositions 3.1, 3.5, 3.6. It will be clear that Propositions 3.1, 3.5 and 3.6,
together with the very definition of HN,α imply Theorem 1.3, which in turn implies Theo-
rem 1.2. As already mentioned in the introduction, one can also prove Theorem 1.2 by using
Propositions 3.2 and 3.5 together with the principle of symmetrical criticality [26].

Proposition 3.1 Let N ≥ 2, α > 0 and assume that (η1, . . . , ηN) is a critical point for Fα

lying on the vertices of a regular N -polygon inscribed in a disk of radius ρ. Then α > N −1
and

ρ = ρN(α) =
(

α − N + 1

α + N + 1

)1/2N

.

Proof Let HN,α be defined in (1.9) and set

fN,α(r) = HN,α(r, . . . , r;0, . . . ,0) ≡ Fα(r ξ1, . . . , r ξN), r ∈ (0,1). (3.1)

Since, by assumption, (ρξ1, . . . , ρξN) is a critical point for Fα(z1, . . . , zN), and since Fα is
smooth in �N , then ρ is a critical point for fN,α . The following proposition clearly implies
the assertion.

Proposition 3.2 fN takes the following form,

fN,α(r) = 2 log [�N,α(r)] − 2 log[C(N)], (3.2)

where C(N) is a positive constant and

�N,α(r) = rN(α−N+1)(1 − r2N)N, r ∈ (0,1).
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In particular,

d

dr
fN,α(ρ) = 0, if and only if ρ =

(
α − N + 1

α + N + 1

)1/2N

.

Proof We first derive an explicit representation formula for �N,α and C(N) in (3.2).

Lemma 3.3 Let �N,α and C(N) be defined by (3.2). Then,

�N,α(r) = rN(α−N+1)(1 − r2)N

N−1∏
k=1

|r2eı2π k
N − 1|2(N−k), r ∈ (0,1),

and

C(N) =
N−1∏
k=1

|eı2π k
N − 1|2(N−k).

Proof By the very definition of fN,α we have

fN,α(r) = 2αN log r + 2N log (1 − r2) + 2
1,...,N∑
m	=j

log
|r2eı2π

m−j
N − 1|

|reı2π m−1
N − reı2π

j−1
N |

= 2 log [rαN(1 − r2)N ] + 4
1,...,N∑
m>j

log

∣∣∣∣reı2π
m−j
N − 1

r

∣∣∣∣− 4
1,...,N∑
m>j

log |eı2π
m−j
N − 1|

= 2 log [rαN(1 − r2)N ] + 4
N−1∑
k=1

(N − k) log

∣∣∣∣reı2π k
N − 1

r

∣∣∣∣
− 4

N−1∑
k=1

(N − k) log |eı2π k
N − 1|.

The last relation already yields the explicit expression for C(N), while the desired conclu-
sion follows if we observe that,

4
N−1∑
k=1

(N − k) log

∣∣∣∣reı2π k
N − 1

r

∣∣∣∣ = 2 log

(
N−1∏
k=1

r2(k−N)|r2eı2π k
N − 1|2(N−k)

)

= 2 log

(
r−N(N−1)

N−1∏
k=1

|r2eı2π k
N − 1|2(N−k)

)
.

�

We will conclude the proof of Proposition 3.2 by virtue of the following,

Lemma 3.4 Define

�N(r) = r−N(α−N+1)�N,α(r) = (1 − r2)N

N−1∏
k=1

|r2eı2π k
N − 1|2(N−k), r ∈ R

+.
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Then

�N(r) = (1 − r2N)N .

Proof Set

pN(w) := (1 − w)N

N−1∏
k=1

(
w2 − 2w cos

(
2π

k

N

)
+ 1

)N−k

, w ∈ C.

It is readily seen that pN is a complex polynomial of degree N2 whose roots are the N -roots
of unity each one with multiplicity N . Since the coefficient of the term wN2

is (−1)N , it
follows by the unique factorization theorem that

pN(w) =
[

N∏
k=1

(ξk − w)

]N

≡ (
1 − wN

)N
, ∀w ∈ C.

The conclusion then follows since �N(r) is a real polynomial of degree 2N2 and

�N(r) = pN(r2), ∀r ∈ R. �

By virtue of these lemmas, we conclude that fN,α(r) takes the form

fN,α(r) = 2 log [�N,α(r)] − 2 log[C(N)],
where

�N,α(r) = rN(α−N+1)(1 − r2N)N, r ∈ (0,1).

