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Abstract We propose new robust classification algorithms for planar and spatial curves
subjected to affine transformations. Our motivation comes from the problems in computer
image recognition. To each planar or spatial curve, we assign a planar signature curve.
Curves, equivalent under an affine transformation, have the same signature. The signatures
are based on integral invariants, which are significantly less sensitive to small perturbations
of curves and noise than classically known differential invariants. Affine invariants are de-
rived in terms of Euclidean invariants. We present two types of signatures: the global and
the local signature. Both signatures are independent of curve parameterization. The global
signature depends on a choice of the initial point and, therefore, cannot be used for local
comparison. The local signature, albeit being slightly more sensitive to noise, is indepen-
dent of the choice of the initial point and can be used to solve local equivalence problem.
An experiment that illustrates robustness of the proposed signatures is presented.
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1 Introduction

In the most general terms the equivalence, or classification, problem for curves, considered
in this paper, can be formulated as follows. An action of a group G on R

n induces an action
on the space of curves in R

n. Two curves are called equivalent with respect to this action if
there exists an element g ∈ G that maps one of the curves to the other, or in other words,
two curves that belong to the same orbit with respect to the induced action are equivalent.
Our motivation comes from the problems in computer vision, since they can be often re-
duced to a classification problem for curves in R

2 and R
3 with respect to the actions of the

Euclidean, affine and projective groups. One can attempt to solve this problem by finding
an element g explicitly, or otherwise proving that this element does not exist. This approach
has many disadvantages from both theoretical and computational perspectives. More elegant
and practical solution to the equivalence problem is obtained by finding sufficient number
of quantities that are invariant, or unchanged, under the group action. In the spirit of the
Felix Klein Erlangen program (1872), which describes geometry as the study of invariants
of group actions on geometric objects, the Euclidean, affine and projective groups are of-
ten referred to as geometric groups and the corresponding invariants are called geometric
invariants. We note that the Euclidean group is a subgroup of the affine group, whereas the
affine group is a subgroup of the projective group.

While geometric invariants have long been used to solve problems in computer vision
and image processing [10, 26, 27, 30, 40], designing robust algorithms that are tolerant to
noise and image occlusion remains an open problem. Euclidean differential invariants, such
as Euclidean curvature and torsion for space curves, are the most classical. The affine and
projective counterparts of curvature and torsion are also well known. The dependence of
curvature and torsion on high order derivatives (up to order 3 for the Euclidean group, 6 for
the affine group and 9 for the projective group), makes numerical approximation of these
invariants highly sensitive to noise and, therefore, impractical in computer vision applica-
tions. This has motivated a high interest in other types of invariants such as semi-differential,
or joint, invariants [4, 29, 37, 38] and various types of integral invariants [17, 23–25, 31].
The term integral invariants is used in the literature when an invariant depends on quanti-
ties obtained by integration (versus differential invariants that depend on the derivatives).
There are various types of integral invariants, and some of them (such as in [31]) are, in
fact, mixed: they depend on quantities obtained by integration and on quantities obtained by
differentiation. Semi-differential, or joint, invariants are obtained by extending an action to
several copies of the same curve, and then computing algebraic and differential invariants
on this extended space. This leads to a decrease in the order of derivatives involved in the
invariants. The trade-off, however, is the increase in the dimension of the underlying space.
Since integration reduces the effect of noise, it is desirable to use purely integral invariants
whose computation does not include differentiation.

Although explicit expressions for various types of integral invariants under Euclidean
and affine transformations, as well as some other subgroups of the full projective group for
curves in R

2 were computed before [17, 23–25, 31], the computational difficulties have thus
far prevented the extension to curves in R

3. In [12] a mixed integro-differential affine in-
variants that only uses first order derivatives along with integrals were computed for curves
in R

3. Although improvement over classical differential invariants in classification of curves
affected by slight perturbation and noise was achieved, the presence of first order deriva-
tives still affected the performance. In a conference proceedings paper [13], we presented,
for the first time, explicit formulae of purely integral Euclidean and affine invariants for
spatial curves in R

3. An inductive implementation of the Fels-Olver moving frame con-
struction [11], proposed in [22], was used to simplify the derivation, as it allows one to
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construct invariants for the entire group from invariants of its subgroups: in our case, affine
invariants in terms of Euclidean ones. In this paper we review the definition and the main
steps of derivation of these invariants. In this paper we also introduce two types of signatures
based on these invariants: the global and the local integral signature. Two curves related by
an affine transformation have the same signature. Both signatures are independent of curve
parameterization. The global signature depends on a choice of the initial point and, there-
fore, cannot be used for local comparison. The local signature, albeit slightly more sensitive
to noise, is independent of the choice of the initial point and can be used to solve local
equivalence problem, and hence can be applied to curves with occlusions. Although the pa-
per focuses on signatures with respect to the affine group of transformations, the method is
easily adapted to a its proper subgroup of Euclidean transformations. We include an experi-
ment that illustrates robustness of the proposed signatures in application to the classification
of curves extracted from the images of various surfaces in R

3. Our literature search indi-
cates that this is the first method for classification of spatial curves with respect to affine
transformations based on purely integral invariants.

The type of integral invariants that we consider is an extension of the invariants in-
troduced by Hann and Hickman [17] for curves in R

2. For planar curves they are ob-
tained by prolonging the action of the group to integrals of the monomials along the
curve γ (t) = (x(t), y(t)), t ∈ [0,1]. In other words, integral invariants depend on the ini-
tial and current points on the curve, as well as on integral variables Y [i,j ] = ∫ t

0 XiY jdY

and X[i,j ] = ∫ t

0 XiY jdX, where X(t) = x(t) − x(0) and Y (t) = y(t) − y(0). For example,
I1(t) = ∫ t

0 X(t)dY (t) − 1
2 X(t)Y (t) is invariant under the action of the special affine group.

Geometrically, I represents the signed area between the curve and the secant (see Fig. 1).
In a way, the integral invariants of this type can be thought of as the 1-dimensional analog
of moment invariants [8, 34, 41]. The difference, however, lies not only in dimensional-
ity: a moment invariant corresponds a number to a surface, whereas an integral invariant
corresponds a curve to a curve.

Integral invariants depend on parameterization of a curve (or curve sampling in the dis-
crete case). A uniform parameterization is required for two curves to be compared. In or-
der to overcome this limitation, we propose to use signatures. The signature of a curve
is obtained by plotting one independent invariant, evaluated on the curve, versus another.
Applications of signatures based on differential invariants and on joint invariants to curve
classification can be found, for instance, in [1, 4–6, 29]. Signatures based on differential
invariants are highly sensitive to noise. Although utilization of joint invariants, decreases
noise sensitivity, it does in general increase the dimension of the signature (a joint-invariant
signature for a curve might be given by a surface or a higher dimensional manifold, which
makes signature comparison challenging). The advantage of integral signature proposed
here is that it diminishes the effects of noise and does not enlarge dimensionality of the
problem. In [24, 25] integral signatures based on integral invariants of different type were

Fig. 1 Invariant
I1(t) = ∫ t

0 X(t)dY (t)− 1
2 X(t)Y (t)

equals to the area B between the
curve and the secant
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proposed. This construction is restricted, however, to planar curves undergoing Euclidean
transformations only.

Several interesting directions of future research emerge from this investigation. From the
definition of invariants it follows that equivalent curves have the same signatures. At present,
we do not, however, have a general proof of the converse statement, namely that signatures
of non-equivalent curves are different (although our experiments support this conjecture). In
other words, the separating property of the invariants derived in this paper remains to be es-
tablished. In the case of differential invariants, the corresponding proof relies on the known
structure of differential invariants, established by Tresse [36]—differential invariants form
a finitely generated differential algebra. At present, there is no analogous result about the
structure of integral invariants, and thus we can only conjecture on the number of separating
invariants. The problem of equivalence is closely related to the problem of finding the sym-
metry group of an object, i.e. the transformations that map the object to itself. Possibility of
extracting the symmetry information from the integral signature is another interesting open
question. Extension to higher dimensions and other group-actions is also of interest.

Exploring various applications of these invariants to computer image recognition and im-
age processing problems is another important venue of future research. The defining features
of 3D or 2D objects are often represented by spatial or planar curves, as illustrated in Fig. 2.
Since the images of the object are often taken by the cameras located in various positions and
with various focal lengths, the resulting images of the same feature curve are often related
by projective transformations, or in many cases by elements of a proper subgroup of the pro-
jective group, in particular, by affine and Euclidean transformations [26]. Integral signatures
introduced in this paper provide a new tool for establishing equivalence of various images of
the same object. In [14] we reported the initial results of applications of Euclidean integral
signatures to the problem of face recognition and obtained some promising results. Further
investigation in this direction is underway. A thorough comparison of the performance of
our method with methods based on other types of constructions, in particular, with methods
based on affine invariant Fourier descriptors [3], and affine invariant wavelet representation
[35], is planned (see conclusion of the paper for more details). We would like to point out
that the vast majority of the existing methods are restricted to the classification problems of
planar curves.

The paper is structured as follows. In Sect. 2, after reviewing the basic facts about group
actions and invariants, we define the notion of integral jet bundle and integral invariants in
a general setting of curves in R

n. Explicit formulae for affine integral invariants in terms
of Euclidean ones for curves in R

2 and R
3 are given in Sect. 3, along with their geometric

interpretation. The details of their derivation is given in the Appendix. In Sect. 4 we de-
fine a global integral signature that classifies curves with a given initial point up to affine
transformations. We also define a local signature that is independent of the initial point of a

(a) Brain feature curves [28] (b) Gun feature contour

Fig. 2 Examples of feature curves
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curve. In Sect. 5 a discrete approximation of the signature construction is tested on curves
extracted from 3D objects. The curves are given as discrete sequences of points, with possi-
ble additive noise. The experiments show that signature construction gives a robust method
for classification of curves under affine transformations. The conclusion section summarizes
the results of the paper and indicates the directions of further research.

