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Abstract Complex uniformization of curves is a popular tool in Number Theory. There are,
however, some arithmetic and computational advantages in the use of p-adic uniformization.
This paper compares the two theories and discusses how they can be used to study isogenies,
with explicit examples of p-adic uniformization of hyperelliptic curves.
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1 Introduction

The theory of Rigid Analytic Spaces, developed by Tate in [9], has seen many applica-
tions in Number Theory and Arithmetic Geometry, including contributions to the resolu-
tion of Fermat’s last theorem and Abhyankar’s conjecture. Another interesting application
of this theory lies in p-adic uniformization of curves and abelian varieties. The complex
uniformization of an abelian variety A has been studied at length, because it provides a
nice analytic model for A(C), the complex points of A. In Number Theory, however, one
is often interested in other points of A, and p-adic uniformization can give a model for
A(Qp). Moreover, as the actual computation of either one of the models requires approxi-
mation, often the p-adic model is easier to acquire. Despite of this, it seems that the rigid
uniformization is less known, and is taken advantage of infrequently.

The main results of this paper are contained in Sect. 3.3, where we describe the possible
isogenies of analytic tori, and Sect. 5.2, where explicit examples of rigid uniformizations
are computed, in order to suggest the practical application of the theory. To provide the
reader with the necessary background, we also give a self-contained review of rigid analytic
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uniformization of curves. As a motivation, the subject is presented alongside the theory of
complex uniformization, and we often discuss the relevant differences and similarities.

We will use k to denote a field which is complete with respect to non-Archimedean
valuation. Since k usually stands for the reduction, we will denote the algebraic closure
by ka . Also, k〈X〉 will denote the subring of strictly convergent power series in k�X�, which
means that the sequence of the coefficients tends to zero. The paper is organized as follows:
we first define rigid analytic spaces in Sect. 2, and define a rigid structure on analytic tori
and Mumford curves in Sect. 3.2. Then we prove the structure theorem for isogenies of
analytic tori (Sect. 3.3), and show how the Jacobians of Mumford curves are isomorphic
to analytic tori. Equipped with this theory, we can discuss p-adic uniformization of curves,
and apply it to the study of isogenies. Finally, we discuss some of the advantages of p-adic
uniformization in Sect. 5.1, and give examples of genus 2 hyperelliptic curves over Q5 in
Sect.5.2, calculating their isogenies.

2 Rigid Analytic Varieties

We would like to define a theory of analytic geometry over k. One could try to do so di-
rectly using the valuation of k, which induces a metric topology on kn. However, kn in this
topology is totally disconnected, which affects the nature of analytic functions. For exam-
ple, the global “analytic” (in the sense of having a power series expansion about every point)
functions

f (x) =
{

1, |x| = 1,

0, |x| �= 1,
g(x) = 0

are not equal, even though f = g on the open set {x ∈ k : |x| �= 1}. The problem is that in
this topology, the set {x ∈ k : |x| = 1} is also open.

To fix this problem, we could consider a different approach. We could start with a notion
of an analytic function, as an element of some power series ring, and to this ring associate a
natural set of points on which all such functions converge. For example, the Tate algebra

Tn =
{∑

ai1...inX
i1
1 . . .Xin

n ∈ k�X1, . . . ,Xn� : lim |ai1...in | = 0
}

serves as the function algebra on the unit ball

Bn = Bn(ka,1) = {(x1, . . . , xn) ∈ kn
a : |xi | ≤ 1}.

In fact, Tn is the set of all continuous functions Bn → ka , which admit a power series expan-
sion converging on all of Bn, and which map Bn(k,1) into k [1]. Moreover, Tn also serves as
the ring of functions on the maximum spectrum MaxTn in the usual way: f (x) is the image
of f in the finite field extension Tn/x of k. As it turns out, Tn is a Jacobson, Noetherian
domain, with closed ideals. For any ideal I ∈ Tn, the finitely generated k-algebra A = Tn/I

can be identified with the ring of analytic functions on MaxA ↪→ MaxTn. If we were to
endow MaxA with the Zariski topology, this construction would be very analogous to the
theory of algebraic varieties. But in general, the Zariski topology is too coarse to be useful
in analytic geometry, so the idea is to use a different topology.