By a straightforward evaluation we obtain,

d

dr
fN(ρ) = 2

�N,α(ρ)

d

dr
�N,α(ρ) = 2N

ρ(1 − ρ2N)
[(α − N + 1) − (α + N + 1)ρ2N ],

and the conclusion of Proposition 3.2 follows. �
�

We introduce the auxiliary function

Fα(r1, . . . , rN ; eıω1 , . . . , eıωN ) := Fα(r1ξ1e
ıω1 , . . . , rNξNeıωN ). (3.3)

Although we do not really need to introduce this new function, we believe that it makes the
proofs less involved. Clearly, by (1.9), we have

HN,α(r1, . . . , rN ;ω1, . . . ,ωN) = Fα(r1, . . . , rN ; eıω1 , . . . , eıωN ). (3.4)

Proposition 3.5 For any N ≥ 2, for any α ∈ [0,+∞) and for any ρ ∈ (0,1), there exist
a unique function TN,ρ,α : (− 2π

N
, 2π

N
) �→ R, which does not depend on the choice of j ∈

{1, . . . ,N}, such that

TN,ρ,α(ωj ) = HN,α(ρ, . . . , ρ;0, . . . ,ωj , . . . ,0), ∀j = 1, . . . ,N.
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Moreover TN,ρ,α is even and strictly increasing in (0, 2π
N

). In particular TN,ρ,α(ω) → +∞
as ω → − 2π

N

+
and ω → + 2π

N

−
and has a unique critical point at ω = 0, where it attains its

unique relative and strict absolute minimum.

Proof Let Fα be defined by (3.3). By using (1.8), we see that Fα(ρ, . . . , ρ; ξ1e
ıω, . . . , ξN)

is a well defined function of ω ∈ (− 2π
N

, 2π
N

). Moreover, ∀φ ∈ [0,2π), Fα(ρ, . . . , ρ;
eıω1 , . . . , eıωN ) is invariant under the phase shift ωj �→ ωj + φ, ∀j ∈ {1, . . . ,N}, and with
respect to arbitrary permutations of the phase variables {eiωj }. Hence, by elementary sym-
metry considerations we conclude that there exist a unique function TN,ρ,α : (− 2π

N
, 2π

N
) �→ R,

which does not depend by j , such that

TN,ρ,α(ω) = Fα(ρ, . . . , ρ; ξ1, . . . , ξj e
ıω, . . . , ξN), ∀j ∈ {1, . . . ,N}.

In particular, without loss of generality, we may assume j = 1 and observe that, by using
(1.8),

TN,ρ,α(ω) = Fα(ρ, . . . , ρ; ξ1e
ıω, . . . , . . . , ξN) = τρ(ω) + C(N,ρ,α),

where C(N,ρ,α) is a constant which depends only by ρ,α and {ξ1, . . . , ξN }, while

τρ(ω) = 4
N∑

j=2

log
|ρ2eıωeı2π

j−1
N − 1|

|eıωeı2π
j−1
N − 1|

= 4 log

⎛
⎝ N∏

j=2

|ρ2eıωeı2π
j−1
N − 1|

|eıωeı2π
j−1
N − 1|

⎞
⎠.

It is also easy to verify that TN,ρ,α is even, since indeed, for any ω ∈ [0, 2π
N

), we clearly have,

τρ(ω) = τρ(−ω).

It follows immediately that τρ(ω), and then TN,ρ,α(ω), admits ω = 0 as either a relative
minimum or relative maximum. Then, for any j ∈ 2, . . . ,N , let us define

φN(j) = 2π
j − 1

N
, wj (ω) = ρ2eı(ω−φN (j)) − 1

eı(ω−φN (j)) − 1
,

and observe that

d

dω
|wj (ω)|2 = −2

(ρ2 − 1)2

(eı(ω−φN (k)) − 1)2
sin (ω − φN(j)) > 0,

for any ω ∈ (0, 2π
N

), and for any j = 2, . . . ,N − 1. Thus τρ(ω) is strictly monotone increas-

ing in (0, 2π
N

). Since TN,ρ,α(ω) → +∞ as ω → 2π
N

−
, then the conclusion of Proposition 3.5

follows. �

Proposition 3.6 Set

ρN(α) =
(

α − N + 1

α + N + 1

)1/2N

.