2 Group Actions and Invariants

In this section we review the basic properties of group actions and invariants, as well as the
concept of prolonging the action to jet spaces and the notion of differential invariants. We
then introduce the notion of integral jet space and define the corresponding prolongation of
the action which gives rise to integral invariants.

2.1 Definitions

Definition 2.1 An action of a group G on a set S is a map α : G × S → S that satisfies the
following two properties:

1. α(e, s) = s, ∀s ∈ S, where e is the identity of the group.
2. α(g1, α(g2, s)) = α(g1g2, s), for all s ∈ S and g1, g2 ∈ G.

For g ∈ G and s ∈ S we write α(g, s) = g · s = s.

Definition 2.2 The orbit of a point s ∈ S is the set Os = {g · s|g ∈ G}.

Definition 2.3 A function f : S → R is called invariant if

f (g · s) = f (s), ∀g ∈ G and ∀s ∈ S. (1)

Invariant functions are constant along each orbit and can be used to find equivalence
classes of objects undergoing various types of transformations.

Let GL(n) denote a group of non-degenerate n×n matrices with real entries. Its subgroup
of matrices with determinant 1 is denoted by SL(n). The orthogonal group is O(n) = {A ∈
GL(n)|AAT = I }, while the special orthogonal group is SO(n) = {A ∈ O(n)|det A = 1}.
The semi-direct product of GL(n) and R

n is called the affine group: A(n) = GL(n) � R
n.

Its subgroup SA(n) = SL(n) � R
n is called the special affine group. The Euclidean group

is E (n) = O(n) � R
n. Its subgroup SE(n) = SO(n) � R

n is called the special Euclidean
group.

In the paper we consider the action of the affine group A(n) and its subgroups on curves
γ (t) = (x1(t), . . . , xn(t)), t ∈ [0,1] in R

n by a composition of a linear transformation and a
translation, for n = 2 and n = 3:

⎛

⎜
⎝

xi(t)
...

xn(t)

⎞

⎟
⎠ = A

⎛

⎜
⎝

x1(t)
...

xn(t)

⎞

⎟
⎠ +

⎛

⎜
⎝

v1
...

vn

⎞

⎟
⎠ , (2)

where the matrix A ∈ GL(n) denotes a linear transformation and the vector (v1, . . . vn) ∈ R
n

denotes a translation.
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2.2 Prolongation of a Group Action

Our goal is to obtain invariants that classify curves up to affine transformations. The clas-
sical method of obtaining such invariants is to prolong the action to the set of derivatives
{x(k)

1 , . . . , x
(k)
i |k = 1, . . . , l} of a sufficiently high order l

x
(1)
i (t) = dxi(t)

dt
, x

(k+1)
i (t) = dx

(k)
i (t)

dt
. (3)

Definition 2.4 Functions of {x1, . . . , xn, x
(k)
i |i = 1, . . . , n, k = 1, . . . , l} that are invariant

under the prolonged action (3) are called differential invariants of order l.

For the Euclidean action on curves in R
3, the two lowest order invariants are called cur-

vature and torsion, and are classically known in differential geometry. Analogous invariants
for the affine and projective groups are also known.

As noted in the introduction, differential invariants are highly sensitive to noise. We intro-
duce integral variables, extending the approach of [17] from planar curves to curves in R

n.
Let γ (t) be a curve parametrized by t ∈ [0,1]. We define integral variables

x
[α1,...,αn]
i (t) =

∫ t

0
x1(t)

α1 · · ·xn(t)
αndxi(t), i = 1, . . . , n, (4)

where the integrals are taken along the curve γ (t) and α1, . . . , αn are non-negative integers,
such that α1 +· · ·+αi−1 +αi+1 +· · ·+αn �= 0. We call l = α1 +· · ·+αn the order of integral
variables, and there are totally n( (n+l)!

n!l! − (l + 1)) of variables of order less than or equal to l.

Note that integrals corresponding to x
[0,...,0,αi ,0,...,0]
i (t) = x

αi+1
i (t) − x

αi+1
i (0) are not integral

variables, according to our definition. Integration-by-parts formula dictates certain relations
among the integral variables, the coordinates x1(t), . . . , xn(t) of an arbitrary point on a curve
γ (t), t ∈ [0,1], and the coordinates x0

1 , . . . , x
0
n of the initial point γ (0). For example,

x
[0,1,0,...,0]
1 (t) =

∫ t

0
x2(t)dx1(t) = x2(t)x1(t) − x0

2x
0
1 −

∫ t

0
x1(t)dx2(t)

= x2(t)x1(t) − x0
2x

0
1 − x

[1,0,0,...,0]
2 (t).

It is not difficult to show that there are

Nl = (n − 1)
(n + l)!

n!l! −
n−1∑

m=1

(n − m + l)!
(n − m)!l!

independent integral variables of order less than or equal to l. A canonical choice of such
variables is given by:

x
[α1,...,αn]
i (t) =

∫ t

0
x1(t)

α1 · · ·xn(t)
αndxi(t),

such that α1 + · · · + αi−1 > 0, i = 1, . . . , n. (5)

In other words, there is a non-zero entry in the first i − 1 components of the tuple
[α1, . . . , αn]. For example, variable x

[1,0,0,...,0]
2 is canonical, but x

[0,0,1,0,...,0]
2 and x

[1,1,0,...,0]
1

are not canonical.
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Definition 2.5 Let I l be an Nl-dimensional space of independent integral variables of order
l and less, then the integral jet space of order l (denoted S l) is defined to be a direct product
of I l and two copies of R

n, i.e. S l = I l × R
n × R

n. The coordinates x1, . . . , xn of the first
copy of R

n represent an arbitrary point on a curve γ (t), t ∈ [0,1], and coordinates x0
1 , . . . , x

0
n

of the second copy of R
n represent the initial point γ (0).

The action (2) can be prolonged to the curves on the jet space as follows:

⎛

⎜
⎝

xi(t)
...

xn(t)

⎞

⎟
⎠ = A

⎛

⎜
⎝

x1(t)
...

xn(t)

⎞

⎟
⎠ +

⎛

⎜
⎝

v1
...

vn

⎞

⎟
⎠ ,

⎛

⎜
⎜
⎝

x0
i

...

x0
n

⎞

⎟
⎟
⎠ = A

⎛

⎜
⎝

x0
1
...

x0
n

⎞

⎟
⎠ +

⎛

⎜
⎝

v1
...

vn

⎞

⎟
⎠ , (6)

x
[α1,...,αn]
i (t) =

∫ t

0
x1

α1(t) · · ·xn
αn(t)dxi(t).

It is important that the integration-by-parts relations among the integral variables are re-
spected by the prolonged action, and therefore the action on the integral jet space S l is well
defined.

Definition 2.6 A function on S l which is invariant under the prolonged action (6) is called
integral invariant of order l.

By introducing new variables

Xi(t) = xi(t) − x0
i , i = 1, . . . , n (7)

and making the corresponding substitution into the integrals, we reduce the problem of find-
ing invariants under the action (6) to an equivalent but simpler problem of finding invariant
functions of variables {X1, . . . ,Xn,X

[α1,...,αn]
i |i = 1 . . . n} under the action of GL(n) defined

by

⎛

⎜
⎝

Xi(t)
...

Xn(t)

⎞

⎟
⎠ = A

⎛

⎜
⎝

X1(t)
...

Xn(t)

⎞

⎟
⎠ ,

(8)

X
[α1,...,αn]
i (t) =

∫ t

0
X1

α1
(t) · · ·Xn

αn
(t)dXi(t).

Invariants with respect to (6) may be obtained from invariants with respect to (8) by
making substitution (7).1 Invariants with respect to a very general class of actions of con-

1This reduction by the group of translations can be put in the context of inductive method described in
Appendix. We feel, however, that making this step “upfront” makes the presentation more transparent.
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tinuous finite-dimensional groups on manifolds can be computed using Fels-Olver gener-
alization [11] of Cartan’s moving frame method (see also its algebraic reformulation [19]).
The method consists of choosing a cross-section to the orbits and finding the coordinates
of the projection along the orbits of a generic point on a manifold to the cross-section (see
Appendix for more details). It can be, in theory, applied to find the invariants under the
action described by (8) for arbitrary n. Hann and Hickman [17] used Fels-Olver method
to compute integral invariants for planar curves (n = 2) under affine transformations and a
certain subgroup of projective transformations. The corresponding derivation of invariants
for spatial curves (n = 3) remained, however, out of reach due to computational complexity
(it is often the case in the computational invariant theory that practical computations become
unfeasible as the dimension of the group increases, despite the availability of a theoretical
method to compute them [9, 33]). In [13], we derived, for the first time, integral invariants
under the Euclidean and affine transformations for spatial curves using an inductive vari-
ation of the moving frame method [22], which allows one to construct invariants for the
entire group in terms of invariants of its subgroups: in our case, affine invariants in terms
of Euclidean. Explicit derivation of invariants for curves in the spaces of higher dimension
(n > 3) remains an open problem, which seems at present, to be of more theoretical, rather
than of practical interest.

3 Integral Invariants for Planar and Spatial Curves

In this section we present explicit expressions for integral invariants for n = 2 (planar
curves) and n = 3 (spatial curves) under the affine action (6). The affine invariants are written
in terms of the Euclidean invariants. We discuss their properties and geometric interpreta-
tion. The inductive derivation of these invariants is outlined in the Appendix.

