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Abstract An algorithmic method using conservation law multipliers is introduced that
yields necessary and sufficient conditions to find invertible mappings of a given nonlinear
PDE to some linear PDE and to construct such a mapping when it exists. Previous methods
yielded such conditions from admitted point or contact symmetries of the nonlinear PDE.
Through examples, these two linearization approaches are contrasted.
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1 Introduction

In previous work [1–3], algorithmic methods were presented to determine whether or not
there exists an invertible mapping of a given nonlinear partial differential equation (PDE)
to some linear PDE through computing the point or contact symmetries admitted by the
nonlinear PDE. Moreover, it was also shown how to construct such an invertible mapping,
when one exists, from the admitted symmetries.

In this paper, we present an alternative algorithmic method for mapping a nonlinear sys-
tem of PDEs invertibly to some linear system of PDEs by using admitted conservation laws
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of the nonlinear system. Any linear system possesses an infinite set of conservation law mul-
tipliers satisfying its adjoint system. This feature of linear systems will be exploited to detect
whether or not a given nonlinear system can be linearized by an invertible transformation
and, when such a linearization mapping exists, to obtain the explicit form of the linearizing
transformation from an associated conservation law identity.

In particular, using the determining equations for conservation law multipliers, one can
find whether or not an invertible linearization mapping will exist, and also find the adjoint
of a target linear system as well as the transformation of the independent variables in the
mapping whenever an invertible linearization is possible [4]. Most importantly, the new work
presented in this paper will show that a conservation law identity coming from the multiplier
equations of an augmented system consisting of the given nonlinear system and the adjoint
of the linear target system can be used to determine the transformation of the dependent
variables (in addition to that of the independent variables) in the invertible linearization
mapping explicitly. This work thus allows one to detect and construct linearization mappings
completely by the use of algorithmic methods for obtaining multipliers of conservation laws
[5–9].

Our results generalize earlier computational work [10] in which a fully automatic algo-
rithm was given using the computer algebra program CRACK/CONLAW [11] to detect and
construct linearizations in the case when the mapping only transforms the dependent vari-
ables of the given nonlinear PDE system. The work in [10] also gave an extension of this
algorithm to find partial linearizations that consist of factoring out a linear differential oper-
ator from all PDEs in a given system (with the operator being of lower order than the highest
order of derivatives in the system).

To begin we summarize two well-known theorems characterizing invertible mappings.
Our notation follows that in [12], with the conventions that Latin indices i, j, k will run 1 to n

(labeling independent variables), and Greek indices ν,μ,λ and α,β, γ,σ, τ will run 1 to M

and 1 to m (labeling PDEs and dependent variables), respectively. Throughout we use up-
per/lower case notation to distinguish arbitrary functions U,V from functions u,v given by
solutions of a PDE system.

Let R{x,u} denote a given kth-order nonlinear system of M PDEs with n independent
variables x = (x1, . . . , xn) and m dependent variables u = (u1, . . . , um). In particular, let the
PDEs in R{x,u} be given by

Gν[u] = Gν(x,u, ∂xu, . . . , ∂k
xu) = 0, ν = 1, . . . ,M, (1.1)

where ∂
j
x u denotes j th-order partial derivatives of u with respect to x.

Let S{z,w} denote a kth-order linear target system of M PDEs with n independent vari-
ables z = (z1, . . . , zn) and m dependent variables w = (w1, . . . ,wm),

Hν[w] = Hν(z,w, ∂zw, . . . , ∂k
z w) = 0, ν = 1, . . . ,M, (1.2)

where ∂
j
z w denotes j th-order partial derivatives of w with respect to z.

Note that for common PDE systems such as heat or diffusion equations and wave equa-
tions, as well as more general parabolic, hyperbolic and Hamiltonian equations, and elliptic
equations, we will have m = M . However, for complete generality we allow m �= M here-
after, as would occur for instance if one considers a PDE system of dynamical evolution
equations with differential constraints.

Now if one seeks an invertible mapping μ of a given nonlinear PDE system (1.1) to a
linear target PDE system (1.2), then the following two theorems show that the mapping is
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restricted to being a contact transformation when (1.1) and (1.2) both contain a single depen-
dent variable (m = 1; which we will call the scalar case) or to a point transformation when
(1.1) and (1.2) each contain two or more dependent variables (m ≥ 2; the multicomponent
case).

Theorem 1.1 (Bäcklund [13]) If u = u1 is a scalar (m = 1), then a mapping μ de-
fines an invertible transformation from (x,u, ∂xu, . . . , ∂

p
x u)-space to (z,w, ∂zw, . . . , ∂

p
z w)-

space for any fixed p if and only if μ is a one-to-one contact transformation of the form
z = φ(x,u, ∂xu), w = ψ(x,u, ∂xu), ∂zw = ρ(x,u, ∂xu), which is subject to the contact
condition Dxψ = ρDxφ where Dx denotes total derivatives with respect to x.

Theorem 1.2 (Müller and Matschat [14]) If u = (u1, . . . , um) has two or more components
(m ≥ 2), then a mapping μ defines an invertible transformation from (x,u, ∂xu, . . . , ∂

p
x u)-

space to (z,w, ∂zw, . . . , ∂
p
z w)-space for any fixed p if and only if μ is a one-to-one point

transformation of the form z = φ(x,u), w = ψ(x,u).

For formulating necessary and sufficient conditions for the existence of such mappings
between PDE systems, we will consider only the natural situation where the given nonlinear
system (1.1) and the linear target system (1.2) contain the same number M of PDEs with the
same differential order k, and no further assumptions will be required (such as local solvabil-
ity, or involutivity). But for the computational implementation of our results it is important
that the given system of PDEs (1.1) be consistent in the sense that all integrability condi-
tions are satisfied modulo these PDEs. (To make this precise, one would have to prescribe
an elimination algorithm which requires the definition of a total ordering of derivatives and
of monomials built from them, as discussed in [10].)