For any N ≥ 2, for any α ∈ (0,+∞) and for any ρ ∈ (0,1), there exist a unique function
RN,ρ,α : (0,1) �→ R, which does not depend on the choice of j ∈ {1, . . . ,N} such that,

RN,ρ,α(rj ) = HN,α(ρ, . . . , rj , . . . , ρ;0, . . . ,0), ∀j = 1, . . . ,N.
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For any N ≥ 2 and for any α ∈ (0,+∞), RN,ρ,α(r) → −∞ as r → 1−, and r → 0+. In
particular, RN,ρ,α admits r = ρ as a critical point if and only if α > N − 1 and ρ = ρN(α).

Proof By using (1.8), for any given N ≥ 2, j ∈ {1, . . . ,N} and ρ ∈ (0,1), we conclude that
Fα(ρ, . . . , rj , . . . , ρ; ξ1, . . . , . . . , ξN) is well defined in (0,1) as a function of rj ∈ (0,1). As
in the proof of Proposition 3.5, by elementary symmetry considerations, we conclude that
for any ρ ∈ (0,1), there exist a unique function RN,ρ,α : (0,1) �→ R, which does not depend
by j , such that

RN,ρ,α(rj ) = Fα(ρ, . . . , rj , . . . , ρ; ξ1, . . . , ξN), ∀j ∈ {1, . . . ,N}.
In particular, without loss of generality, we may assume that j = 1, and observe that, by
setting r ≡ r1, and by using (1.8), we have

RN,ρ,α(r) = Fα(r, ρ, . . . , ρ; ξ1, . . . , ξN) = KN,ρ,α(r) + γ (ρ,N), (3.5)

where γ (ρ,N) depends only by ρ and {ξ1, . . . , ξN }, while

KN,ρ,α(r) = 2 log rα(1 − r2) + 4
N∑

j=2

log
|rρeı2π

j−1
N − 1|

|reı2π
j
N − ρeı2π 1

N |

= 2 log rα(1 − r2) + 2 log

⎛
⎝ N∏

j=2

|rρeı2π
j−1
N − 1|2

|reı2π
j−1
N − ρ|2

⎞
⎠.

By using the unique factorization theorem as in Lemma 3.3, it is not difficult to verify that

KN,ρ,α(r) = 2 log rα + 2 log (ψN,ρ(r)),

ψN,ρ(r) = (1 − r2)

(
ρNrN − 1

ρr − 1

)2 (
r − ρ

rN − ρN

)2

= (1 − r2)

( ∑N−1
k=0 rkρk∑N−1

k=0 rkρN−k−1

)2

.

By using the last equality, it follows by a lengthy but straightforward calculation that

d

dr
KN,ρ,α(ρ) = 2

ραψN,ρ(ρ)

ρα−2N+1(1 − ρ2N)

N2(1 − ρ2)2

× [α − N + 1 − (α − N + 1)ρ2

− (α + N + 1)ρ2N + (α + N + 1)ρ2N+2].
Note that the last relation can be also obtained by using Lemma 4.1 below. Since,

α − N + 1 − (α − N + 1)ρ2 − (α + N + 1)ρ2N + (α + N + 1)ρ2N+2

= (α − N + 1 − (α + N + 1)ρ2N)(1 − ρ2),

we easily conclude that d
dr

KN,ρ,α(ρ) = 0 if and only if

ρ = ρN(α) =
(

α − N + 1

α + N + 1

) 1
2N

.
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It follows immediately that either α ∈ [0,N − 1] and then for any given ρ ∈ (0,1), we
conclude that r = ρ is not a critical point for RN,ρ,α , or α > N − 1 and then r = ρ is
a critical point for RN,ρ,α if and only if ρ = ρN(α). Note in particular that, for any ρ ∈
(0,1), we have that either α ∈ [0,+∞), and then RN,ρ,α(r) → −∞ as r → 1−, or r → 0+
and then RN,ρ,α(r) → −∞ only if α ∈ (0,+∞). Then, the desired conclusion follows by
using (3.4). �

4 The Analysis of the Radial Function RN,ρ,α

In this section we will make a further step in the analysis of the graph of the radial function
RN,ρ,α defined in (3.5). This refined analysis is needed to complete the proof of Theorem 1.4.