3.1 Integral Affine Invariants for Curves in R
2

We prolong the standard affine group action on curves in R
2:

(
x(t)

y(t)

)

=
(

a11 a12

a21 a22

)(
x(t)

y(t)

)

+
(

v1

v2

)

, det

(
a11 a12

a21 a22

)

�= 0,

to integral variables up to the third order.
By translating the initial point γ (0) to the origin and making the corresponding sub-

stitution X(t) = x(t) − x(0), Y (t) = y(t) − y(0) in the integrals, we reduce the prob-
lem to computing invariants under the action (8) with n = 2. Among 12 integral vari-
ables

X[i,j ](t) =
∫ t

0
X(t)iY (t)j dX(t), j �= 0, i + j ≤ 3,

(9)

Y [i,j ](t) =
∫ t

0
X(t)iY (t)j dY (t), i �= 0, i + j ≤ 3

we make a canonical choice of 6 independent: Y [1,0], Y [2,0], Y [1,1], Y [3,0], Y [2,1], Y [1,2], as
suggested by formula (5). The rest can be expressed in terms of the canonical variables
using integration-by-parts formulas, as follows:

X[0,1] = XY − Y [1,0],

X[0,2] = XY 2 − 2Y [1,1],
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X[1,1] = 1

2
X2Y − 1

2
Y [2,0],

(10)
X[1,2] = 1

2
X2Y 2 − Y [2,1],

X[0,3] = Y 3X − 3Y [1,2],

X[2,1] = 1

3
X3Y − 1

3
Y [3,0].

This reduces the problem to finding invariants under the following GL(2)-action on R
8,

where det A := a11a22 − a21a21

X = a11X + a12Y, Y = a21X + a22Y,

Y [1,0] = (det A)Y [1,0] + 1

2
a11a21X

2 + a12a21XY + 1

2
a12a22Y

2,

Y [1,1] = (det A)

(

a22Y
[1,1] + 1

2
a21Y

[2,0]
)

+ 1

3
a21

2a11X
3

+ 1

2
a21(a11a22 + a12a21)X

2Y + a21a12a22XY 2 + 1

3
a22

2a12Y
3,

Y [2,0] = (det A)
(
a11Y

[2,0] + 2a12Y
[1,1]) + 1

3
a2

11a21X
3

+ a11a12a21X
2Y + a2

12a21XY 2 + 1

3
a11a12a21Y

3,

Y [1,2] = (det A)

(

a2
22Y

[1,2] + 1

3
a2

21Y
[3,0] + a21a22Y

[2,1]
)

(11)

+ 1

4
a11a21

3X4 + 1

3
a2

21(2a11a22 + a12a21)X
3Y

+ 1

2
a21a22(2a12a21 + a11a22)X

2Y 2 + a12a21a22
2XY 3 + 1

4
a12a22

3Y 4,

Y [2,1] = (det A)

(

(a11a22 + a12a21)Y
[2,1] + 2a12a22Y

[1,2] + 2

3
a11a21Y

[3,0]
)

+ 1

4
a2

11a
2
21X

4 + 1

3
a11a21(a11a22 + 2a12a21)X

3Y

+ 1

2
a12a21(2a11a22 + a12a21)X

2Y 2 + a2
12a21a22XY 3 + 1

4
a12

2a22
2Y 4,

Y [3,0] = (det A)
(
a2

11Y
[3,0] + 3a2

12Y
[1,2] + 3a11a12Y

[2,1]) + 1

4
a3

11a21X
4

+ a2
11a12a21X

3Y + 3

2
a11a

2
12a21X

2Y 2 + a3
12a21Y

3X + 1

4
a3

12a22Y
4.

We restrict the above action to the subgroup SO(2) of rotation matrices by setting
a11 = cosφ,a12 = − sinφ,a21 = sinφ,a22 = cosφ. We use the moving frame method to
find invariants as described in the Appendix. Computationally this reduces to the substi-
tution a11 = X

r
, a12 = Y

r
, a21 = −Y

r
, a22 = X

r
, where r = √

X2 + Y 2 in (11). The resulting
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non-constant expressions comprise a set of generating invariants for the SO(2) action:

XSE =
√

X2 + Y 2 = r,

Y
[1,0]

SE = Y [1,0] − XY

2
,

Y
[1,1]

SE = 1

r

(

Y [1,1]X − 1

2
Y [2,0]Y − 1

6
X2Y 2

)

,

Y
[2,0]

SE = 1

r

(

Y [2,0]X + 2Y [1,1]Y − 1

3
X3Y − 2

3
XY 3

)

, (12)

Y
[1,2]

SE = 1

r2

(

Y [1,2]X2 − Y [2,1]XY + 1

3
Y [3,0]Y 2 − 1

12
X3Y 3

)

,

Y
[2,1]

SE = 1

r2

(

Y [2,1](X2 − Y 2) + 2Y [1,2]XY + 2

3
Y [3,0]XY − 1

4
X2Y 4 − 1

12
X4Y 2

)

,

Y
[3,0]

SE = 1

r2

(

Y [3,0]X2 + 3Y [1,2]Y 2 + 3Y [2,1]XY − 1

4
X5Y − 3

4
X3Y 3 − 3

4
XY 5

)

.

The invariants with respect to the special Euclidean group are obtained by making a sub-
stitution of Y = y − y0 and X = x − x0 in the above expressions (12):2 We note that
since r is invariant, the expressions in the parenthesis in the above formulas are also in-
variant.

We use the inductive approach, described in the Appendix, to build invariants under the
SL(2)-action defined by (11) with the condition det A = 1. The inductive method yields
SA(2)-invariants in terms of SE(2)-invariants (12):

Y
[1,0]

SA = Y
[1,0]

SE = Y [1,0] − XY

2
,

Y
[1,1]

SA = XSEY
[1,1]

SE = Y [1,1]X − 1

2
Y [2,0]Y − 1

6
X2Y 2,

Y
[1,2]

SA = Y
[1,2]

SE X2
SE = Y [1,2]X2 − Y [2,1]XY + 1

3
Y [3,0]Y 2 − 1

12
X3Y 3, (13)

Y
[2,1]

SA = Y
[2,1]

SE − Y
[2,0]

SE

Y
[1,1]

SE

Y
[1,2]

SE ,

Y
[3,1]

SA = 1

X2
SE

(

Y
[3,0]

SE + 3

2

Y
[2,0]

SE

Y
[1,1]

SE

Y
[2,1]

SE + 3

4

(
Y

[2,0]
SE

Y
[1,1]

SE

)2

Y
[1,2]

SE

)

.

By replacing (X,Y ) with (x − x0, y − y0) in (13) we return to the integral jet space coordi-
nates. In particular, Y

[1,0]
SA = Y [1,0] − 1

2XY = ∫ t

0 (x − x0)dy − 1
2 (x − x0)(y − y0).

The following three special affine invariants are used in the next section to solve the
classification problem with respect to both special and full affine groups:

2The notation for invariants suggests a certain correspondence between the invariants and the coordinate
functions of the integral jet space, which we make clear in the Appendix.
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I1 = Y
[1,0]

SA = Y [1,0] − 1

2
XY,

I2 = Y
[1,1]

SA = Y [1,1]X − 1

2
Y [2,0]Y − 1

6
X2Y 2, (14)

I3 = Y
[1,2]

SA = Y [1,2]X2 − Y [2,1]XY + 1

3
Y [3,0]Y 2 − 1

12
X3Y 3.

To obtain invariants with respect to the full affine group we need to consider the effect
of reflections and arbitrary scaling on the above invariants. We note that the transformation
x → λx and y → −λy induces the transformation I1 → −λ2I1, I2 → λ4I2 and I3 → −λ6I3.
The following rational expressions are thus invariant with respect to the full affine group:

I A
2 = I2

I 2
1

= Y [1,1]X − 1
2Y [2,0]Y − 1

6X2Y 2

(Y [1,0] − 1
2XY)2

,

(15)

I A
3 = I3

I 3
1

= Y [1,2]X2 − Y [2,1]XY + 1
3 Y [3,0]Y 2 − 1

12 X3Y 3

(Y [1,0] − 1
2XY)3

.

The first of the above invariants is equivalent to the one obtained in [17].

3.2 Geometric Interpretation of Invariants for Planar Curves

The first two integral invariants (14) readily lend themselves to a geometric interpretation.
Invariants I1 is the signed area B between the curve segment and the secant (see Fig. 1 in the
Introduction). Indeed, the term Y [1,0] in the invariant I1 is the signed area between the curve
γ (t) (whose initial point is translated to the origin) and the Y -axis, while XY

2 is the signed
area of the triangle A. Their difference is the area B . Since the SA(2)-action preserves areas,
I1 is clearly an invariant.

The interpretation of I2 is slightly more subtle. Using that Y [2,0] = X2Y − 2X[1,1] and
rearranging the terms we rewrite I2 as idea), and (16) is rewritten as

I2 = −1

3
((X2Y 2 − 3XY [1,1]) + (X2Y 2 − 3YX[1,1])),

where X = x − x0, Y = y − y0. (16)

Further, the curve γ (t) is lifted from R
2 to R

3 by defining z(t) = x(t)y(t) (similarly to the
kernel idea), and (16) is rewritten as

I2 = −1

3

((

XYZ − 3X

∫ t

0
ZdY

)

+
(

XYZ − 3Y

∫ t

0
ZdX

))

,

where Z = XY = (x − x0)(y − y0). (17)

The geometric meaning of (XYZ −3X
∫ t

0 ZdY) is illustrated in Fig. 3. The term
∫ t

0 ZdY

is the signed area “under” the plane curve (Y (t),Z(t)) in the YZ-plane. Thus X
∫ t

0 ZdY is
the signed volume C under the surface F = γ (t) × [0,X(t)] in Fig. 3. Since XYZ is the
signed volume of a rectangular prism (C + D in Fig. 3), then XYZ − 3X

∫ t

0 ZdY is the
signed volume of the rectangular prism (C + D) minus three times the volume C “under”
the surface γ (t) × [0,X(t)]. Interchanging X and Y we obtain a similar interpretation for
XYZ − 3Y

∫ t

0 ZdX.
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Fig. 3 Geometric interpretation
of the invariants I2

3.3 Integral Affine Invariants for Curves in R
3

We prolong the standard affine group action on curves in R
3:

⎛

⎝
x(t)

y(t)

z(t)

⎞

⎠ =
⎛

⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠

⎛

⎝
x(t)

y(t)

z(t)

⎞

⎠ +
⎛

⎝
v1

v2

v3

⎞

⎠ , det

⎛

⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠ �= 0,

to integral variables up to second order. We translate the initial point γ (0) to the origin,
and make the corresponding substitution X(t) = x(t) − x(0), Y (t) = y(t) − y(0),Z(t) =
z(t) − z(0) in the integrals. This reduces the problem to computing SL(3)-invariants under
the action (8) with n = 3. Among 21 integral variables