Actually, the maximum spectrum of any Tate algebra carries a canonical topology, which
is related to the metric topology on kn. More generally, an affinoid algebra A is defined as a
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finitely generated k-algebra extension of some Tn. A can always be expressed as a quotient
of the Tate algebra by an ideal. Since Tn is a Banach algebra with respect to the norm

∥∥∥∑
aνX

ν
∥∥∥ = max |aν |, ∀ν ∈ N

n,

the affinoid algebra A = Tn/I is a Banach algebra with respect to the quotient norm

‖f ‖ = inf{‖f + g‖ : g ∈ I }.
We would like to use affinoid algebras as the building blocks for analytic spaces. To define
the canonical topology on MaxA, we give Bn(ka) the subspace (metric) topology from kn

a .
Consider the surjection τ : Bn(ka) → MaxTn: x 
→ mx , where mx ⊂ Tn is the ideal of all
functions vanishing on x. Then τ has finite fibers, and induces a bijection

Bn(ka)/Gal(ka/k) � Max Tn.

Thus τ defines a quotient topology on Max Tn, which, in turn, gives the canonical topol-
ogy on Max A ↪→ Max Tn for any affinoid k-algebra Tn � A. This topology is canonical
because it can be described independently of the presentation A = Tn/I . Namely, the sets

{x ∈ Max A : |fi(x)| ≤ 1} for some {fi}r
i=1 ⊂ A

form a basis.
One advantage of the canonical topology on Max A is that it still has a “flavor” of a

metric topology. For example, all sets of the form {x ∈ Max A : |f (x)| =, �=,≤,≥ |α|} for
any f ∈ A and α ∈ k are open. But it is no longer immediately clear what an analytic
function on a general open set in this topology should be. In fact, from the point of view
of defining a sheaf, the most straightforward topology to use would only consist of the
subsets U = Max B ⊂ Max A corresponding to k-algebra homomorphisms A → B , called
affinoid subdomains. Then we could simply consider the presheaf O(U) = B . Fortunately,
all affinoid subdomains are open in the canonical topology, and even form a basis.

Actually, we can go one step further. For any f0, f1, . . . , fn ∈ A generating the unit ideal,
i.e. having no common zeros on Max A, call the set

R = {x ∈ MaxA : |fi(x)| ≤ |f0(x)|}
a rational domain. It is an open affinoid subdomain of Max A, corresponding to the affinoid
algebra

AR = A〈X1, . . . ,Xn〉/(. . . , f0Xi − fi, . . .).

Since any open affinoid subdomain of Max A is a finite union of rational domains, as far as
sheaf theory is concerned, there is no loss in restricting ourselves to rational domains only.
These domains satisfy some nice properties, which make them particularly useful as a basis
for a (Grothendieck) topology. For example:

– If R1 and R2 are rational, then so is R1 ∩ R2 with AR1∩R2 � AR1⊗̂AAR2 .
– If R1 ⊂ R2 is rational, and R2 ⊂ MaxA is rational, then R1 is rational in MaxA.

The final ingredient in the definition of rigid analytic spaces, sometimes called analytic
varieties, is to make them determined by local data. Thus, an analytic variety should be ob-
tained from gluing together “affinoid varieties,” just as, for example, an algebraic variety is
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obtained from gluing together affine varieties. None of the topologies on MaxA that we have
considered so far are suitable for this purpose. Therefore, we give MaxA a Grothendieck
topology. Basically, a Grothendieck topology on a set Y consists of a system F of subsets
of Y , called “admissible open” subsets, and for every U ∈ F a set Cov(U) of coverings by
elements of F , called “admissible coverings,” all of which satisfy certain conditions. A sheaf
on such a G-topological space is defined with respect to the admissible open subsets. In the
usual way, one obtains a theory of G-ringed spaces, locally G-ringed spaces, and Čech coho-
mology for presheaves on G-topological spaces. A nice feature of Grothendieck topologies
is that they come with a recipe for gluing, not only G-topological spaces, but also the maps
between them.

So let A be an affinoid algebra. We endow Y = MaxA with a Grothendieck topology G
where the admissible open sets are the rational domains, and the only admissible cover-
ings are finite coverings by rational domains. The fact that the presheaf OY (Y ) = A, and
OY (R) = AR is a sheaf with respect to G is a consequence of Tate’s Acyclicity Theorem,
and we call OY the structure sheaf of Y . Thus, an affinoid variety is defined as the triple
Sp(A) = (Y,G,OY ), consisting of the topological space Y = MaxA, with its Grothendieck
topology G and the structure sheaf OY . A rigid analytic space over k is a triple (X,G,O),
consisting of a topological space X, a Grothendieck topology G on X, and a sheaf O, such
that there exists an admissible covering (Xi) ∈ Cov(X) with (Xi,G|Xi

,O|Xi
) an affinoid

variety. A good reference for this material is [1]. To give examples, in the next section we
explicitly describe the rigid analytic structure on (k∗)n, analytic tori and Mumford curves.