The study of the set of critical points of RN,ρ,α calls up for the study of the roots of
a general polynomial PN(r;ρ,α) of degree 2N , see (4.2) below, whose coefficients are
polynomials in ρ of degree ranging from N − 1 to 2N − 2. Our main goal is to prove
that if α > 0 (actually α ≥ 2N − 4 if N ≥ 3), then PN(r;ρ,α) has one and only one root
for r ∈ (0,1). The idea of the proof is to apply the celebrated Descartes’ Rule of Signs to
PN [28], see the proof of Theorem 1.4 in Sect. 5 for further details.

For reader’s convenience we recall that, see either (3.5) above,

RN,ρ,α(r) = Fα(r, ρ, . . . , ρ; ξ1, . . . , ξN) = KN,ρ,α(r) + γ (ρ,N),

where γ (ρ,N) depends only by ρ and {ξ1, . . . , ξN }, while

KN,ρ,α(r) = 2 log rα + 2 log (ψN,ρ(r)),

ψN,ρ(r) = (1 − r2)

(
ρNrN − 1

ρr − 1

)2 (
r − ρ

rN − ρN

)2

= (1 − r2)

( ∑N−1
k=0 rkρk∑N−1

k=0 rkρN−k−1

)2

.

Let us define

hN,ρ(r) = ρNrN − 1

ρr − 1
=

N−1∑
k=0

rkρk,

gN,ρ(r) = rN − ρN

r − ρ
=

N−1∑
k=0

rkρN−k−1.

Concerning the derivative of KN,ρ,α , we have the following,

Lemma 4.1 For any N ≥ 3, for any α > 0 and for any ρ ∈ (0,1), the first derivative of
RN,ρ,α takes the form:

d

dr
RN,ρ,α(r) = d

dr
KN,ρ,α(r) = 2

rψN,ρ(r)

hN,ρ(r)

g3
N,ρ(r)

PN(r;ρ,α), (4.1)

where

PN(r;ρ,α) =
2N∑

m=0

a(N)
m (ρ,α)rm, (4.2)
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and

a
(N)

0 (ρ,α) = αρN−1; (4.3)

a
(N)

1 (ρ,α) = ρN−2
[
(−2 + α) + (2 + α)ρ2

] ; (4.4)

{
a

(N)
N−k(ρ,α) = ρk−1[(−2(N − k) + α) − 2

∑N−k−1
j=1 ρ2j + (2(N − k) + α)ρ2(N−k)],

k = 1, . . . ,N − 2;
(4.5)

a
(N)
N (ρ,α) = −2

N−2∑
j=0

ρ2j+1; (4.6)

{
a

(N)
N+k(ρ,α) = ρk−1[(2(N − k − 1) − α) − 2

∑N−k−1
j=1 ρ2j − (2(N − k + 1) + α)ρ2(N−k)],

k = 1, . . . ,N − 2;
(4.7)

a
(N)

2N−1(ρ,α) = ρN−2[−α − (4 + α)ρ2]; (4.8)

a
(N)

2N (ρ,α) = −(2 + α)ρN−1. (4.9)

In case N = 2, the first derivative of K2,ρ,α takes the form (4.1)–(4.2) with the coeffi-
cients {a(2)

m (ρ,α)}m=0,...,4 taking the forms (4.3), (4.4), (4.6), (4.8), (4.9) evaluated at N = 2
respectively.

Proof It is straightforward to verify that

d

dr
RN,ρ,α(r) = d

dr
KN,ρ,α(r) = 2rα−1

rαψN,ρ(r)

hN,ρ(r)

g3
N,ρ(r)

PN(r;ρ,α),

where

PN(r;ρ,α) = (α − (2 + α)r2)gN,ρ(r)hN,ρ(r)

+ 2r(1 − r2)

(
gN,ρ(r)

d

dr
hN,ρ(r) − hN,ρ(r)

d

dr
gN,ρ(r)

)
. (4.10)

In case N = 2,3,4 the conclusion follows by a straightforward calculation. Next, observe
that, for any N ≥ 2,

PN+1(r;ρ,α) = ρPN(r;ρ,α) + (α − (2 + α)r2)BN,ρ(r) + 2r(1 − r2)CN,ρ(r),

where

BN,ρ(r) = (
ρN+1gN,ρ(r) + hN,ρ(r)