X[i,j,k](t) =
∫ t

0
X(t)iY (t)jZ(t)kdX(t), j + k �= 0, i + j + k ≤ 2,

Y [i,j,k](t) =
∫ t

0
X(t)iY (t)jZ(t)kdY (t), i + k �= 0, i + j + k ≤ 2, (18)

Z[i,j,k](t) =
∫ t

0
X(t)iY (t)jZ(t)kdZ(t), i + j �= 0, i + j + k ≤ 2,

we choose 11 independent:3 X[1,1,0], X[1,0,1], X[0,2,0], Z[1,0,0], Y [1,0,0], Y [1,0,1], Z[0,1,0],
Z[0,1,1], Z[0,2,0], Z[1,0,1], Z[1,1,0]. The rest can be expressed in terms of those using the
integration-by-parts formula. Using the inductive approach, we first compute the invariants
with respect to rotations SO(3). We find the following 8 independent invariants. (See Ap-
pendix for details of the derivation.) SE(3)-invariants are obtained by replacing (X,Y,Z)

with (x − x0, y − y0, z − z0). Let R = √
X2 + Y 2 + Z2 and Υ =

√
(Z

[0,2,0]
R )2 + 4(Z

[0,1,1]
R )2

3The canonical choice dictated by (5) is Y [1,0,0] , Y [2,0,0], Y [1,1,0], Y [1,0,1], Z[1,0,0] , Z[0,1,0], Z[0,1,1],
Z[0,2,0] , Z[2,0,0] , Z[1,0,1], Z[1,1,0] . We made a computation with an equivalent but non-canonical set of
variables.
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then

XSE = R

Z
[0,1,0]

SE = 1

R
(XYZ − 2XZ[0,1,0] + 2YZ[1,0,0] − 2ZY [1,0,0]),

Y
[1,0,0]

SE = 1

Υ
(Z

[0,2,0]
R Y

[1,0,0]
R + 2Z

[0,1,1]
R Z

[1,0,0]
R ),

Y
[1,0,1]

SE = 1

Υ 2
(2Z

[0,2,0]
R Z

[0,1,1]
R Z

[1,0,1]
R + Z

[0,1,1]
R Z

[0,2,0]
R X

[0,2,0]
R

− 4Z
[0,1,1]
R

2
Z

[1,1,0]
R + Z

[0,2,0]
R

2
Y

[1,0,1]
R ),

(19)
Z

[0,2,0]
SE = Υ,

Z
[1,0,1]

SE = 1

Υ 2
(Z

[0,2,0]
R

2
Z

[1,0,1]
R − 2Z

[0,2,0]
R Z

[0,1,1]
R Z

[1,1,0]
R − 2Z

[0,1,1]
R

2
X

[0,2,0]
R

− 2Z
[0,1,1]
R Z

[0,2,0]
R Y

[1,0,1]
R ),

Z
[1,1,0]

SE = 1

Υ 2
(2Z

[0,2,0]
R Z

[0,1,1]
R Z

[1,0,1]
R + Z

[0,1,1]
R Z

[0,2,0]
R X

[0,2,0]
R

− 4Z
[0,1,1]
R

2
Y

[1,0,1]
R + Z

[0,2,0]
R

2
Z

[1,1,0]
R ),

where expressions Z
[1,0,0]
R , Z

[0,1,0]
R , Y

[1,0,0]
R , Z

[0,1,1]
R , Z

[0,2,0]
R , Z

[1,0,1]
R , Z

[1,1,0]
R , Y

[1,0,1]
R , X

[1,1,0]
R ,

X
[1,0,1]
R , X

[0,2,0]
R are provided at the end of the Appendix. Note that since R and Υ are invari-

ant, then so are all expression in the parenthesis of (19).
Using the inductive approach, we obtain the expressions for SA(3)-invariants in terms of

SE(3)-invariants.

XSA = Z
[0,1,0]

SE XSE,

Y
[1,0,1]

SA = 2Y
[1,0,1]

SE Z
[0,1,0]

SE − 2Z
[0,1,0]

SE Z
[1,1,0]

SE + 3Z
[0,2,0]

SE Z
[1,0,0]

SE

2Z
[0,1,0]

SE

− 1

2
, (20)

Z
[1,0,1]

SA = Z
[1,0,1]

SE Z
[0,2,0]

SE

2

Z
[0,1,0]

SE

3 .

We introduce a simpler notation for the special affine invariants which will subsequently be
used to solve the classification problem with respect to both the special and the full affine
groups:

J1 = XSA = n1X + n2Z − n3Y,

J2 = −4

(

Y
[1,0,1]

SA + 1

2

)

XSA

= 2n2(XYZ2 − 3Z[0,1,1]X + 3YZ[1,0,1] − ZZ[1,1,0] − 2ZY [1,0,1])
(21)+ n3(2XY 2Z + 3XZ[0,2,0] − 3ZX[0,2,0] − 4YZ[1,1,0] − 2YY [1,0,1])

− 2n1(3YX[1,0,1] − 3ZX[1,1,0] + XZ[1,1,0] − XY [1,0,1]),

J3 = 27

8
Z

[1,0,1]
SA X3

SA,
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where X = x − x0, Y = y − y0,Z = z − z0 and n1 = YZ
2 − Z[0,1,0], n2 = XY

2 − Y [1,0,0], n3 =
XZ

2 − Z[1,0,0]. The expression of the third invariant in terms of the original integral variables
is too long to be included.

To obtain the invariants with respect to the full affine group we consider the effect of
reflection and scaling on these invariants. For λ ∈ R scaling (x, y, z) → (λx,λy,−λz) in-
duces scaling J1 → −λ3J1, J2 → λ6J2 and J3 → λ6J3. We therefore obtain the following
two invariants with respect to the full affine group of transformations:

J A
2 = J2

J 2
1

and J A
3 = J3

J 2
1

. (22)

3.4 Geometric Interpretation of Invariants for Spatial Curves

The first invariant J1 may be viewed as an extension of the 2D invariant I1 to 3D. Indeed,
n1, n2, and n3 represent exactly the same area as the 2D invariant I1 (in Fig. 3) in three co-
ordinate planes. They are extended to a volume of a three-dimensional solid, by multiplying
by X, Z, and Y respectively. For example, n1X is the volume C under surface F in Fig. 3,
and n2Z and n3Y are similar volumes obtained by relabelling of X, Y , Z axis. Therefore,
the invariant J1 is the summation of two volumes n1X and n2Z minus the volume n3Y . The
geometric interpretation of the invariants J2 and J3, however, remains at the present time
unclear to us.

4 Curve Classification via Integral Signatures

The integral invariants derived in the previous section depend on the choice of the initial
point and the parameterization of a curve. For instance, consider a planar curve γ (t) =
(1/2 sin t − cos t +1, sin2 t + cos t −1), shown in Fig. 4a. A curve γ (t) (Fig. 4b) is obtained

from γ (t) by a special affine transformation
( 2 1

2 1.5

)
. A curve γa(t) (Fig. 4c) is obtained from

γ (t) by a full affine transformation
( 2 2

4 3

)
.

The integral invariants I1 and I2 for curves in Fig. 4a and b with a matching parameteri-
zation coincide and are shown in Fig. 5a and b.

As illustrated in Fig. 5c and d, these invariants change under reparametrization τ =√
t + 1. Therefore the graph of invariants with respect to an arbitrary parameter can not be

used for curves comparison. In theory one can achieve a uniform affine invariant curve para-
meterization by using an affine analog of the Euclidean arc-length parameter dα = κ1/3ds,
where κ is Euclidean curvature and ds is Euclidean arc-length. We would like, however, to
keep our methods derivative free. Even when the uniform parameterization is achieved, the
dependence of the invariants on the choice of the initial point presents another comparison
challenge for matching closed curves, or for matching parts of the contours.

The signature construction, proposed in this section, leads to classification methods
which are independent of parametrization and of the initial point. Inspired by signatures
based on differential invariants [6], we use integral invariants to construct two types of sig-
natures that classify curves under affine transformation: the global signature and the local
signature. Global integral signature is independent of parametrization, but is dependent on
the choice of the initial point and can not be used to compare partial contours. Local integral
signature is independent of both the initial point and parametrization. They can be used to
compare parts of contours and can therefore be used on images with occlusions. As our ex-
periments illustrate they are slightly more sensitive to noise than global signatures, but still
provide robust classification results.
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Fig. 4 Planar curve γ and its
transformations

(a) Curve γ (t)

(b) Special affine transformation γ (t)

(c) Full affine transformation γa(t)
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Fig. 5 Dependence of invariants
on re-parametrization:
τ = √

t + 1

(a) Invariant I1 for γ (t) and γ (t)

(b) Invariant I2 for γ (t) and γ (t)

4.1 Global Integral Affine Signatures

A global integral signature of a curve is the variation of one independent integral invariant,
evaluated on the curve, relative to another integral invariant. If a curve is mapped to another
curve by a group transformation, their signatures coincide independently of the selected
parametrization. The global signature, however, does depend on a choice of the initial point.

4.1.1 Global Affine Signature for Curves in R
2

The special affine signature of a planar curve γ (t) is constructed by, first, evaluating invari-
ants I1 and I2 in (13) on this curve, and then plotting the parameterized curve (I1(t), I2(t))

in R
2. For instance, the signature of the planar curve γ (t) shown in Fig. 4a is a planar curve

in Fig. 6. The signature of the curve γ (t) (Fig. 4b), which is related to γ (t) by an affine
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Fig. 5 (Continued)

(c) Invariant I1 for γ (τ) and γ (τ)

(d) Invariant I2 for γ (τ) and γ (τ)

transformation, coincides with the signature of γ (t). Moreover, it coincides with the signa-
tures of reparametrized curves γ (τ) and γ (τ).