The rest of this paper is organized as follows. In section two, we review the method
presented in [1–3] to linearize nonlinear PDEs through admitted symmetries. In section
three, we present the new method to linearize nonlinear PDEs through admitted conservation
law multipliers and outline the computational steps involved in this method. As examples to
illustrate and contrast both methods, in section four we consider linearizations of Burgers’
equation, a pipeline flow equation, and a nonlinear telegraph system. We make some closing
remarks in section five.

2 Use of Symmetries to Construct Linearizations

Necessary and sufficient symmetry conditions are stated in [1–3] to determine whether or
not a given nonlinear system R{x,u} of PDEs (1.1) can be transformed to some linear tar-
get system S{z,w} of PDEs (1.2) by an invertible mapping μ. These conditions provide a
symmetry-based algorithmic procedure to determine if they hold for a given nonlinear sys-
tem of PDEs and (when these conditions do hold) a second symmetry-based algorithmic
procedure to construct such an invertible mapping μ. To apply these methods to a given
nonlinear system of PDEs, it is unnecessary to know a specific linear target system of PDEs.
In particular, the linear target system (when one exists) will arise from computing the admit-
ted point or contact symmetries (Lie group of point or contact transformations) of the given
nonlinear system (first procedure). Moreover, these admitted symmetries yield equations to
construct a specific mapping μ (second procedure).

The starting point is that a linear system S{z,w} of PDEs, given by

L[z]w = g(z) (2.1)
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as defined here in terms of a linear operator L[z], with any inhomogeneous term g(z), is
completely characterized by its admitted infinite-parameter set of point symmetries

X = f (z)
∂

∂w
, (2.2)

where f (z) is any function satisfying the related linear homogeneous system

L[z]f = 0. (2.3)

A point transformation is mapped to another point transformation under any specific
point transformation (x,u) → (z,w), and a contact transformation is mapped to another
contact transformation (which could be a point transformation) under any specific contact
transformation (x,u, ∂xu) → (z,w, ∂zw) (which could be a point transformation). Hence an
invertible point transformation mapping a nonlinear system R{x,u} of PDEs to some linear
system S{z,w} must map each point symmetry admitted by R{x,u} to a point symmetry
admitted by S{z,w}; an invertible contact transformation mapping a nonlinear scalar PDE
system R{x,u} to some linear scalar PDE system S{z,w}, must map each contact symmetry
admitted by R{x,u} to a contact symmetry (which could be a point symmetry) admitted by
S{z,w}. Moreover, this mapping must be an isomorphism, i.e., there is a one-to-one corre-
spondence between the point (contact) symmetries admitted by R{x,u} and those admitted
by S{z,w}. Consequently, if there exists an invertible transformation that maps the nonlin-
ear PDE system R{x,u} to some linear PDE system S{z,w}, then R{x,u} must necessarily
admit an infinite set of point (contact) symmetries.

The following two theorems on mappings of nonlinear PDEs to linear PDEs were pre-
sented and proved in [1–3].

Theorem 2.1 (Necessary conditions for the existence of an invertible linearization mapping)
If there exists an invertible mapping μ of a given nonlinear system R{x,u} of PDEs (1.1) to
some linear system S{z,w} of PDEs (1.2), then in the multicomponent case (i.e. m ≥ 2):

1. μ is a point transformation of the form

zi = φi(x,u), i = 1, . . . , n, wσ = ψσ (x,u), σ = 1, . . . ,m; (2.4)

2. R{x,u} admits an infinite-parameter Lie group of point symmetries given by an infinites-
imal generator

X = ξi(x,u)
∂

∂xi

+ ητ (x,u)
∂

∂uτ
(2.5)

with infinitesimals of the form

ξi = αiσ (x,u)F σ (x,u), ητ = βτ
σ (x,u)F σ (x,u), (2.6)

where αiσ , βτ
σ (i = 1, . . . , n;σ, τ = 1, . . . ,m) are specific functions of x and u, and where

F = (F 1, . . . ,Fm) is an arbitrary solution of some linear system of PDEs

L[X]F = 0 (2.7)

in terms of some linear differential operator L[X] and specific independent variables
X = (X1(x,u), . . . ,Xn(x,u)) = (φ1, . . . , φn).
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Theorem 2.2 (Sufficient conditions for the existence of an invertible linearization mapping)
Suppose a given nonlinear system R{x,u} of PDEs (1.1) admits infinitesimal point sym-
metries (2.5) of the form (2.6) involving an arbitrary solution F(X) of a linear system (2.7)
with specific independent variables X = (X1(x,u), . . . ,Xn(x,u)). If the m first order scalar
linear homogeneous PDEs

αiσ (x,u)
∂φ

∂xi

+ βτ
σ (x,u)

∂φ

∂uτ
= 0, σ = 1, . . . ,m, (2.8)

whose coefficients are formed from (2.6) have φ1 = X1(x,u), . . . , φn = Xn(x,u) as n func-
tionally independent solutions, and if the m2 first order linear inhomogeneous PDEs

αiσ (x,u)
∂ψγ

∂xi

+ βτ
σ (x,u)

∂ψγ

∂uτ
= δγ

σ , γ, σ = 1, . . . ,m (2.9)

(where δγ
σ is the Kronecker symbol) have a particular solution ψ = (ψ1(x,u), . . . ,

ψm(x,u)), then the mapping μ defined by

zi = Xi(x,u), i = 1, . . . , n, wσ = ψσ (x,u), σ = 1, . . . ,m, (2.10)

is invertible and transforms R{x,u} to the linear system S{z,w} of PDEs given by L[z]w =
g(z), for some inhomogeneous term g(z).

It is easy to see that Theorems 2.1 and 2.2 also hold in the scalar case (i.e. when m = 1) if
one seeks to transform nonlinear scalar PDEs to linear scalar PDEs only by a point transfor-
mation. Furthermore, these theorems in the scalar case can be extended to the more general
possibility of seeking invertible mappings of nonlinear scalar PDEs to linear scalar PDEs by
contact transformations. For details, see [1, 2].