)
rN + ρNr2N,

and

CN,ρ(r) =
(

d

dr
hN,ρ(r) − ρN+1 d

dr
gN,ρ(r)

)
rN + (

NρN+1gN,ρ(r) − NhN,ρ(r)
)
rN−1.
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We use the last identities together with the explicit sum expansions for gN,ρ and hN,ρ to
obtain an induction rule for the coefficients {a(N+1)

m (ρ,α)}m=0,...,2(N+1). In case N ≥ 5, we
obtain

a(N+1)
m (ρ,α) = ρa(N)

m (ρ,α), m = 1, . . . ,N − 1; (4.11)

a
(N+1)
N (ρ,α) = ρa

(N)
N (ρ,α) + (−2N + α) + (2N + α)ρ2N ; (4.12)

a
(N+1)

N+1 (ρ,α) = ρa
(N)

N+1(ρ,α) + (−2(N − 1) + α)ρ + (2(N − 1) + α)ρ2N−1; (4.13)

a
(N+1)

N+2 (ρ,α) = ρa
(N)

N+2(ρ,α) + (2N − (2 + α)) + (−2(N − 2) + α)ρ2

+ (2(N − 2) + α)ρ2N−2 − (2N + (2 + α))ρ2N ; (4.14)

a
(N+1)

N+3 (ρ,α) = ρa
(N)

N+3(ρ,α) + (2(N − 1) − (2 + α))ρ + (−2(N − 3) + α)ρ3

+ (2(N − 3) + α)ρ2N−3 − (2(N − 1) + (2 + α))ρ2N−1; (4.15)

⎧⎪⎨
⎪⎩

a
(N+1)
N+k (ρ,α) = ρa

(N)
N+k(ρ,α) + (−(3N − k) + α)ρk + (2(N − m + 1) − α)ρk+2

+ ((3N − k) + α)ρ2N−k − (2(N − k + 3) + α)ρ2(N+1)−k,

k = 4, . . . ,N − 1;
(4.16)

a
(N+1)

2N (ρ,α) = ρa
(N)

2N (ρ,α) + (2 − α)ρN−2 − αρN − (6 + α)ρN+2 (4.17)

a
(N+1)

2N+1 (ρ,α) = −αρN−1 − (4 + α)ρN+1; (4.18)

a
(N+1)

2N (ρ,α) = −(2 + α)ρN . (4.19)

The conclusion follows by substituting the expressions (4.3), . . . , (4.9) in (4.11), . . . ,
(4.19). �

As a first application of Lemma 4.1, we have the following,

Lemma 4.2 Let RN,ρ,α be the one variable function defined in Proposition 3.6. For any
N ≥ 2 and for any α > N − 1, r = ρN(α) is a relative strict maximum point for RN,ρN (α),α .

Proof It follows by Lemma 4.1 that,

d

dr
RN,ρ,α(r) = 2

rψN,ρ(r)

hN,ρ(r)

g3
N,ρ(r)

PN(r;ρ,α).

It is straightforward to verify that,

0 <
2

rψN,ρ(r)

hN,ρ(r)

g3
N,ρ(r)

< +∞, ∀r ∈ (0,1).

Hence the sign and the roots of d
dr

RN,ρN (α),α(r), r ∈ (0,1) coincide with the sign and
the roots of PN(r;ρ,α), r ∈ (0,1). By using Proposition 3.6, we know that PN(ρN(α);
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ρN(α),α) = 0. Hence, to conclude the proof, it is enough to prove that, for any N ≥ 2 and
for any α > N − 1,

d

dr
PN(ρN(α);ρN(α),α) < 0. (4.20)

We will prove (4.20) for any N ≥ 4. The cases N = 2,3 can be easily worked out by the
same argument. We first use Lemma 4.1 to obtain,

d

dr
PN(r;ρ,α) =

2N∑
m=1

ma(N)
m (ρ,α)rm−1.

By using (4.3)–(4.9), we also have

ρ−(N−2) d

dr
PN(ρ;ρ,α)

= (−2 + α) + (2 + α)ρ2

+
N−2∑
k=1

(N − k)

⎡
⎣−2(N − k) + α − 2

N−k−1∑
j=1

ρ2j + (2(N − k) + α)ρ2(N−k)

⎤
⎦

− 2N

N−2∑
j=1

ρ2j+2

+
N−2∑
k=1

(N + k)

⎡
⎣(2(N − k − 1) − α)ρ2k − 2

N−k−1∑
j=1

ρ2j+2k − (2(N − k + 1) + α)ρ2N

⎤
⎦

− α(2N − 1)ρ2N−2 − ((4 + α)(2N − 1) − (2 + α)2N)ρ2N.