Similarly, a full affine signature can be defined as a parameterized planar curve (I A
2 , I A

3 )

defined by invariants in (15). Alternatively, we can use the two special affine invariants to
cancel the effects of reflections and arbitrary scalings,

Ĩ1(t) = |I1(t)|
maxt |I1| , Ĩ2(t) = |I2|

maxt (I
2
1 )

. (23)

Both invariants are reduced relative to the range of |I1|. The range of Ĩ1 is from 0 to 1. It is
not difficult to show that maxt |I1| = 0 on γ if and only if γ is a straight line. In this case
Ĩ1(t) and Ĩ2(t) are undefined, but straight line regions can be easily detected by other means.

The full affine signature of a plane curve γ (t) is obtained by, first, evaluating Ĩ1 and Ĩ2

on this curve and by then plotting the parameterized curve (Ĩ1(t), Ĩ2(t)) in R
2. For example,
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Fig. 6 Signatures for γ (t),
γ (t),γ (τ), and γ (τ) coincide

Fig. 7 Full affine signatures for
curves γ (t) and γa(t) coincide

curves in Fig. 4a and c are related by a non-area-preserving affine transformation. Their full
affine signatures coincide as shown on Fig. 7.

4.1.2 Global Affine Signatures for Curves in R
3

To construct special affine signatures for spatial curve we use invariants J1 and J2 given
by (21). Similarly to 2D case, the special affine signature of a spatial curve β(t) is ob-
tained by, first, evaluating J1 and J2 on this curve, and then plotting the parameterized curve
(J1(t), J2(t)) in R

2.
For example, the signature of a spatial curve β(t) = (sin t − 1/5 cos2 t + 1/5,1/2 sin t −

cos t + 1, sin2 t + cos t − 1), shown in Fig. 8a, is the plane curve shown on Fig. 9. A curve
β(t) is obtained from β by a special affine transformation

⎛

⎝
0.3816 0.7631 1.1447
1.9079 1.5263 2.2894
2.6710 3.0526 3.4341

⎞

⎠ .
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Fig. 8 Spatial curve β and its
transformations

(a) Original curve β(t)

(b) Special affine transformation β(t)

(c) Full affine transformation βa(t)
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Fig. 9 Signatures for β(t) and
β(t) coincide

A curve βa(t) is obtained from β by a full affine transformation

⎛

⎝
1 2 3
4 5 6
9 8 7

⎞

⎠ .

As Fig. 9 illustrates, the special affine signatures of β(t) and β(t) coincide.
Similar to the 2D case, the full affine signature for curves in 3D is obtained by reducing

special affine invariants J1 and J2 by the range of |J1|

J̃1(t) = |J1(t)|
maxt |J1| , J̃2(t) = J2(t)

maxt (J
2
1 )

. (24)

The full affine signature of a spatial curve β(t) is obtained by first evaluating J̃1 and J̃2

on this curve, and by then plotting the parameterized curve (J̃1(t), J̃2(t)) in R
2. The full

affine signatures of β , β̄ and β̄a coincide as shown in Fig. 10.
The advantage of global signatures is their independence of parametrization, whereas the

result of evaluation of invariants J1 and J2 on a curve depends on the choice of parame-
trizations similarly to I1 and I2 in 2D case. The disadvantage of global signatures is in their
dependence on the choice of the initial point of a curve. The local signature construction in
the next section overcomes this dependence.

4.2 Local Integral Affine Signatures

The signatures defined in the previous section can not be used for classification unless the
initial point of a curve is known. This becomes an obstacle for comparing closed curves
or for matching partial contours. For illustration, let us choose two different initial points, a
black circle or a red star, on the planar curve in Fig. 11. The resulting global affine signatures
are different as illustrated in Figs. 12a and b. We overcome the dependence on the initial
point by introducing local signatures. To proceed with the construction of the local signature,
we replace the integration from the initial point with integration on local segments. To retain
affine invariant properties of the signatures, we need to partition the curve in an invariant
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Fig. 10 Full affine signatures for
β(t), β(t), βa(t)

Fig. 11 A planar curve with two
different choices of the initial
points

manner. Such partition can be achieved using the notion of affine arc-length from classical
differential geometry. Our goal, however, is to propose a derivative free method, and so we
use the lowest order integral invariants, namely I1 for plane curves and J1 for spatial curve
to obtain an equi-affine partition of a given curve. The details are described in the following
subsections.

4.2.1 Local Affine Signatures for Curves in R
2

We will use I1 to partition a given curve into equi-affine sub-segments. Assume that γ

is parametrized by t ∈ [0,1]. Recall that the integration in the integral variables is per-
formed from the initial point γ (0) to a current point on the curve γ (t). For instance,
I1(t) = ∫ t

0 XdY − 1
2XY , where X = x(t) − x(0) and Y = y(t) − y(0). Thus I1(t) is a func-

tion from [0,1] to R.
We define the evaluation of an invariant on a sub-segment of γ by treating the starting

point of the sub-segment as the initial point, and computing the value of integral variables at
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(a) Initial point is the black circle in Fig. 11

(b) Initial point is the red star in Fig. 11

Fig. 12 Global signatures for the same curve with two different choices of the initial point

its end point. In particular, for a sub-segment defined by the parameter range [p,q] ⊂ [0,1],
we compute the evaluation I

[p,q]
1 = ∫ q

p
(x(t) − x(p))dy(t) − 1

2 (x(q) − x(p))(y(q) − y(p)),
and similarly for invariants I2 and I3 defined by (13). We note that the evaluation of an
invariant on a segment is a real number.

We choose a sufficiently small Δ > 0 and define an equi-affine partition 0 = t0 < t1 <

· · · < tN = 1 of the curve γ (t), t ∈ [0,1] into sub-segments by the condition

∣
∣I

[ti−1,ti ]
1

∣
∣ = Δ. (25)

In practice we choose Δ proportionally to the maximum of the absolute value of I1, i.e.,
we choose an integer M and set Δ = maxt |It |

M
. Note that the total number N of segments

that we obtain using condition (25) differs from M in general. The local discrete special
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Fig. 13 Local special affine
signature for the curve shown on
Fig. 11

affine signature of γ is defined by the evaluation of I2 and I3 on the intervals [ti−1, ti], i =
1, . . . ,N , that is a set of points with coordinates (I

[ti−1,ti ]
2 , I

[ti−1,ti ]
3 ), i = 1, . . . ,N . Figure 13

shows the local discrete special affine signature for the curve shown in Fig. 11. The signature
does not depend on a choice of the starting point. To obtain local discrete affine signature of

γ , we use reduced invariants, that is we plot (
I
[ti−1,ti ]
2

maxt (I
2
1 )

,
I
[ti−1,ti ]
3

maxt |I3
1 | ), i = 1, . . . ,N .

4.2.2 Local Affine Signatures for Curves in R
3

For spatial curves we proceed in a similar manner as for planar curves. We use invariant J1 to
partition a curve γ (t), t ∈ [0,1] into N sub-intervals defined by a = t0 < t1 < · · · < tN = b

such that J
[ti−1,ti ]
1 = Δ, i = 1, . . . ,N , where Δ > 0 is proportional to the maximum of the

absolute value of J1. We define a local special affine signature by evaluation of J2 and J3 on
the intervals [ti−1, ti], i = 1, . . . ,N , that is by a set of points on the plane with coordinates
(J

[ti−1,ti ]
2 , J

[ti−1,ti ]
3 ), i = 1, . . . ,N .

Figure 14b shows the local special affine signature for a curve shown on Fig. 14a. The
signature does not depend on our choice of initial point.

5 Application to 3D Object Classification

The features of many computer vision and pattern analysis problems are spatial curves.
We can hence view the classification problem as that of assorting the similarity of curves
in 3D, in particular, when subjected to affine transformations. In this section, we apply
integral special affine invariants J1 and J2, the global special affine signature, and the local
special affine signature to classify curves in 3D under special affine transformations. The
performance of each of the proposed methods is evaluated. Applying these invariants to
classification of 3D objects based on a set of characteristic spatial curves is in line of [2],
and will be considered in subsequent publications.
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(a) A curve with two different choices of an initial point

(b) Local special affine signature

Fig. 14 A spatial curve and its local special affine signature

5.1 Experimental Design

The Princeton Shape Benchmark [20] provides a repository of 3D models. A subset of three
models are shown in Fig. 15. We extract a total of 100 characteristic curves, and each of
them are re-sampled to 5000 points with the same arclength. We applied to each curve
9 randomly generated 3D special affine transformations as shown on (Fig. 16). To make
this problem even more challenging and to illustrate the noise sensitivity of the proposed
approach, Gaussian noise with distribution N(0, σ 2) is added to each of the variations. We
therefore obtain a classification set of 900 curves that has to be separated into 100 equivalent
classes under affine transformations. The training set consists of 100 original curves without
any noise and transformation. The discrimination power and sensitivity to noise are analyzed
using the error rate of classification. We implemented a Nearest Neighbour (NN) classifier
in a Euclidean space using Euclidean distance. In order to illustrate the advantages of the
signature construction, we design two experiments. The first experiment uses a common
parametrization for both the training and testing curves, while in the second experiment, we
choose two different parametrizations (samplings) for the testing data.
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Fig. 15 3D models from the Princeton shape benchmark

Fig. 16 A curve and 9 variations of it under affine transformation

5.2 Experimental Results

Three experiments are carried out with different noise variance, namely σ = 2 (Fig. 17),
σ = 1, and σ = 0.5.