3 Use of Conservation Law Multipliers to Construct Linearizations

Now we present a new method for finding mappings that transform a nonlinear system of
PDEs invertibly to some linear system of PDEs. Our method uses admitted conservation law
multipliers of the nonlinear system and is based on two theorems that are the conservation
law multiplier-based counterparts of the symmetry-based Theorems 2.1 and 2.2.

The first new theorem gives necessary conditions that conservation law multipliers must
satisfy in order for a given nonlinear system R{x,u} of PDEs (1.1) to have an invertible
mapping to some linear target system S{z,w} of PDEs (1.2) by a point transformation. As
in the case of Theorem 2.1, the necessary conditions yield an algorithmic procedure to find
a specific linear target system as well as its independent variables.

The second new theorem gives sufficient conditions for the existence of the mapping. In
particular, as in the case of Theorem 2.2, these conditions yield an algorithmic procedure to
find the components of an explicit point transformation giving an invertible mapping to the
linear target system.

The extension of these two theorems to include contact transformations will be discussed
in Sect. 3.2.
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3.1 Necessary and Sufficient Linearization Conditions

Recall, a conservation law of a system R{x,u} of PDEs (1.1) is a divergence expression
DΥi[u]/Dxi that is required to vanish for all solutions u(x) = (u1(x), . . . , um(x)) of the
given PDE system. Conservation laws are nontrivial if and only if the conserved fluxes Υi[u]
do not have the form of curls DΘij [u]/Dxj , with Θij [u] = −Θji[u], for every solution u(x).

Definition 3.1 Conservation law multipliers for a system R{x,u} of PDEs (1.1) are a set
of factors {Λν(x,U, ∂xU, . . . , ∂�

xU)} (ν = 1, . . . ,M) such that, for arbitrary functions U =
(U 1(x), . . . ,Um(x)),

Λν[U ]Gν[U ] ≡ DΥi[U ]/Dxi (3.1)

holds as an identity for some functions Υ = (Υ1[U ], . . . ,Υn[U ]), where each factor Λν[U ]
is non-singular for all solutions U = u(x) of the given PDE system (1.1).

It is well known that multipliers will yield all nontrivial conservation laws (to within the
addition of curls to the conserved fluxes) admitted by a given PDE system R{x,u} if it is of
Cauchy-Kovalevskaya type.

For any PDE system R{x,u}, its admitted conservation law multipliers satisfy the deter-
mining equations

EUσ (Λν[U ]Gν[U ]) = 0, σ = 1, . . . ,m, (3.2)

given by the Euler operators

EUσ = ∂

∂Uσ
− D

Dxi

∂

∂Uσ
xi

+ D2

DxiDxj

∂

∂Uσ
xixj

+ · · · + (−1)k Dk

Dxi . . .Dxj

∂

∂Uσ
xi ...xj

+ · · ·

which annihilate divergence expressions. One can solve these determining equations by an
algorithmic procedure [8, 10] analogous to that for solving the determining equations for
point or contact symmetries in evolutionary form. (The similarity is made explicit in the
work in [6, 7] which shows how to reformulate (3.2) as a kind of adjoint of the symmetry
determining equations for Cauchy-Kovalevskaya PDE systems.)

The starting point, leading to the formulation of an invertible mapping between nonlinear
and linear PDE systems through conservation law multipliers, is that any linear operator L

and its adjoint operator L∗ satisfy a conservation law identity. Specifically, consider a kth-
order linear PDE system L[z]w = 0, denoted by S{z,w} with dependent variables w =
(w1, . . . ,wm) and independent variables z = (z1, . . . , zn). In particular, let the linear PDEs
be given by

Lν
α[z]wα = 0, ν = 1, . . . ,M (3.3)

in terms of linear operators1

Lν
α[z] = bνα(z) + bναi(z)

∂

∂zi

+ · · · + bναi1...ik (z)
∂k

∂zi1 · · · ∂zik

. (3.4)

1We freely raise and lower indices for convenience here in displaying the adjoint relation between L and L∗.
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The corresponding adjoint linear system, L∗[z]v = 0, is given by

L∗α
ν [z]vν = bμα(z)v

μ − ∂

∂zi

(bμαi(z)v
μ) + · · · + (−1)k ∂k

∂zi1 · · · ∂zik

(bμαi1...ik (z)v
μ)

= 0, α = 1, . . . ,m, (3.5)

where L∗α
ν [z] is the linear operator defined through formal integration by parts of the oper-

ator Lν
α[z] with respect to z. Then for arbitrary functions V (z) = (V 1(z), . . . , V M(z)) and

W(z) = (W 1(z), . . . ,Wm(z)), which can be viewed as multipliers {V μ(z)} and {Wα(z)} for
the augmented linear system consisting of the linear system (3.3) and the adjoint system
(3.5), there is a conservation law identity

DΥi/Dzi = δνμV μLν
α[z]Wα − δαβWβL∗α

ν [z]V ν (3.6)

holding for some specific functions Υi[V,W ] that have a bilinear dependence on the multi-
pliers and their derivatives. (An explicit expression for the fluxes Υi[V,W ] is given in [15].)
Here both δνμ and δαβ are Kronecker symbols.

Proposition 3.1 Suppose a given nonlinear system R{x,u} of PDEs (1.1) can be mapped
into some linear system S{z,w} of PDEs (3.3) by some point transformation (2.4). Then the
nonlinear and linear PDEs will be related through a set of factors {Qμ

ν (x,U, ∂xU)} such
that

Qμ
ν [U ]Gν[U ] = Lμ

α [z]Wα, μ = 1, . . . ,M, (3.7)

for arbitrary functions U(x) = (U 1(x), . . . ,Um(x)), where the functions W(z) =
(W 1(z), . . . ,Wm(z)) are given by the linearization mapping

z = φ(x,U(x)), W(z) = ψ(x,U(x)).