Then, for any N ≥ 4, we obtain,

ρ−(N−2) d

dr
PN(ρ;ρ,α)

= α
N(N − 1)

2
− N(N − 1)(2N − 1)

3

−
N−1∑
j=1

N [α − (N − 2j − 1)]ρ2j −
[
α

N(3N + 1)

2
+ 2N(N + 1)(2N + 1)

3

]
ρ2N.

Clearly,

α − (N − 2j − 1) ≥ α − (N − 3), ∀j = 1, . . . ,N − 1.

Hence, for any α > N − 1, the coefficients corresponding to the powers ρ2j , j = 1, . . . ,N ,
are all strictly negative. Unfortunately this is not the case for the first term. Indeed,

α
N(N − 1)

2
− N(N − 1)(2N − 1)

3
≤ 0 ⇐⇒ α ≤ 2(2N − 1)

3
.
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Hence, (4.20) holds true for any α ≤ 2(2N−1)

3 and we are left with the case α > 2(2N−1)

3 . We
use the fact that,

ρ2 > ρ2 > · · · > ρ2(N−2) > ρ2N, ∀ρ ∈ (0,1).

Then, we obtain,

ρ−(N−2) d

dr
PN(ρ;ρ,α)

< α
N(N − 1)

2
− N(N − 1)(2N − 1)

3

−
⎧⎨
⎩

N−1∑
j=1

N
[
α − (N − 2j − 1)

]⎫⎬⎭ρ2N −
[
α

N(3N + 1)

2
− 2N(N + 1)(2N + 1)

3

]
ρ2N .

The sum in parentheses is easily evaluated to obtain,

−
N−1∑
j=1

N [α − (N − 2j − 1)] = αN(N − 1) + N(N − 1).

We conclude that,

ρ
d

dr
PN(ρ;ρ,α)

< α
N(N − 1)

2
− N(N − 1)(2N − 1)

3

−
[
α

(
N(3N + 1)

2
+ N(N − 1)

)
+ 2N(N + 1)(2N + 1)

3
+ N(N − 1)

]
ρ2N .

By using the explicit expression of ρN(α), we come up with the following sufficient condi-
tion for (4.20) to hold true:

α
N(N − 1)

2
− N(N − 1)(2N − 1)

3

−
[
α

(
N(3N + 1)

2
+ N(N − 1)

)
+ 2N(N + 1)(2N + 1)

3
+ N(N − 1)

]
α − N + 1

α + N + 1

< 0.

After some straightforward simplifications, this condition is seen to be equivalent to

−2α2 + (N − 5)α + 2

3
N2 + 2 − 2

8

3
< 0.

Solving the inequality yields,

α >
1

12
(3N − 15 + √

3
√

19N2 + 18N + 11).

It is then enough to check that for any N ≥ 4,

2(2N − 1)

3
>

1

12
(3N − 15 + √

3
√

19N2 + 18N + 11),
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which is equivalent to,

28N2 − 59N + 4 > 0.

The conclusion follows since the roots of the equation are,

N+ = 1

56
(59 + √

337) � 2.03701, N− = 1

56
(59 − √

337) � 0.0701307. �

As a first step toward the application of the Descartes’ Rule of Signs to PN , we will prove
that for any N ≥ 2, and for any ρ ∈ (0,1) and α > 0, then there is one and only one sign
change in the sequence {a(N)

m (ρ,α)}m=0,...,N . To achieve this goal, we will first prove that
ρ−(N−m−1)a(N)

m (ρ,α) > ρ−(N−(m+1)−1)a
(N)

m+1(ρ,α), for any m = 1, . . . ,N − 2.

Lemma 4.3 For any N ≥ 2, for any α > 0 and for any ρ ∈ (0,1), it holds

ρ−(N−m−1)a(N)
m (ρ,α) > ρ−(N−(m+1)−1)a

(N)

m+1(ρ,α), ∀m = 1, . . . ,N − 2.