In the first experiment curves in testing and training sets had the same parameterization.
The classification error rates for the three different values of sigma are shown in Table 1.
Both the integral invariants and the signatures perform well as indicated by the error rates.
For comparison, the classical differential invariants have a classification error rate more
then 80%, which makes the differential invariants practically useless. Since the order of
integral variables involved in J2 is higher than J1, as well as the explicit form of J2 is
more complicated than J1, the performance of J2 is not as good as that of J1. The global
signature is constructed with both J1 and J2, and the local signature is based on J2 and J3.
The performance of these signatures is therefore slightly worse than J2.
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(a)

(b)

Fig. 17 (a) A spatial curve without noise (b) with Gaussian noise N(0,4)

Table 1 Classification error rate with same parametrization, same initial points

Noise variance J1 J2 Global signature Local signature

σ = 0.5 0.0022 0.0472 0.06 0.07

σ = 1 0.04 0.12 0.15 0.17

σ = 2 0.0789 0.2233 0.28 0.32

If the parameterizations are not the same, the plots of invariants J1 and J2 with respect to
a parameter can not be used for a classification purpose as illustrated in Table 2. Even with
the lowest noise variance, the error rates are more than 0.4 for J1 and 0.6 for J2. However,
neither the global signature nor local signature are affected.
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Table 2 Classification error rate with different parametrization, same initial points

Noise variance J1 J2 Global signature Local signature

σ = 0.5 0.42 0.61 0.06 0.07

σ = 1 0.48 0.70 0.15 0.17

σ = 2 0.56 0.83 0.28 0.32

Table 3 Classification error rate with different parametrization, different initial points

Noise variance J1 J2 Global signature Local signature

σ = 0.5 0.87 0.95 0.95 0.07

σ = 1 0.91 0.97 0.97 0.17

σ = 2 0.94 0.98 0.98 0.32

If we make an arbitrary selection of the initial points, both individual invariants (J1 and
J2) and global signature have poor performance as shown in Table 3. Only local signature
may be used to characterize a curve.

In summary, if the training data and testing data have similar parameterization and same
initial point, either invariants or signatures may be used. Under different parametrization,
the global signature is the best choice. In the case when the starting point is undefined one
needs to use local signature.

6 Conclusion

In this paper we presented explicit formulae for affine integral invariants for planar and
spatial curves in terms of Euclidean invariants, and introduced signatures based on these
invariants. Two curves that are equivalent with respect to affine group of transformation
have the same signature. Although we have focused here on a larger group of the affine
transformations, the integral Euclidean invariants, presented here, can be used to classify
curves under Euclidean transformations with the analogous signature constructions.

Integral invariants are functions of a parameter and hence depend on the parameterization
(curve sampling). The signatures, based on these invariants, are independent of parameter-
ization. Global integral signatures depend on a choice of the initial point. Local integral
signatures provide a classification method independent of the choice of the initial point,
and so they can hence be used on images with occlusions and for comparing fragments of
contours. They are slightly more sensitive to noise than global signatures.

Our interest in noise tolerant integral invariants for spatial curves is motivated by an in-
creasing availability of 3D data acquisition systems and subsequent emerging interest in 3D
image analysis. As an experiment, a classification of characteristic curves of 3D objects,
subjected to random affine transformations and noise, was conducted by using individual
invariants, and global and local signatures. Integral invariants allow us to perform noise
tolerant classification of curves with respect to affine transformations (for comparison: dif-
ferential invariants give 80% error rate).

Substantial further experiments in this direction and comparison of the proposed method
with numerous other approaches is the subject of our current and future work. In partic-
ular, we would like to compare the performance of our methods with methods based on
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the following approaches. Arbter et al. [3] applied affine-invariant Fourier descriptors to
the problem of 3D object recognition. More specifically, affine-invariant Fourier descriptors
were applied to planar feature-curves extracted from a 3D object. Tieng and Boles [35] in-
troduced a wavelet based affine-invariant representation for planar objects. Sener and Unel
[32] used principal component analysis (PCA) and independent component analysis (ICA).
Wang and Teoh [39] developed an affine invariant approach to model planar curves in B-
spline model and to match curves in curvature scale space. Note, however, that in all these
cases, the affine classification methods were limited to planar curves. Our literature-search
indicated that the present paper is the first to introduce a noise tolerant method for the affine
curve-matching in 3D.

Understanding theoretical properties of integral invariants introduced in this paper, in
particular, establishing the structure of the entire set of these invariants, as well as extensions
to higher dimensions and other groups are of interest.

Appendix: Derivation of Invariants

7.1 Cross-section and Moving Frame Map

Building on the works [15, 16, 21], Fels and Olver [11] generalized Cartan’s normalization
procedure [7], and proposed a general algorithm for computing invariants. The Fels-Olver
algorithm relies on a map ρ : S → G with an equivariant property:

ρ(g · s) = ρ(s) · g−1, ∀g ∈ G, ∀s ∈ S. (26)

From Theorem 4.4 in [11], it follows that such map exists if and only if the action of G is
free and, in addition, there exists a global cross-section, i.e. a subset K ⊂ S that intersects
each orbit Os at a unique point. Indeed, under the above assumption the map ρ may be
defined by the condition ρ(s) · s ∈ K. Then ρ(s) · s = ρ(g · s) · (g · s) is the unique point of
the intersection of Os and K. Since the action assumed to be free it follows that s may be
“cancelled” and hence the condition (26) is satisfied.

If G is a Lie group acting smoothly on R
n and both S ⊂ R

n and K ⊂ S are smooth
submanifolds, then R

n-coordinate components of the projection ι(s) = ρ(s) · s : S → K are
smooth invariant functions, called normalized invariants. Normalized invariants contain a
maximal set of functionally independent invariants, and have a replacement property, which
allows us to rewrite any invariant in terms of them by simple substitution [11, 18, 19].

Although, a global smooth cross-section does not always exist, a local smooth cross-
section4 passing through every point of S can be found for every semi-regular action.5 The
freeness assumption can be also relaxed to a semi-regularity assumption. With these weaker
assumptions the above method can be used to construct local invariants [11, 19].6

For algebraic groups acting on algebraic varieties, a purely algebraic counterpart of the
Fels-Olver construction was obtained in [18, 19]. The algebraic method can be combined
with the inductive approach described below. In some particular examples, including the 3D

4A local cross-section is defined on an open subset of U ⊂ S and ∀s ∈ U intersects each connected component
of Os ∩ U at a unique point.
5An action of G is called semi-regular if all orbits have the same dimension.
6A function f , defined on an open subset U of S, is a local invariant if ∀s ∈ U there exists an open neigh-
borhood Gs of e ∈ G s.t. condition (1) is satisfied for all g ∈ Gs .
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example presented here, the computation based on the moving frame map ρ turns out to be
more practical.

When the group G is of a relatively large dimension, computation of invariants by either
a geometric or algebraic approach becomes challenging. In [22] two modifications of the
moving frame method were proposed to simplify the computation by splitting it into two
steps: invariants of a subgroup A ⊂ G are first computed, and then invariants of the entire
group are constructed in terms of those. For the problem at hand, we use one of these mod-
ifications, called the inductive approach, which is applicable when a group factors into a
product of two subgroups.

7.2 Inductive Approach

Definition 7.1 A group G factors as a product of its subgroups A and B if for any g ∈ G

there are a ∈ A and b ∈ B such that g = ab.

We write G = A · B . If in addition A ∩ B = e, then for each g ∈ G there are unique
elements a ∈ A and b ∈ B such that g = ab.

From Theorem 4.4 in [22] it follows that if G = B · A, such that A ∩ B is discrete, and
G acts freely on a manifold S then ∀s ∈ S there exists a local cross-section KA, contain-
ing s, invariant under the action of the subgroup B . From Lemma 4.7 in [22] it follows that
invariants of G can be constructed from the invariants of A using the following method.

Inductive method

1. Restrict the G-action to A. Find a local cross-section KA ⊂ S for the action of A which
is invariant under the action of B .

2. Construct a moving frame map ρA : S → A defined by the condition ρA(s) · s ∈ KA,

∀s ∈ S, by solving the corresponding equations. Composition of coordinate functions
with the projection ι(s) = ρA(s) · s : S → KA are invariant with respect to the action
of A.

3. Restrict the action of G to the action of its subgroup B on the invariant subset KA and
choose a local cross-section KB ⊂ KA.

4. Construct a moving frame map ρB : KA → B defined by the condition ρB(s) · z ∈
KB,∀z ∈ KA, by solving the corresponding equations.

5. The G-moving frame map ρ : S → G is defined by ρ(s) = ρB(ρA(s) · s)ρA(s), and
G-invariants are the coordinate components of ρ(s) · s = ρB(ρA(s) · s) · (ρA(s) · s) =
ρB(ιA(s)) · ιA(s).

7.3 Affine Integral Invariants for Curves in R
2

We have a product decomposition SL(2) = B · A, where B = {( b11 b12
0 1

b11

)|b11 > 0} and A =
SO(2) is a group of rotations. The intersection B ∩ A = {e}, and therefore we can apply the
inductive method as follows.

1. We restrict the SL(2)-action (11) to the subgroup SO(2) of the rotation matrices by
setting a11 = cosφ,a12 = − sinφ,a21 = sinφ,a22 = cosφ. A subset KA defined by con-
ditions Y = 0,X > 0 serves as a cross-section on an open subset of the integral jet bundle.
Moreover KA is invariant under the restriction of (11) to subgroup B .
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2. The corresponding moving frame map

ρA(s) =
⎛

⎝
X√

X2+Y 2

Y√
X2+Y 2

− Y√
X2+Y 2

X√
X2+Y 2

⎞

⎠

is obtained by solving the equation Y = 0 with the condition X > 0 (see the first line
of (11)). The projection ιA : R

5 → KA, obtained by substitution ρA into (11), produces a
point whose coordinates are invariant under the action of SO(2). Non-constant normal-
ized invariants are given by (12) and YSE = 0 is the remaining constant invariant.

3. We now restrict the action (11) to the action of a subgroup B on an invariant subset KA.
We obtain the following transformations.

XA = b11XA, Y
[1,0]
A = Y

[1,0]
A ,

Y
[1,1]
A = 1

b11
Y

[1,1]
A , Y

[2,0]
A = b11Y

[2,0]
A + 2b12Y

[1,1]
A ,

Y
[1,2]
A = 1

b2
11

Y
[1,2]
A , Y

[2,1]
A = Y

[2,1]
A + 2

b12

b11
Y

[1,2]
A ,

Y
[3,0]
A = b2

11Y
[3,0]
A + 3b2

12Y
[1,2]
A + 3b11b12Y

[2,1]
A .

(27)

A subset KB ⊂ KA defined by the equations XA = 1, Y
[2,0]
A = 0 serves as a cross-section

on the subset of KA, where Y
[1,1]
A �= 0.