3 Analytic Tori

3.1 Rigid Structure on (k∗)n by Analytification of Gn
m,k

First, note that the algebraic affine variety (k∗)n = Gn
m,k is a product:

(k∗)n = Spec k[z1, z
−1
1 , . . . , zn, z

−1
n ]

� Spec (k[z1, z
−1
1 ] ⊗k · · · ⊗k k[zn, z

−1
n ]) � k∗ ×k · · · ×k k∗.

In the category of k-affinoid varieties, fiber products also exist, but we use the completed
tensor product:

Sp A ×k Sp B = Sp A ⊗̂k B.

Thus, in the analytic case we also see products:

Sp k〈z1, z
−1
1 , . . . , zn, z

−1
n 〉

� Sp (⊗̂kk〈zi,wi〉/(ziwi − 1)) � ×k Spk〈zi, z
−1
i 〉,

which follows from the isomorphism Tn/a ⊗̂k Tm/b � Tn+m/(a,b). However, unlike the al-
gebraic case, it is not possible to describe all of (k∗)n as an affinoid variety in this way,
since the space Sp k〈x, x−1〉 only corresponds to the unit sphere centered at origin in
Spec k[x, x−1]. But the spaces Spk〈z1, z

−1
1 , . . . , zn, z

−1
n 〉 can be extended to annuli, which

provide an affinoid covering of the analytic space (k∗)n in a natural way.
More generally, there is an analytification functor Y � Y an which assigns an analytic

variety to any scheme Y of locally finite type over k. It is illuminating to see how it works
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in the case of affine schemes, and especially the affine n-space. For proofs and more details,
the reader is referred to [1, Chap. 9].

To ease the notation, let X = (x1, . . . , xn) be a system of indeterminates, and we’ll write
Xν for (x

ν1
1 , . . . , xνn

n ) and k〈X〉 ⊂ k�X� for the Tate algebra Tn, serving as analytic functions
on Bn(ka,1). Fixing an element π ∈ k with |π | > 1, we can also consider the subalgebras
Ai ⊂ k�X�

Ai =
{∑

aνX
ν ∈ k�X� : lim |aν |(|π |i , . . . , |π |i )ν = 0

}
,

which we think of as function algebras on the ball Bn(ka, |π |i ) of radius |π |i . Each Ai is
affinoid, since it is the same as Tn with π−ixi serving as indeterminates. Thus, we get a
chain of affinoid algebras

k〈X〉 = A0 ⊃ A1 ⊃ · · · ⊃ k[X]
which gives an increasing chain of affinoid subdomains

Bn = SpA0 ↪→ SpA1 ↪→ ·· · .
These affinoid subdomains are now glued together to give the analytic affine n-space A

n,
which has {SpAi}i≥0 as an admissible covering. Looking at the underlying topological
spaces of SpAi , we see an increasing chain

MaxA0 ⊂ MaxA1 ⊂ · · · ⊂ Maxk[X]
of balls

MaxAi = {z ∈ Max k[X] : |zj | ≤ |π |i ∀j} � Bn(k, |π |i ).
These balls are subsets of the affine algebraic space Spec k[X], but are not themselves affine
subschemes. They are affinoid varieties, however, and paste together to give the analytic
space A

n = (Spec k[X])an.
Now it is clear how to give a structure of an analytic space to any affine variety V ↪→

Spec k[X]. Namely, we paste together the affinoid covering obtained from the intersections

V ∩ Bn(k, |π |i ) = {z ∈ V : |zj | ≤ |π |i ∀j}.
Explicitly, V = SpecB for some finitely generated k-algebra B = k[X]/a. So, there is a
sequence of k-algebras

A0/aA0 ← A1/aA1 ← ·· · ← B

corresponding to a sequence of affinoid subdomains

SpA0/aA0 ↪→ SpA1/aA1 ↪→ ·· · .
We paste these together to obtain an analytic space V an with {SpAi/aAi}i≥0 as an admissi-
ble affinoid covering. Just as above, the underlying set of V an can be identified with MaxB ,
and MaxAi/aAi can be identified with V ∩ Bn(k, |π |i ).