Moreover, for any N ≥ 2, ρ ∈ (0,1) and α > 0, there is one and only one sign change in the
sequence {a(N)

m (ρ,α)}m=0,...,N .

Proof We discuss the case where N ≥ 3. The case N = 2 is much easier.
For m = 1, we use (4.4) and (4.5) with k = N − 2, and obtain

ρ−(N−2)a
(N)

1 (ρ,α) = (−2 + α) + (2 + α)ρ2 > (−4 + α) + (2 + α)ρ2

= (−4 + α) − 2ρ2 + (4 + α)ρ2 > (−4 + α) − 2ρ2 + (4 + α)ρ4

= ρ−(N−3)a
(N)

2 (ρ,α).

Note that the last inequality follows since ρ ∈ (0,1).
We use the same argument in case m ≥ 2. Fix m to be any integer satisfying m ∈

{2, . . . ,N − 2}. We use (4.5) with k = N − m and k = N − m + 1, to conclude that,

ρ−N−m−1a(N)
m (ρ,α) = (−2m + α) − 2

m−1∑
j=1

ρ2j + (2m + α)ρ2m

> (−2(m + 1) + α) − 2
m−1∑
j=1

ρ2j + (2m + α)ρ2m

= (−2(m + 1) + α) − 2
m−1∑
j=1

ρ2j − 2ρ2m + (2(m + 1) + α)ρ2m

> (−2(m + 1) + α) − 2
m∑

j=1

ρ2j + (2(m + 1) + α)ρ2(m+1)

= ρ−N−ma
(N)

m+1(ρ,α).

The last inequality follows since ρ ∈ (0,1). This fact concludes the proof of the monotonic-
ity of the sequence {ρ−N−m−1a(N)

m (ρ,α)}m=1,...,N−1.
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Next observe that, by using (4.3) and (4.6), then we have a
(N)

0 (ρ,α) > 0 and
a

(N)
N (ρ,α) < 0 for any N ≥ 2 and ρ ∈ (0,1). By monotonicity, we immediately conclude

that if α > 0 there is one and only one sign change in the sequence {a(N)
m (ρ,α)}m=0,...,N . �

Next, we provide sufficient conditions to guarantee that {a(N)
m (ρ,α)}m=N,...,2N does not

change sign.

Lemma 4.4 Assume that N ≥ 2 and α ∈ (0,+∞). Then, for any ρ ∈ (0,1) which satisfies,

ρ2(N−1) >
2N − 4 − α

2N + 4 + α
,

we have,

{a(N)
m (ρ,α)}m=N,...,2N ⊂ (−∞,0).

Proof By using (4.6), (4.8), (4.9), it follows immediately that a
(N)
N (ρ,α) < 0, a(N)

2N−1(ρ,α) <

0 and a
(N)

2N (ρ,α) < 0 for any N ≥ 2, α > 0 and for any ρ ∈ (0,1). This observation clearly
proves the lemma in case N = 2. Next, by using (4.7), we have,

a
(N)
N+k(ρ,α) = ρk−1

⎡
⎣(2(N − k − 1) − α) − 2

N−k−1∑
j=1

ρ2j − (2(N − k + 1) + α)ρ2(N−k)

⎤
⎦ ,

for any k = 1, . . . ,N − 2. Clearly, for any ρ ∈ (0,1), we have ρ2 > · · · > ρ2N−2 > ρ2N .
Hence, for any k = 1, . . . ,N − 2, we obtain,

ρ−(k−1)a
(N)
N+k(ρ,α) < (2(N − k − 1) − α) + (4(N − k) + α)ρ2(N−k),

and in particular, ρ−(k−1)a
(N)
N+k(ρ,α) < 0, whenever,

ρ2(N−k) >
2(N − k − 1) − α

4(N − k) + α
.

The conclusion follows since,

max
k=1,...,N−2

(
2(N − k − 1) − α

4(N − k) + α

) 1
2(N−k) = max

m=1,...,N−1

(
2(m − 1) − α

4(2N − m) + α

) 1
2m

≤ max
m=1,...,N−1

(
2(m − 1) − α

4(2N − m) + α

) 1
2(N−1)

=
(

2((N − 1) − 1) − α

4(2N − (N − 1)) + α

) 1
2(N−1)

=
(

2N − 4 − α

4N + 4 + α

) 1
2(N−1)

.