(Explicit expressions for Qμ
ν can be readily derived from the mapping formulae given

in [16].) Moreover:

1. This mapping will define an invertible point transformation iff {φi(x,U(x))} (i =
1, . . . , n) are functionally independent and {Qμ

ν (x,U(x), ∂xU(x)) (ν,μ = 1, . . . ,M) are
non-degenerate, namely, det(Dφi(x,U)/Dxj ) �= 0 and also det(Qμ

ν (x,U, ∂xU)) �= 0.
2. Under such a point transformation the conservation law identity (3.6) becomes

DΓi/Dxi = (δλμV λQμ
ν [U ]Gν[U ] − δαβWβL∗α

ν [z]V ν)J [U ], (3.8)

where DΓi/Dxi is related to DΥi/Dzi by the non-vanishing Jacobian factor

J (x,U, ∂xU) =
∣
∣
∣
∣

Dz

Dx

∣
∣
∣
∣
= det

(
Dφi(x,U(x))

Dxj

)

. (3.9)

(See [12] for the explicit expression for Γi in terms of Υi .)

This proposition leads to the following two theorems for linearization from admitted
conservation law multipliers, which are the counterparts to Theorems 2.1 and 2.2 for lin-
earization through admitted point symmetries.
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Theorem 3.1 (Necessary conditions for the existence of an invertible linearization mapping)
If there exists an invertible point transformation (2.4) for m ≥ 1 under which a given kth-
order nonlinear system R{x,u} of PDEs (1.1) is mapped to some linear system S{z,w} of
PDEs (3.3), then R{x,u} must admit conservation law multipliers of the form

Λν[U ] = δλμvλ(X)Qμ
ν [U ]J [U ], (3.10)

where Qμ
ν (μ,ν = 1, . . . ,M) are specific functions of x, U and ∂xU ; v = (v1, . . . , vM) is an

arbitrary solution of some linear system of PDEs

L̃α
μ[X]vμ = b̃αμ(X)vμ + b̃αμi(X)v

μ

Xi
+ · · · + b̃αμi1...ik (X)v

μ

Xi1 ...Xik
= 0, α = 1, . . . ,m,

(3.11)
in terms of specific independent variables X = (X1(x,U), . . . ,Xn(x,U)); and J [U ] =
|DX/Dx| = det(DXi(x,U)/Dxj ) which is a function of x, U and ∂xU .

Proof The existence of multipliers (3.10) follows from (3.8) with X playing the role of z,
L̃α

ν [X] playing the role of L∗α
ν [z] and with V μ = vμ satisfying system (3.11). �

Theorem 3.2 (Sufficient conditions for the existence of an invertible linearization mapping)
Suppose a given nonlinear system R{x,u} of PDEs (1.1) admits conservation law multipli-
ers of the form (3.10) where the components of v are dependent variables of some linear
system (3.11) with specific independent variables X = (X1(x,u), . . . ,Xn(x,u)). Let L̃∗[X]
be the adjoint of the linear operator L̃[X] in (3.11) and consider the augmented system of
PDEs consisting of the given nonlinear system (1.1) and the linear system (3.11). Then, from
identity (3.8), there exists an infinite set of multipliers

{Λμ[U,V ], Λ̃α[U ]} = {

Qν
μ(x,U, ∂xU)δλνV

λ(X(x,U))J [U ],−δαβWβ(x,U)J [U ]}

(μ = 1, . . . ,M;α = 1, . . . ,m) yielding a conservation law

Λν[U,V ]Gν[U ] − Λ̃α[U ]L̃α
μ[X(x,U)]V μ = DΓi/Dxi (3.12)

for some specific functions Γi , in terms of the Jacobian

J [U ] = |DX/Dx| = det(DXi(x,U)/Dxj ). (3.13)

This conservation law (3.12) is equivalent to the identity

δλμV λQμ
ν (x,U, ∂xU)Gν[U ] − δαβWα(x,U)L̃β

μ[X(x,U)]V μ = DΥi/DXi, (3.14)

holding for some functions Υi . If the variables {Xi} (i = 1, . . . , n) are functionally indepen-
dent and if the factors {Qμ

ν } (μ,ν = 1, . . . ,M) are non-degenerate, then the point transfor-
mation given by

z = X(x,u), w = W(x,u) (3.15)

maps the nonlinear system of PDEs (1.1) invertibly into the linear system S{z,w} given by

L̃∗ν
α [z]wα = b̃αν(z)w

α − ∂

∂zi

(b̃ανi(z)w
α) + · · · + (−1)k ∂k

∂zi1 · · · ∂zik

(b̃ανi1...ik (z)w
α)

= 0, ν = 1, . . . ,M. (3.16)



Invertible Mappings of Nonlinear PDEs to Linear PDEs through 29

Proof Since L̃[X] is a linear operator, the identity (3.6) gives

δαβWα(x,U)L̃β
μ[X(x,U)]V μ = δμνV

μL̃∗ν
α [X(x,U)]Wα(x,U) + DΓi/DXi (3.17)

for some specific functions Γi[U,V,W ]. Consequently, the identity (3.14) becomes

δλμV λ(Qμ
ν [U ]Gν[U ] − L̃∗μ

α [X(x,U)]Wα(x,U)) = D(Γi + Υi)/DXi. (3.18)

Now apply the Euler operators with respect to V μ, i.e.,

EV μ = ∂

∂V μ
− D

DXi

∂

∂V
μ

Xi

+ · · · , μ = 1, . . . ,M,

to each side of (3.18). Each of these Euler operators annihilates the right-hand side of (3.18)
and hence we obtain the identity

Qμ
ν [U ]Gν[U ] = L̃∗μ

α [X(x,U)]Wα(x,U) (3.19)

holding for arbitrary functions U . Now suppose U = u(x) solves the given nonlinear system
of PDEs (1.1), then it follows that w = W(x,u(x)) solves the linear system given by (3.16).
Consequently, one obtains the point transformation (3.15) which maps the nonlinear system
of PDEs (1.1) into the linear system (3.16). Invertibility of this transformation is established
by Proposition 3.1. �

3.2 Computational Steps

We now outline the computational steps involved in applying Theorems 3.1 and 3.2 to lin-
earize a given nonlinear system of PDEs through admitted conservation law multipliers.