Returning to (k∗)n, we now have a recipe for giving it a structure of an analytic space, as
the analytification of the algebraic variety Gn

m,k . For example, we can take B = k[X]/a,
with a = (. . . , xixn+i − 1, . . .) and X = (x1, . . . , xn, xn+1, . . . , x2n), and define (k∗)n :=
(SpecB)an. If we set ζ = (ζ1, . . . , ζn), then the sequence

A0/aA0 ← A1/aA1 ← ·· · ← B
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is isomorphic to

k〈ζ, ζ−1〉 = B0 ← B1 ← ·· · ← k[ζ, ζ−1] � B,

where by Bi we denote the image of Ai/aAi in k�ζ, ζ−1�. Thus, Bi are the k-algebras

Bi =
{ ∞∑

ν=−∞
aνζ

ν : lim
ν→∞|πi |ν |aν | = 0, lim

ν→−∞|πi |ν |aν | = 0

}

= k〈π−iζ, (πiζ )−1〉
of convergent Laurent series. As affinoid varieties, they are called Laurent domains.

In general, given an affinoid k-algebra A with Z = SpA, and a system of elements f =
(f1, . . . , fn), g = (g1, . . . , gm) in A, the space

Z(f,g−1) = {x ∈ Z : |fi(x)| ≤ 1, |gj (x)| ≥ 1 ∀i, j}
is called a Laurent Domain in Z. It is an affinoid subdomain of Z, corresponding to the ring

A〈f,g−1〉 = A〈X,Y 〉/(X − f,gY − 1).

In our case, if we set Ai = k〈π−iζ 〉, so SpAi � Bn(k, |π |i ), we see that Bi = Ai〈1, (πiζ )−1〉.
Hence,

SpBi = SpAi〈1, (πiζ )−1〉 = Bn(k, |π |i )(1, (πiζ )−1)

is a Laurent domain in Bn(k, |π |i ), whose underlying topological space is the annulus

MaxBi = {x ∈ Bn(k, |π |i ) : |πixj | ≥ 1 ∀j}
= {x ∈ Max k[ζ, ζ−1] : |π |−i ≤ |xj | ≤ |π |i ∀j}.

Thus, the analytic space G = (k∗)n is obtained by pasting together the affinoid annuli SpBi .
Moreover, the group operations are given by analytic maps, so G is actually an analytic
group variety.

The fact that the analytic structure on G is obtained from an increasing chain of subdo-
mains has consequences for the ring of global functions OG(G). If f ∈ OG(G), then the
compatibility conditions on the intersections in the admissible covering (SpBi) determine
f as an element of k�ζ, ζ−1�. Therefore, each global function has a unique Laurent series
expansion converging on all of G. Moreover, since G has coordinate functions ζi(x) = xi ,
any morphism φ into G has components φi = ζi ◦ φ. When φ ∈ End(G), the components φi

are global nonvanishing functions.

3.2 Rigid Analytic Tori and Mumford Curves

If Y is a rigid analytic space, and 	 is a group of automorphisms of Y , then 	 acts discon-
tinuously on Y if there is an admissible affinoid covering (Yi) ∈ Cov(Y ) such that the set
{γ ∈ 	 : γ Yi ∩ Yi �= ∅} is finite for each i. In this case, we can give the quotient Z = Y/	

a structure of a rigid analytic space as well. To do so, we need to specify for it a topology,
a Grothendieck topology, and a structure sheaf. As a topological space, Z has the quotient
topology via the canonical map p: Y → Z. For the Grothendieck topology, we define a
subset U ⊂ Z to be an admissible affinoid if p−1U is admissible. Similarly, a covering of
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U by admissible sets Ui is admissible if (p−1Ui) is an admissible covering of p−1U . The
structure sheaf is defined in the usual way: OZ(Z) = k and OZ(U) = OY (p−1U)	 .

The examples of this quotient construction which we are interested in are analytic tori and
Mumford curves. For the analytic torus, we start with the analytic group variety G = (k∗)n.
A subset � ⊂ G is called discrete if its intersection with each affinoid in G is finite. If in
addition � has full rank and no torsion elements, it is called a lattice. One can define a group
homomorphism �: (k∗)n −→ R

n given by

z = (z1, . . . , zn) 
→ �(z) = (− log |z1|, . . . ,− log |zn|),
and then � is a lattice in (k∗)n if and only if �(�) � Z

n is a full rank lattice in R
n. Since

a lattice � viewed as a group of automorphisms acts discontinuously on G, we define an
analytic torus as the quotient T = (k∗)n/�.

The second construction we need is that of a Mumford curve. Consider the group
PGL2(k) acting as analytic automorphisms on P

1
k , and let 	 ⊂ PGL2(k) be a subgroup.