4. This leads to the moving frame map

ρB(s) =
⎛

⎝
1

XA
− Y

[2,0]
A

2Y
[1,1]
A

XA

0 XA

⎞

⎠ .

The projection ιB : KA → KB , defined by ιB(s) = ρB(s) · s, produces a point with coor-
dinates

XB = 1, Y
[1,0]
B = Y

[1,0]
A ,

Y
[1,1]
B = XAY

[1,1]
A , Y

[2,0]
B = 0,

(28)
Y

[1,2]
B = X2

AY
[1,2]
A , Y

[2,1]
B = Y

[2,1]
A − Y

[2,0]
A

Y
[1,1]
A

Y
[1,2]
A ,

Y
[3,1]
B = 1

X2
A

(

Y
[3,0]
A + 3

2

Y
[2,0]
A

Y
[1,1]
A

Y
[2,1]
A + 3

4

(
Y

[2,0]
A

Y
[1,1]
A

)2

Y
[1,2]
A

)

,

invariant under the B-action (27) on KA.
5. Replacing coordinates Y

[i,j ]
A with the corresponding Y

[i,j ]
SE given by (12) produces inde-

pendent invariants (13).
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7.4 Affine Integral Invariants for Curves in R
3

We have a product decomposition SL(3) = B · A, where

B =

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

b11 b12 b13

0 b22 b23

0 0 1
b11b22

⎞

⎟
⎠

∣
∣
∣
∣b11 > 0, b22 �= 0

⎫
⎪⎬

⎪⎭

and A = SO(3) is a group of rotations. The intersection B ∩ A = {e} is trivial. We again
follow the steps of the inductive method.

1. We restrict the SL(3)-action (8) to the action of SO(3) whose elements can be repre-
sented as the product of three rotations:

⎛

⎝
1 0 0
0 cosψ − sinψ

0 sinψ cosψ

⎞

⎠

⎛

⎝
cosφ 0 sinφ

0 1 0
− sinφ 0 cosφ

⎞

⎠

⎛

⎝
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞

⎠ .

A subset KA defined by conditions Y = 0,Z = 0,Z[0,1,1] = 0,X > 0 serves as a cross-
section on an open subset of the integral jet bundle where X2 + Y 2 + Z2 > 0. The cross-
section KA is invariant under the action of B .

2. The corresponding moving frame map ρA is obtained by solving the equation
Y = 0, Z = 0, Z[0,1,1] = 0 with the condition X > 0. Explicitly, let r = √

X2 + Y 2,

R = √
X2 + Y 2 + Z2 and Υ =

√
(Z

[0,2,0]
R )2 + 4(Z

[0,1,1]
R )2, where Z

[0,1,1]
R and Z

[0,2,0]
R are

given on the last page of the Appendix, then

cos θ = X

r
, cosφ = r

R
, cosψ = Z

[0,2,0]
R

Υ
,

sin θ = −Y

r
, sinφ = Z

R
, sinψ = −2

Z
[0,1,1]
R

Υ
.

(29)

The corresponding set of SO(3) invariants is given by (19).
3. We now restrict the SL(3)-action to the action of a subgroup B on an invariant subset

of KA. We obtain the following transformations:

XA = b11XA,

Z
[0,1,0]
A = 1

b11
Z

[0,1,0]
A ,

Z
[1,0,0]
A = 1

b22
Z

[1,0,0]
A + b12

b11b22
Z

[0,1,0]
A ,

Y
[1,0,0]
A = b11b22Y

[1,0,0] − b13b22Z
[0,1,0]
A + b11b23Z

[1,0,0]
A + b12b23Z

[0,1,0]
A ,

Z
[0,2,0]
A = b22

b11
Z

[0,2,0]
A ,

Z
[1,0,1]
A = 1

b11b
2
22

Z
[1,0,1]
A ,
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Z
[1,1,0]
A = Z

[1,1,0]
A + b23

b22
Z

[1,0,1]
A + b12

b11
Z

[0,2,0]
A ,

Y
[1,0,1]
A = Y

[1,0,1]
A + b23

b22
Z

[1,0,1]
A − b12

2b11
Z

[0,2,0]
A .

A subset KB ⊂ KA defined by equations

Z
[0,1,0]
A = 1, Z

[1,0,0]
A = 1, Y

[1,0,0]
A = 1, Z

[0,2,0]
A = 1, Z

[1,1,0]
A = 1

is a cross-section on an open subset of KA.
4. The corresponding moving frame map ρB is

b11 = Z
[0,1,0]
A , b12 = −Z

[0,2,0]
A Z

[1,0,0]
A − Z

[0,1,0]
A

Z
[0,2,0]
A

,

b22 = Z
[0,1,0]
A

Z
[0,2,0]
A

, b23 = −Z
[0,1,0]
A Z

[1,1,0]
A + Z

[0,2,0]
A Z

[1,0,0]
A

Z
[0,2,0]
A Z

[1,0,1]
A

,

b13 = 1

Z
[0,2,0]
A Z

[1,0,1]
A Z

[0,1,0]
A

2 (Z
[0,1,0]
A

2
Z

[0,2,0]
A Z

[1,0,0]
A − Z

[0,1,0]
A

3
Z

[1,1,0]
A

+ Z
[0,2,0]
A Z

[1,0,1]
A Z

[0,1,0]
A

2
Y

[1,0,0]
A − Z

[1,0,1]
A Z

[0,2,0]
A

2
).

The coordinate components of the projection ρB(s) · s : KA → KB

XB = Z
[0,1,0]
A XA,

Z
[1,0,1]
B = Z

[1,0,1]
A Z

[0,2,0]
A

2

Z
[0,1,0]
A

3 ,

Y
[1,0,1]
B = 2Y

[1,0,1]
A Z

[0,1,0]
A − 2Z

[0,1,0]
A Z

[1,1,0]
A + 3Z

[0,2,0]
A Z

[1,0,0]
A

2Z
[0,1,0]
A

− 1

2

are invariant under the action of B on KA.
5. Replacing XA,Y

[i,j,k]
A ,Z

[i,j,k]
A with XSE,Y

[i,j,k]
SE ,Z

[i,j,k]
SE given by (19) produces indepen-

dent invariants (20).

The following auxiliary expressions were used in the paper where r = √
X2 + Y 2,R =√

X2 + Y 2 + Z2:

Z
[0,1,0]
R = − 1

2R

(
XYZ − 2XZ[0,1,0] + 2YZ[1,0,0] − 2ZY [1,0,0]),

Z
[1,0,0]
R = − 1

2r

(
X2Z − 2XZ[1,0,0] + Y 2Z − 2YZ[0,1,0]),

Y
[1,0,0]
R = − 1

2rR

(
YX3 + XY 3 − 2Y 2Y [1,0,0] − 2ZYZ[1,0,0] − 2X2Y [1,0,0] + 2ZXZ[0,1,0]),

Z
[0,1,1]
R = − 1

6rR

(
2YX3Z2 − 6X3Z[0,1,1] + 6X2YZ[1,0,1] − 6X2ZY [1,0,1]



Classification of Curves in 2D and 3D via Affine Integral Signatures 935

− 6XZ[0,1,1]Y 2 + 3XYZZ[0,2,0] + 4Z2Y 3X + 6XYZX[1,0,1]

− 6XZ2X[1,1,0] − 6Y 2ZZ[1,1,0] − 6Y 2ZY [1,0,1] + 6Y 3Z[1,0,1] − 3Z2YX[0,2,0]),

Z
[0,2,0]
R = − 1

3rR

(−3X2Z[0,2,0] − 2Y 2X2Z + 6XYZ[1,1,0] + 3XZX[0,2,0]

+ 6Y 2X[1,0,1] − 6ZYX[1,1,0]),

Z
[1,0,1]
R = 1

6r2R

(−4Z2X4 + 6Z[1,0,1]X3 + 6X2YZ[0,1,1] − 2X2Z2Y 2 + 6ZX2X[1,0,1]

− 6XYZZ[1,1,0] + 6XZ[1,0,1]Y 2 − 3Y 2ZZ[0,2,0] + 6Y 3Z[0,1,1] − Z2Y 4
)
,

Z
[1,1,0]
R = 1

6r2R2

(
6Z2XYX[1,0,1] − 6ZXY 2X[1,1,0] − 3ZX2YX[0,2,0] + 6Z2Y 2Y [1,0,1]

− 4ZX5Y + ZY 5X + 6X4Z[1,1,0] − 6Y 4Z[1,1,0]

− 6ZYZ[1,0,1]X2 + 6ZXZ[0,1,1]Y 2 + 3Z2XYZ[0,2,0] − 6ZX3X[1,1,0]

− 3X3Y 3Z + 12X3YX[1,0,1] + 12XY 3X[1,0,1]

− 6ZY 3Z[1,0,1] + 6X3YZ[0,2,0] + 6XY 3Z[0,2,0] + 6ZX3Z[0,1,1]

− 6X3Z3Y + 6X2Z2Z[1,1,0] + 6X2Z2Y [1,0,1] − 3ZY 3X[0,2,0] − 3Z3Y 3X
)
,

Y
[1,0,1]
R = − 1

6r2R2

(−6X4Y [1,0,1] − 12ZXY 2X[1,1,0] + 6Z2Y 2Y [1,0,1] − 6Y 4Z[1,1,0]

− 6ZX2YX[0,2,0] − 6Y 2Z[1,1,0]X2 − 12ZYZ[1,0,1]X2 + 6Y 2Z2Z[1,1,0]

− 12Y 2X2Y [1,0,1] − 6Y 4Y [1,0,1] − 6ZY 3X[0,2,0] − 12ZX3X[1,1,0] − 3Z3Y 3X

+ 9X3Y 3Z + 4ZX5Y − 12ZY 3Z[1,0,1] + 12ZX3Z[0,1,1] + 3XY 3Z[0,2,0]

+ 5ZY 5X − 3Z2XYZ[0,2,0] + 12ZXZ[0,1,1]Y 2 − 6Z2XYX[1,0,1]

+ 6XY 3X[1,0,1] + 6X3YX[1,0,1] + 6X2Z2Y [1,0,1] + 3X3YZ[0,2,0]),

X
[1,1,0]
R = 1

6rR2

(−Y 5X + 3Z2Y 3X − 6ZY 2Y [1,0,1] − 6ZX2Y [1,0,1] − 6ZY 2Z[1,1,0] − 2X5Y

+ 6X3X[1,1,0] + 3XYZZ[0,2,0] + 3X2YX[0,2,0] + 6XYZX[1,0,1] + 6XY 2X[1,1,0]

+ 3Y 3X[0,2,0] − 3X3Y 3 − 6Z2YZ[1,0,1] + 6Z2XZ[0,1,1]),

X
[1,0,1]
R = 1

6rR

(−2ZX4 + 6X2X[1,0,1] + 2Y 2X2Z + 2X2Z3 − 6XYZ[1,1,0] − 6ZXZ[1,0,1]

− 6ZYZ[0,1,1] + 2Y 2Z3 + Y 4Z − 3Z[0,2,0]Y 2
)
,

X
[0,2,0]
R = − 1

3r2R

(−X4Y 2 − Y 4X2 − 3XY 2X[0,2,0] − 3X2Z2Y 2 + 6Y 2ZX[1,0,1]

+ 6XYZZ[1,1,0] − 3ZX2Z[0,2,0] + 6X2YX[1,1,0] − 3X3X[0,2,0] + 6Y 3X[1,1,0]).