Step 1: For a given nonlinear system R{x,u} of PDEs (1.1) with highest derivative of
order k, solve the determining equations (3.2) for admitted sets of multipliers {Λν[U ]}
depending on the independent variables x = (x1, . . . , xn), the dependent variables U =
(U 1, . . . ,Um) and their first derivatives ∂xU = (U 1

xi
, . . . ,Um

xi
) . Two cases arise, depend-

ing on whether R{x,u} admits any set of multipliers of the form (3.10) with functions
v = (v1(X), . . . , vM(X)) satisfying some linear system of PDEs of the form (3.11) in terms
of specific independent variables X = (X1(x,U), . . . ,Xn(x,U)).

Case I. No Set of Multipliers of the Required Form Are Admitted. Then one concludes
from Theorem 3.1 that R{x,u} cannot be mapped invertibly by any point transformation to
a linear system.

Case II. There is an Infinite Set of Multipliers with the Required Form. Typically in this
case, the variables Xi(x,U) are found directly from the specific form of the multiplier de-
termining equations, either by inspection (see Examples 4.1.2 and 4.2.2) or, more generally,
through integration of characteristic first-order linear PDEs contained in the system of mul-
tiplier determining equations (see Example 4.3.2). Then from the admitted multipliers (3.10)
one reads off (by Theorem 3.1)

(a) the independent variable part of the linearizing point transformation (3.15), i.e. xi →
zi = Xi(x,u);

(b) the specific linear target system which is given by the adjoint of the linear system (3.11).

Step 2: Assuming that the necessary conditions of Theorem 3.1 hold (Case II), one pro-
ceeds by replacing v(X) by an arbitrary function V (X) in the conservation law (3.1) arising
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from the multipliers (3.10) for the nonlinear system R{x,u} of PDEs (1.1). This will auto-
matically yield—after integration by parts if necessary (with the use of the transformation
formula for divergence expressions derived in [16])—a conservation law identity of the form
(3.14) for the augmented system consisting of the given nonlinear system (1.1) and the lin-
ear system (3.11). From the components of the multipliers for the linear system (3.11) in
this identity, one directly obtains

(c) the dependent variable part uα → wα = Wα(x,u) of the linearization mapping to the
linear target system.

In summary, when there exists a linearization of a given nonlinear PDE system R{x,u}
(m ≥ 1) by an invertible point transformation then the necessary conditions stated in The-
orem 3.1 yield a linear target system along with the independent variables of this sys-
tem, while the sufficient conditions stated in Theorem 3.2 yield the dependent variables
of the linear target system, which completes the transformation. (Examples are illustrated
in Sects. 4.1.2 and 4.3.2.) Furthermore, if the necessary conditions do not hold then no lin-
earizing point transformation exists.

It is easy to extend these results to include the linearization of scalar PDEs (m = 1)
by contact transformations, where Xi and Wα can now depend on first derivatives of U .
Since in this case it follows that the Jacobian J [U ] and the factors Qν

μ[U ] may depend on
second derivatives of U , one must consequently seek sets of multipliers {Λν[U ]} depending
on x, U , ∂xU and ∂2

xU . Then in Step 1 any admitted multipliers of the form (3.10) will
yield the independent variable part of a linearizing contact transformation, i.e., xi → zi =
Xi(x,u, ∂xu); similarly, in Step 2 the resulting conservation law identity (3.14) will yield
the dependent variable part of this mapping, i.e., uα → wα = Wα(x,u, ∂xu). (An example
is illustrated in Sect. 4.2.2.) If no such multipliers are admitted then no linearizing contact
transformation exists.

We remark that in certain special cases a lower differential order is possible in the re-
quired form of conservation law multipliers (3.10) for the existence of a linearizing transfor-
mation. Such situations are important computationally because the multiplier determining
equations will then become more over-determined and hence easier to solve.

(1) For point or contact transformations that involve no change in the independent vari-
ables, xi → zi = xi = Xi , one can easily show from the results in [16] that the Jacobian
(3.9) will be trivial, i.e. J = det(DXi/Dxj ) = det(δj

i ) = 1, while the factors Qμ
ν [U ] in (3.7)

will have no dependence on ∂xU in the multicomponent case (m ≥ 2) and no dependence
on ∂2

xU in the scalar case (m = 1). Hence, in this situation, conservation law multipliers can
be sought in the form

Λν[U ] = δλμvλ(x)Qμ
ν [U ]

depending at most on x, U and ∂xU if m = 1 or only on x and U if m ≥ 2. (A fully algorith-
mic version of the linearization steps applied to this situation was given in [10], which allows
one to detect and explicitly find all linearizing mappings that involve only a transformation
of dependent variables.) See Example 4.1.2.

(2) Suppose a given nonlinear PDE system (1.1) of order k admits integrating factors
{λμ

ν (x,U)} for its highest derivative terms, so that the system has the form λμ
ν [U ]Gν[U ] =

DG̃ν
i [U ]/Dxi + G̃ν

0[U ] where G̃ν
0 and G̃ν

i (i = 1, . . . , n) are of order at most k − 1 in deriv-
atives of U . Then it is straightforward to show that the factors relating the nonlinear and
linear PDE systems in (3.7) will be given by Qμ

ν [U ] = λμ
ν (x,U)J [U ]−1, and consequently

one can seek conservation law multipliers of the form

Λν[U ] = δλμvλ(X)λμ
ν (x,U),
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where Xi[U ] depends at most on x, U and ∂xU if m = 1 or only on x and U if m ≥ 2 (corre-
sponding to linearizing contact transformations or point transformations, respectively). See
Examples 4.2.2 and 4.3.2.

4 Examples

To illustrate the conservation law approach for obtaining linearizations and contrast it with
the symmetry approach, we now consider three examples.