A point p ∈ P
1
k is called a limit point of 	 if ∃q ∈ P

1
k and an infinite sequence {γn}n≥1 ⊂ 	

of distinct elements with limγn(q) = p. The set of limit points of 	 is denoted L(	). 	 is
called discontinuous if L(	) �= P

1
k , and every orbit 	p has a compact closure. A finitely

generated discontinuous group is called a Schottky group if it has no nontrivial elements of
finite order. The set 
 = P

1
k −L(	) of “ordinary” points of a Schottky group has a structure

of a rigid analytic space on which 	 acts discontinuously. The quotient S = 
/	, in the
category of rigid analytic spaces, is called a Mumford curve. As the field of meromorphic
functions on S is a finite algebraic extension of k(t), S is actually a nonsingular curve. When
the Schottky group 	 is generated by one element, which can be taken as

(
q 0
0 1

)
, for some q ∈ k with |q| < 1,

then S is isomorphic to the Tate elliptic curve Eq . Otherwise, 	 is generated by g hyperbolic
matrices, and S is the analytification of a projective, nonsingular and irreducible curve C/k

of genus g. As we will see in Sect. 4, the Jacobians of Mumford curves are analytic tori
whose period lattices can be described in terms of the Schottky group 	. For more details
on Mumford curves, as well as explicit constructions of the analytic spaces 
 and 
/	, the
reader is referred to [4, Sect. 5.4] and [7, Chaps. I–III].

3.3 The Isogeny Theorem for Analytic Tori

Complex uniformization of algebraic curves is useful in the study of isogenies because we
understand well the isogenies of complex tori. In order to fully take advantage of p-adic
uniformization of curves, we first need to study the structure of isogenies of rigid analytic
tori. It turns out that these maps have a simple form, and are completely determined by the
period lattices. Since the results are similar, it is interesting to consider the complex and
non-Archimedean theories in parallel, so we first give a brief review of complex tori and
their isogenies.

A lattice � ⊂ C
n is the Z-span of some R-basis of C

n, and it defines a complex torus
as the quotient C

n/�. The torus is given the quotient topology, and the sheaf is defined by
the principle that analytic functions on open subsets of the torus should be the � invariant
analytic functions on the corresponding subsets of C

n. In general, an isogeny of analytic tori
should be an analytic mapping which is also a group homomorphism, and has finite kernel
and cokernel. However, mostly due to Liouville’s Theorem on C

n, we find that there is very
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little choice of the form of an isogeny ψ : C
n/�1 −→ C

n/�2. As C
n is the universal cover

of the tori, ψ lifts to an analytic map φ: C
n −→ C

n satisfying φ(�1) ⊂ �2. Using basic
theorems of complex analysis, one can show that ψ must be the map z 
→ Mz for some
M ∈ Mn(C). See for example [3, pp. 26 and 216]. The final result is that every isogeny of
complex tori is given by an action of a complex matrix.

Let us apply this to the problem of determining if two curves C1 and C2 are isoge-
nous. Uniformizing the curves, one obtains the period lattices �1 and �2, and isomorphisms
ρi : Ji −→ Cn/�i of the Jacobians Ji of Ci . Let {v1, . . . , v2n} and {w1, . . . ,w2n} be the gen-
erators of �1 and �2, respectively. Determining if an isogeny φ: J1 −→ J2 exists at the level
of Jacobians can be difficult, but if it does, then it induces a matrix map M of the complex
tori. This matrix must satisfy the condition M(�1) ⊂ �2, which gives a set of relations

Mvi =
2n∑

j=1

aijwj .

Hence, the problem of detecting isogenies of curves reduces to the following linear algebra
problem: given two n × 2n matrices V and W whose columns are the lattice generators
{vi}2n

i=1 and {wi}2n
i=1, respectively, can one find matrices M ∈ Mn(C) and A = (aij ) ∈ M2n(Z)

such that MV = WAT . If so, then the analytic map z 
→ Mz induces an algebraic map of
the Jacobians, which is an isogeny of degree detA (and actually defined over the field of
definition of M [10]).

Now let k be a field complete with respect to a non-Archimedean valuation. We could try
to study isogenies of rigid analytic tori by mimicking the complex theory, but this approach
quickly runs into problems, as there are some significant differences. First of all, (k∗)n is
not simply connected. Thus, it is not the universal cover of (k∗)n/�, at least not in the usual
topological sense. So one can not automatically assume that analytic maps of tori lift to
analytic maps of (k∗)n.