Then, we conclude in particular that {a(N)
m (ρ,α)}m=N,...,2N ⊂ (−∞,0), for any N ≥ 3 and

α ∈ [2N − 4,+∞). �
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5 The Proof of Theorem 1.4

The Proof of Theorem 1.4 The first assertion follows immediately by Lemma 4.2.
Next observe that, by Lemma 4.1,

d

dr
RN,ρ,α(r) = d

dr
KN,ρ,α(r) = 2

rψN,ρ(r)

hN,ρ(r)

g3
N,ρ(r)

PN(r;ρ,α).

It is straightforward to verify that,

0 <
2

rψN,ρ(r)

hN,ρ(r)

g3
N,ρ(r)

< +∞, ∀r ∈ (0,1).

Hence, r ∈ (0,1) is a critical point for RN,ρ,α(r), if and only if PN(r;ρ,α) = 0.
We discuss the assertions of Theorem 1.4 separately.
CASE N = 2 and α ∈ (0 + ∞).
By Proposition 3.6, for any ρ ∈ (0,1) and α ∈ (0,+∞), R2,ρ,α(r) → −∞ as r → 0+

and r → 1−. Since R2,ρ,α is smooth, it admits at least one interior absolute maximum point,
i.e. P2(r;ρ,α) admits at least one root in (0,1). We are going to prove that R2,ρ,α admits at
most one critical point, i.e. that P2(r;ρ,α) admits at most one root in (0,1). We recall the
celebrated Descartes’ Rule of Signs [28]:

An equation can have as many true [positive] roots as it contains changes of sign from
+ to − or from − to +.

By using either Lemma 4.1 or Lemmas 4.3 and 4.4 we conclude that for any α ∈ (0,+∞)

and for any ρ ∈ (0,1), we have a
(2)

0 (ρ,α) > 0 and {a(N)
m (ρ,α)}m=1,2,3,4 ⊂ (−∞,0). It fol-

lows by the Descartes’ Rule of Signs that P2(r;ρ,α) admits at most one positive root.
Hence, for any α ∈ (0,+∞) and for any ρ ∈ (0,1) there exist a unique critical point r =
r(2, ρ,α) ∈ (0,1) for R2,ρ,α . Of course, r(2, ρ,α) is the unique relative and strict absolute
maximum for R2,ρ,α in (0,1). Finally, observe that by Theorem 1.3-(b), r(2, ρ,α) = ρ if
and only if α > 1 and ρ = ρ2(α).

CASE N ≥ 3 and α ∈ [2N − 4,+∞).
By Proposition 3.6, RN,ρ,α(r) → −∞ as r → 0+ and r → 1−. Since RN,ρ,α is smooth,

it admits at least one interior absolute maximum point, i.e. PN(r;ρ,α) admits at least one
root in (0,1). We are going to prove that RN,ρ,α admits at most one critical point, i.e. that
PN(r;ρ,α) admits at most one root in (0,1).

It follows by Lemma 4.3 that for any N ≥ 3, α > 0 and for any ρ ∈ (0,1), there is one
and only one change of sign in the sequence {a(N)

m (ρ,α)}m=0,...,N . By using Lemma 4.4, we
see that for any N ≥ 3, α ∈ [2N − 4,∞) and for any ρ ∈ (0,1), {a(N)

m (ρ,α)}m=N,...,2N ⊂
(−∞,0). By using the Descartes’ Rule of Signs once more we conclude that PN(r;ρ,α)

admits at most one positive root. Hence, for any N ≥ 3, α ∈ [2N − 4,∞) and for any
ρ ∈ (0,1) there exist a unique critical point r = r(N,ρ,α) ∈ (0,1) for RN,ρ,α . Of course,
r(N,ρ,α) is the unique relative and strict absolute maximum for RN,ρ,α in (0,1). Finally,
observe that by Theorem 1.3-(b), either N = 3, and then r(3, ρ,α) = ρ if and only if α > 2
and ρ = ρ3(α), or N ≥ 4, and then, for any α ≥ 2N − 4, r(N,ρ,α) = ρ if and only if
ρ = ρN(α). �

Remark 5.1 It is clear by the proof that indeed Lemma 4.4 implies that for any N ≥ 3 and
α ∈ (0,+∞), RN,ρ,α has a unique root in (0,1) whenever ρ2(N−1) > 2N−4−α

2N+4+α
.
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