4.1 Linearization of Burgers’ Equation

Our first example is a nonlinear PDE system with independent variables (x1, x2) = (x, t)

and dependent variables (u1, u2) as given by

G1[u] = ∂u2

∂x
− 2u1 = 0, G2[u] = ∂u2

∂t
− 2

∂u1

∂x
+ (u1)2 = 0, (4.1)

where u1 satisfies Burgers’ equation

u1
xx − u1u1

x − u1
t = 0. (4.2)

4.1.1 Linearization through Admitted Point Symmetries

By a direct computation (solving the symmetry determining equations), one finds that (4.2)
admits at most a finite number of contact symmetries. Hence there does not exist any contact
(or point) transformation that linearizes Burgers’ equation.

On the other hand the nonlinear system (4.1) is found to admit an infinite set of point
symmetries given by the infinitesimal generator [17, 18]

X = eu2/4

(

(2gx(x, t) + g(x, t)u1)
∂

∂u1
+ 4g(x, t)

∂

∂u2

)

(4.3)

where g(x, t) is an arbitrary solution of the linear PDE

gxx = gt . (4.4)

Consequently, one can apply Theorems 2.1 and 2.2 to linearize the system (4.1) as follows.
First we see from a comparison of (4.3) with expressions (2.6) that one has F 1 = gx(x, t),
F 2 = g(x, t), with αij = 0, β1

1 = 2eu2/4, β1
2 = u1eu2/4, β2

1 = 0, β2
2 = 4eu2/4; the associated

linear homogeneous system (2.8) has X1 = x, X2 = t as functionally independent solu-
tions and the corresponding linear inhomogeneous system (2.9) has a particular solution
(ψ1,ψ2) = ( 1

2u1e−u2/4,−e−u2/4). Then from (4.4) we have that F = (F 1,F 2) satisfies the
linear system

F 2
x = F 1, F 1

x = F 2
t . (4.5)

Hence one obtains the invertible point transformation

z1 = x, z2 = t, w1 = 1

2
u1e−u2/4, w2 = −e−u2/4 (4.6)
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mapping the given nonlinear system (4.1) into the linear system

∂w2

∂x
= w1,

∂w1

∂x
= ∂w2

∂t
, (4.7)

where both w1 and w2 consequently satisfy the heat equation

∂2w1

∂x2
− ∂w1

∂t
= 0,

∂2w2

∂x2
− ∂w2

∂t
= 0. (4.8)

We thus note that the mapping (4.6) and the linear system (4.7) together yield

u1 = − 2

w2

∂w2

∂x
(4.9)

which is the well-known Hopf-Cole transformation that maps any solution of the heat equa-
tion (4.8) into a solution of Burgers’ equation (4.2).

4.1.2 Linearization through Admitted Conservation Law Multipliers

A straightforward computation of conservation law multipliers {Λ1(x, t,U),Λ2(x, t,U)}
shows that the nonlinear system (4.1) admits an infinite set of multipliers given by

Λ1 = 1

2
U 1e−U2/4f (x, t) + e−U2/4fx(x, t), Λ2 = e−U2/4f (x, t), (4.10)

where f (x, t) is an arbitrary solution of the linear scalar PDE fxx + ft = 0 (namely, the
backward heat equation). Hence, the necessary conditions of Theorem 3.1 for the existence
of an invertible mapping of the nonlinear system (4.1) to a linear target system are satisfied,
where, through a comparison of (4.10) with (3.10), the adjoint target system is given by

∂v1

∂x
− v2 = 0,

∂v2

∂x
+ ∂v1

∂t
= 0 (4.11)

with dependent variables

v = (v1, v2) = (f,fx) (4.12)

and the same independent variables (x, t) as the given system (4.1).
In the conservation law (3.1) arising from the multipliers (4.10), (4.11) and (4.12), we

replace (v1(x, t), v2(x, t)) by arbitrary functions (V 1(x, t),V 2(x, t)). This leads to the fol-
lowing conservation law identity for the augmented system consisting of the given nonlinear
system (4.1) and the linear system (4.11):

(

V 1

(
1

2
U 1e−U2/4

)

+ V 2e−U2/4

)

G1[U ] + V 1e−U2/4G2[U ]

− 2U 1e−U2/4

(
∂V 1

∂x
− V 2

)

− 4e−U2/4

(
∂V 2

∂x
+ ∂V 1

∂t

)

= D

Dx

(

e−U2/4(−4V 2 − 2U 1V 1)

)

+ D

Dt

(

−4V 1e−U2/4

)

. (4.13)
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Consequently, directly comparing (4.13) with the identity (3.14) in Theorem 3.2, we obtain
an invertible mapping (u1, u2) → (w1 = 2u1e−u2/4,w2 = 4e−u2/4) of the nonlinear system
(4.1) to a linear target system given by the adjoint of the linear system (4.11). In particular,
this yields the point transformation (4.6) that maps the nonlinear system (4.1) into the linear
system (4.7) up to a suitable rescaling of the dependent variables w = (w1,w2).

4.2 Linearization of a Pipeline Flow Equation

As a second example, we consider the pipeline flow equation [12]

G[u] = utuxx + ux
p = 0, p = const. (4.14)

4.2.1 Linearization through Admitted Contact Symmetries

The nonlinear scalar PDE (4.14) admits an infinite set of contact symmetries whose infini-
tesimal generator is given by

X = − ∂F

∂ux

∂

∂x
+

(

F − ux

∂F

∂ux

)
∂

∂u
+ ∂F

∂t

∂

∂ut

, (4.15)

where F = F(t, ux) is an arbitrary solution of the second-order linear PDE

ux
p ∂2F

∂u2
x

− ∂F

∂t
= 0. (4.16)