936 S. Feng et al.

References

1. Ames, A.D., Jalkio, J.A., Shakiban, C.: Three-dimensional object recognition using invariant Euclidean
signature curves. In: Analysis, Combinatorics and Computing, pp. 13–23. Nova Sci. Publ., Hauppauge
(2002)

2. Aouada, D., Feng, S., Krim, H.: Statistical analysis of the global geodesic function for 3D object classi-
fication. In: Proceedings of ICASSP, p. 11p, Honolulu, HI (2007)

3. Arbter, K., Snyder, W.E., Burkhardt, H., Hirzinger, G.: Application of affine-invariant Fourier descriptors
to recognition of 3-D objects. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 640–647 (1990)

4. Boutin, M.: Numerically invariant signature curves. Int. J. Comput. Vis. 40, 235–248 (2000)
5. Bruckstein, A.M., Shaked, D.: Skew-symmetry detection via invariant signatures. Pattern Recogn. 31,

181–192 (1998)
6. Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., Haker, S.: Differential and numerically invariant

signature curves applied to object recognition. Int. J. Comput. Vis. 26, 107–135 (1998)
7. Cartan, É.: La méthode du repère mobile, la théorie des groupes continus, et les espaces généralisés.

Exposés de Géométrie, vol. 5. Hermann, Paris (1935)
8. Cohignac, T., Lopez, C., Morel, J.M.: Integral and local affine invariant parameter and application to

shape recognition. In: Pattern Recognition, vol. 1, pp. 9–13, 164–168 (1994)
9. Derksen, H., Kemper, G.: Computational invariant theory. In: Invariant Theory and Algebraic Transfor-

mation Groups, I. Encyclopedia of Mathematical Sciences, vol. 130. Springer, Berlin (2002)
10. Faugeras, O.: Cartan’s moving frame method and its application to the geometry and evolution of curves

in the Euclidean, affine and projective planes. In: Mundy, J.L., Zisserman, A., Forsyth, D. (eds.) Ap-
plication of Invariance in Computer Vision. Lecture Notes in Computer Science, vol. 825, pp. 11–46.
Springer, Berlin (1994)

11. Fels, M., Olver, P.J.: Moving coframes. II. Regularization and theoretical foundations. Acta Appl. Math.
55, 127–208 (1999)

12. Feng, S., Aouada, D., Krim, H., Kogan, I.: 3D mixed invariant and its application on object classification.
In: Proceedings of ICASSP, p. 11p, Honolulu, HI (2007)

13. Feng, S., Kogan, I., Krim, H.: Integral invariants for 3D curves: an Inductive Construction. In: Proceed-
ings of IS&T/SPIE Joint Symposium, p. 11p, San Jose, CA (2007)

14. Feng, S., Krim, H., Kogan, I.A.: 3D Face recognition using Euclidean integral invariants signature. In:
Proceedings of the 14th Workshop on Signal Processing, pp. 156–160, Honolulu, HI (2007)

15. Green, M.L.: The moving frame, differential invariants and rigidity theorems for curves in homogeneous
spaces. Duke Math. J. 45, 735–779 (1978)

16. Griffiths, P.A.: On Cartan’s method of Lie groups as applied to uniqueness and existence questions in
differential geometry. Duke Math. J. 41, 775–814 (1974)

17. Hann, C., Hickman, M.: Projective curvature and integral invariants. Acta Appl. Math. 74, 177–193
(2002)

18. Hubert, E., Kogan, I.A.: Rational invariants of an algebraic group action: Construction and rewriting.
J. Symb. Comput. 42, 203–217 (2007)

19. Hubert, E., Kogan, I.A.: Smooth and algebraic invariants of a group action: local and global construction.
Found. Comput. Math. J. 7(4), 345–383 (2007)

20. Image database, http://shape.cs.princeton.edu/benchmark/ (2005)
21. Jensen, D.: Higher Order Contact of Submanifolds of Homogeneous Spaces. Lecture Notes in Mathe-

matics, vol. 610. Springer, Berlin (1977)
22. Kogan, I.A.: Two algorithms for a moving frame construction. Can. J. Math. 55, 266–291 (2003)
23. Lin, W.Y., Boston, N., Hu, Y.H.: Summation invariant and its application to shape recognition. In: Proc.

of ICASSP (2005)
24. Manay, S., Cremers, D., Hong, B., Yezzi, A., Soatto, S.: Shape matching via integral invariants. IEEE

Trans. Pattern Anal. Mach. Intell. 28(10), 1602–1618 (2006)
25. Manay, S., Yezzi, A., Hong, B., Soatto, S.: Integral invariant signatures. In: Proc. of the ECCV (2004)
26. Mundy, J.L., Zisserman, A. (eds.): Geometric Invariance in Computer Vision. Artificial Intelligence.

MIT Press, Cambridge (1992)
27. Mundy, J.L., Zisserman, A., Forsyth, D. (eds.): Application of Invariance in Computer Vision. Lecture

Notes in Computer Science. Springer, Berlin (1992)
28. Mio, W., Bowers, J.C., Hurdal, M.K., Liu, X. (eds.): Modeling brain anatomy with 3D arrangements of

curves. In: Proceedings of ICCV, pp. 1–8 (2007)
29. Olver, P.J.: Joint invariant signatures. Found. Comput. Math. 1, 3–67 (2001)
30. Olver, P.J., Sapiro, G., Tannenbaum, A.: Invariant geometric evolutions of surfaces and volumetric

smoothing. SIAM J. Appl. Math. 57, 176–194 (1997)

http://shape.cs.princeton.edu/benchmark/


Classification of Curves in 2D and 3D via Affine Integral Signatures 937

31. Sato, J., Cipolla, R.: Affine integral invariants for extracting symmetry axes. Image Vis. Comput. 15,
627–635 (1997)

32. Sener, S., Unel, M.: A new affine invariant curve normalization technique using independent component
analysis. In: Proceedings of ICPR, p. 48, Hong Kong (2006)

33. Sturmfels, B.: Algorithms in Invariant Theory. Springer, Berlin (1993)
34. Taubin, G., Cooper, D.: Object recognition based on moment (or algebraic) invariants. In: Mundy, J.L.,

Zisserman, A. (eds.) Geometric Invariance in Computer Vision, pp. 375–397. MIT Press, Cambridge
(1992)

35. Tieng, Q.M., Boles, W.W.: Wavelet-based affine invariant representation: a tool for recognizing planar
objects in 3D space. IEEE Trans. Pattern Anal. Mach. Intell. 19(8), 846–857 (1997)

36. Tresse, A.R.: Sur les invariants defférentiels des group continus de transformations. Acta Math. 18, 1–88
(1894)

37. Van Gool, L., Moons, T., Pauwels, E., Oosterlinck, A.: Semi-differential invariants. In: Mundy, J.L.,
Zisserman, A. (eds.) Geometric Invariance in Computer Vision, pp. 157–192. MIT Press, Cambridge
(1992)

38. Van Gool, L., Brill, M., Barrett, E., Moons, T., Pauwels, E.: Semi-differential invariants for non-planar
curves. In: Mundy, J.L., Zisserman, A. (eds.) Geometric Invariance in Computer Vision, pp. 157–192.
MIT Press, Cambridge (1992)

39. Wang, Y., Teoh, E.K.: 2D affine-invariant contour matching using B-spline model. IEEE Trans. Pattern
Anal. Mach. Intell. 29(10), 1853–1858 (2007)

40. Weiss, I.: Geometric invariants and object recognition. Acta Appl. Math. 10, 207–231 (1993)
41. Xu, D., Li, H.: 3-D affine moment invariants generated by geometric primitives. In: Proceedings of ICPR,

pp. 544–547 (2006)


	Classification of Curves in 2D and 3D via Affine Integral Signatures
	Abstract
	Introduction
	Group Actions and Invariants
	Definitions
	Prolongation of a Group Action

	Integral Invariants for Planar and Spatial Curves
	Integral Affine Invariants for Curves in R2
	Geometric Interpretation of Invariants for Planar Curves
	Integral Affine Invariants for Curves in R3
	Geometric Interpretation of Invariants for Spatial Curves

	Curve Classification via Integral Signatures
	Global Integral Affine Signatures
	Global Affine Signature for Curves in R2
	Global Affine Signatures for Curves in R3

	Local Integral Affine Signatures
	Local Affine Signatures for Curves in R2
	Local Affine Signatures for Curves in R3


	Application to 3D Object Classification
	Experimental Design
	Experimental Results

	Conclusion
	Appendix:  Derivation of Invariants
	Cross-section and Moving Frame Map
	Inductive Approach
	Inductive method

	Affine Integral Invariants for Curves in R2
	Affine Integral Invariants for Curves in R3

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