Consequently, one can linearize the PDE (4.14) by applying the generalization of Theo-
rems 2.1 and 2.2 for seeking a linearizing contact transformation. In particular, X1 = ux ,
X2 = t are found to be functionally independent solutions of the appropriate generalization
(cf. [1, 2]) of the linear homogeneous system (2.8), while the corresponding generalization
of the linear inhomogeneous system (2.9) has the particular solution ψ = u − xux (from
which one deduces (ρ1, ρ2) = (ut ,−x) through the contact condition in Theorem 1.2). Con-
sequently, one obtains an invertible mapping μ given by the contact transformation

z1 = t, z2 = ux, w = u − xux, wz1 = ut , wz2 = −x, (4.17)

which maps the nonlinear PDE (4.14) to the linear PDE given by

z
p

2

∂2w

∂z 2
2

− ∂w

∂z1
= 0. (4.18)

4.2.2 Linearization through Admitted Conservation Law Multipliers

Through a computation of conservation law multipliers Λ(x, t,U,Ux,Ut ), one finds that the
given nonlinear PDE (4.14) admits an infinite set of multipliers

Λ = v(Ux, t), (4.19)

where this function satisfies the linear scalar PDE

vt + (Ux
pv)UxUx = 0.



34 S. Anco et al.

By inspection, since v depends on two variables (i.e., the same number of independent
variables as U has), we see that the necessary conditions of Theorem 3.1 for the existence
of an invertible contact transformation that linearizes the nonlinear scalar PDE (4.14) are
satisfied with the adjoint target system given by

∂v

∂T
+ ∂2(Xpv)

∂X2
= 0 (4.20)

for v = v(X,T ) in terms of the independent variables

X = Ux, T = t. (4.21)

In the conservation law (3.1) arising from the multipliers (4.19), we replace v(X,T ) by
an arbitrary function V (X,T ). This leads to the following conservation law identity for the
augmented system consisting of the given nonlinear PDE (4.14) and the linear PDE (4.20):

V G[U ] − (xUx − U)J [U ]
(

∂V

∂T
+ ∂2(XpV )

∂X2

)

= D

Dx

(

(xUx − U)(UtxV + Up
x VX) + ((1 − p)xUx + pU)Up−1

x V
)

+ D

Dt

(

Uxx(U − xUx)V
)

, (4.22)

where

J [U ] =
∣
∣
∣
∣

D(X,T )

D(x, t)

∣
∣
∣
∣
= Uxx

is the Jacobian of (4.21). (For verifying the identity (4.22), we note that Vx = VXUxx , Vt =
VXUxt +VT .) Consequently, the sufficiency conditions of Theorem 3.2 hold for the existence
of an invertible mapping by a contact transformation of the nonlinear PDE (4.14) to a linear
target PDE which is the adjoint of the linear PDE (4.20). In particular, from a comparison
of (4.22) with the identity (3.14), it follows that the contact transformation determined by

z1 = X = ux, z2 = T = t, w = xux − u (4.23)

maps the nonlinear pipeline equation (4.14) invertibly into the linear PDE

Xp ∂2w

∂X2
− ∂w

∂T
= 0. (4.24)

4.3 Linearization of a Nonlinear Telegraph Equation

For a final example, we consider a nonlinear telegraph system given by

G1[u] = ∂u2

∂t
− ∂u1

∂x
= 0, G2[u] = ∂u1

∂t
+ u1(u1 − 1) − (u1)2 ∂u2

∂x
= 0 (4.25)

with dependent variables (u1, u2) and independent variables (x1, x2) = (x, t). Note that u1

satisfies the nonlinear telegraph equation

∂2u1

∂x 2
− ∂

∂t

(

(u1)−2 ∂u1

∂t
+ 1 − (u1)−1

)

= 0.
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4.3.1 Linearization through Admitted Point Symmetries

The nonlinear system (4.25) admits an infinite set of point symmetries given by the infini-
tesimal generator

X = F 1(X,T )
∂

∂x
+ e−tF 2(X,T )

∂

∂t
+ e−t u1F 2(X,T )

∂

∂u1
+ F 1(X,T )

∂

∂u2
, (4.26)

where

X1 = X = x − u2, X2 = T = t − logu1, (4.27)

and (F 1(X,T ),F 2(X,T )) is an arbitrary solution of the linear system of PDEs

∂F 2

∂T
− eT ∂F 1

∂X
= 0,

∂F 2

∂X
− eT ∂F 1

∂T
= 0. (4.28)

Consequently, one can apply Theorems 2.1 and 2.2 to linearize (4.25). In particular, we
see that by comparing (4.26) with expressions (2.6), one has α11 = β2

1 = 1, α12 = α21 =
β1

1 = β2
2 = 0, α22 = e−t , β1

2 = e−t u; the associated linear homogeneous system (2.7) has
X1 = x − u2,X2 = t − logu1 as functionally independent solutions and the corresponding
linear inhomogeneous system (2.8) has a particular solution (ψ1,ψ2) = (x, et ). Hence the
mapping given by

z1 = x − u2, z2 = t − logu1, w1 = x, w2 = et (4.29)

is an invertible point transformation under which the nonlinear telegraph system (4.25) is
mapped to the linear PDE system given by

∂w2

∂z2
− ez2

∂w1

∂z1
= 0,

∂w2

∂z1
− ez2

∂w1

∂z2
= 0. (4.30)

4.3.2 Linearization through Admitted Conservation Law Multipliers

Through a computation of conservation law multipliers of the form {Λ1(x, t,U 1,U 2),
Λ2(x, t,U 1,U 2)}, one can show that the nonlinear telegraph system of PDEs (4.25) ad-
mits an infinite set of multipliers yielding a linearization as follows. After some integrability
analysis of the multiplier determining equations (e.g. using CRACK [11]), one first obtains

Λ1 = fU2 , Λ2 = fU1 , (4.31)

in terms of a function f (x, t,U 1,U 2) satisfying the three linear PDEs

fx + fU2 = 0, ft + U 1fU1 = 0, (4.32)

(U 1)2fU1U1 + 2U 1fU1 − fU2U2 = 0. (4.33)

To proceed we integrate the pair of first-order PDEs (4.32), which yields a reduction of the
independent variables such that f = f (X,T ) where

X = x − U 2, T = t − logU 1. (4.34)
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Then the second-order PDE (4.33) combined with (4.31) gives the infinite set of multipliers

Λ1 = −fX(X,T ), Λ2 = −fT (X,T )/U 1, fXX − fT T + fT = 0. (4.35)

Finally, comparing (4.35) with (3.10) in Theorem 3.1, we see that the necessary conditions
for the existence of an invertible mapping of the nonlinear system (4.25) to a linear target
system are satisfied, with the adjoint target system being given by

v = (v1, v2) = (−fX,−fT ) (4.36)

and
∂v1

∂X
− ∂v2

∂T
+ v2 = 0,

∂v2

∂X
− ∂v1

∂T
= 0. (4.37)

In the conservation law (3.1) arising from the multipliers (4.35), (4.36) and (4.37), we
replace (v1(X,T ), v2(X,T )) by arbitrary functions (V 1(X,T ),V 2(X,T )). This leads to
the following conservation law identity for the augmented system consisting of the given
nonlinear system (4.25) and the linear system (4.37):

V 1G1[U ] + V 2(U 1)−1G2[U ] − U 1J [U ]
(

∂V 1

∂X
− ∂V 2

∂T
+ V 2

)

− xJ [U ]
(

∂V 2

∂X
− ∂V 1

∂T

)

= D

Dx

(

−V 1

(

x
∂U 2

∂t
+ ∂U 1

∂t
− U 1

)

+ V 2

(

x − x(U 1)−1 ∂U 1

∂t
− U 1 ∂U 2

∂t

))

+ D

Dt

(

−V 1

(

x − x
∂U 2

∂x
+ ∂U 1

∂t

)

+ V 2

(

x(U 1)−1 ∂U 1

∂x
+ U 1 ∂U 2

∂x
− U 1

))

, (4.38)

where, from (4.34),

J [U ] =
∣
∣
∣
∣

D(X,T )

D(x, t)

∣
∣
∣
∣
= (U 1)−1

((

1 − ∂U 2

∂x

)(

U 1 − ∂U 1

∂t

)

− ∂U 2

∂t

∂U 1

∂x

)

.

Consequently, by comparing (4.38) with the identity (3.14) in Theorem 3.2, we obtain an
invertible mapping of the nonlinear system (4.25) to a linear target system which is given by
the adjoint of the linear system (4.37). In particular, the point transformation

z1 = X = x − u2, z2 = T = t − logu1, w1 = x, w2 = u1 (4.39)

maps the nonlinear telegraph system (4.25) invertibly into the linear system

∂w1

∂X
− ∂w2

∂T
− w2 = 0,

∂w2

∂X
− ∂w1

∂T
= 0. (4.40)

Note that the further point transformation w̃1 = w1, w̃2 = eT w2 maps this linear system
(4.40) into the equivalent linear system (4.30) obtained from linearization of the nonlinear
telegraph system (4.25) through its admitted infinite set of point symmetries (4.26).

5 Concluding Remarks

An important question is which of the two methods presented in this paper is better for lin-
earization? It would appear likely that the approach using admitted conservation law multi-
pliers will be better computationally since, in general, the solution space for the determining
equations for conservation law multipliers is smaller than that for point (or contact) symme-
tries. A way of seeing this is to consider the case when a given system of PDEs is variational,
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i.e., its linearization operator (Frechet derivative) is self-adjoint, so then Noether’s theorem is
applicable. For any such system its conservation law multipliers correspond to a variational
subset of its admitted point (or contact) symmetries and hence, in general, the determin-
ing equations for conservation law multipliers are then more over-determined than those for
point (or contact) symmetries since they include the symmetry determining equations as a
subset [5–7].

An interesting computational way for checking for the possibility of linearization of a
given system of nonlinear PDEs, especially for classification problems, is to apply the work
in [19, 20] to find the size of the solution space of a given system of determining equations
without the need for obtaining any of its actual solutions. In particular, if the size of the solu-
tion space of the determining systems either for conservation law multipliers or for point (or
contact) symmetries is finite dimensional, then no linearization by an invertible mapping is
possible. But the converse (that the solution space is infinite dimensional) is not sufficient to
imply the existence of a linearization by a point or contact transformation. Specifically, the
solution space must have a sufficiently large number of parameters such that the number of
functions and independent variables, as well as the number of linear PDEs, matches the cor-
responding number in the given nonlinear system of PDEs. This counting can be performed
fully algorithmically [19, 20] provided a differential Gröbner basis is available. However, it
is important to recognize that in practice the computational complexity of finding a differ-
ential Gröbner basis will be very high.

It would also be interesting to develop a fully algorithmic version of the two lineariza-
tion methods themselves. This would entail, firstly, the use of a differential Gröbner basis
computation to reduce the determining equations into a consistent over-determined linear
system satisfying all integrability conditions and having a sufficiently large solution space.
Secondly, a strictly computational procedure must be specified to extract from this linear
system the form of the linearizing transformation for the dependent and independent vari-
ables in the given nonlinear system of PDEs.

The algorithmic steps we have used in our present work (e.g. for linearizing Burgers’
equation, the pipeline equation, and the nonlinear telegraph system) are less automatic
than finding a differential Gröbner basis but have much less computational complexity in
practice. In particular, they take advantage of the integration capabilities of CRACK [11],
including algorithms for direct and indirect separation of equations, for dropping redun-
dant functions, for checking integrability conditions, and others. Furthermore, CRACK also
handles solving the first-order linear PDEs as needed in finding the transformations of the
independent variables in the linearization mapping.

Finally, we mention that a hodograph-type approach for linearization has been given
some time ago in work [21] of Varley and Seymour on linearizing the nonlinear telegraph
system (Example 4.3). Their clever procedure for finding a linearization is not symmetry-
based; it only applies to specific types of nonlinear PDEs and cannot determine, in general,
whether a given system of nonlinear PDEs admits a linearization by an invertible mapping.
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