Another significant difference is that (k∗)n is not a k vector space. For an isogeny φ of
complex tori, the fact that φ(�1) ⊂ �2 induces a mapping

γ : {vi} −→
{∑

aijwj

}

between the basis elements. But any such mapping extends to a global linear map

C
n −→ C

n: z =
∑

αivi 
→
∑

αiγ (vi),

given by some matrix M . Then one can argue that φ must have been the map z 
→ Mz.
In the rigid analytic case, the condition φ(�1) ⊂ �2 still defines a mapping on the lattice

generators

γ : {vi} −→
{∏

w
aij

j

}
,

but as the lattice generators are no longer a basis of (k∗)n, it is not clear how to extend
the mapping γ to a global map on all of (k∗)n. Hence, the condition φ(�1) ⊂ �2 does not
automatically present us with a candidate for the map φ, as is the case over the complex
numbers.

Furthermore, the multiplicative analogy of the map z 
→ Mz is the map z 
→ zM , where
for a vector z = (z1, . . . , zn) ∈ (k∗)n and a matrix M = (mij ) ∈ Mn(k), by zM we mean the
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vector

zM =
⎛
⎝

z1
...

zn

⎞
⎠

(mij )

=
⎛
⎜⎝

z
m11
1 z

m12
2 . . . z

m1n
n

...

z
mn1
1 z

mn2
2 . . . zmnn

n

⎞
⎟⎠ .

Clearly, this map is an analytic group homomorphism, whenever defined. The problem is, of
course, that in general this map is not well defined, as there is no canonical action x 
→ xa

of k on k∗. For example, note that while 1
n
x is uniquely determined by x, there are n choices

for x
1
n .

In light of these differences, it may be a little surprising that the form of isogenies of
rigid analytic tori is still very similar to the complex analytic case. The key ingredient in the
p-adic theory is the nontrivial fact that the group of invertible global functions O((k∗)n)∗ is
the group of monomials {λzα | λ ∈ k∗, α ∈ Z

n}, proved in [4, Chap. 6]. Since the component
functions of any φ ∈ End((k∗)n) are group homomorphisms, they lie in O((k∗)n)∗, with
constant term λ = 1. This gives a canonical identification End((k∗)n) � Mn(Z). (Note, for
comparison, that End(Cn) � Mn(C).) The second necessary fact is that analytic maps of
tori φ: (k∗)n/�1 −→ (k∗)n/�2 do lift to φ̂ ∈ End((k∗)n) satisfying φ̂(�1) ⊂ �2. The proof
of this is a consequence of the sheaf definition on the torus, and can be found in [5, 6].
Together, these facts could be used to prove Theorem 1 below for a general field k (complete
with respect to a non-Archimedean valuation). However, for subfields of Cp , we prove the
theorem using basic methods, which do not require any of the machinery of [4]. Moreover,
this proof is constructive, and we use it later for the computation of the isogenies.

To fix the notation, we will consider two lattices �1 and �2 generated by vectors
v1, . . . , vn and w1, . . . ,wn, respectively. Using the group homomorphism �: (k∗)n −→
R

n: z 
→ (− log |z1|, . . . ,− log |zn|), set xi = �(vi) and yi = �(wi), and let X,Y ∈ Mn(R)

be the matrices with column vectors xi and yi . Also, X′ and Y ′ will denote the lattices in Rn

generated by the columns of X and Y , respectively.

Theorem 1 (k ⊂ Cp) Let ψ : (k∗)n/�1 −→ (k∗)n/�2 be an isogeny of analytic tori. Then it
induces an isogeny of real analytic tori φ̃: Rn/X′ −→ Rn/Y ′, given by matrix multiplication
map z 
→ Mz, where M = YAT X−1 ∈ Mn(Z). Moreover, ψ is the map z 
→ zM .

Proof ψ lifts to an analytic homomorphism φ: (k∗)n −→ (k∗)n such that φ(�1) ⊂ �2.
Restricting to the respective lattices, we have the following commutative diagram, in which
the vertical maps are isomorphisms:

�1

φ

l

�2

l

X′
φ̃

Y ′

The condition φ(�1) ⊂ �2 specifies a set of relations φ(vt ) = ∏n

j=1 w
atj

j , which give a
matrix A = (aij ) ∈ Mn(Z). Since

�(φ(vt )) =
⎛
⎝

− log |φ(vt )1|
...

− log |φ(vt )n|

⎞
⎠ =

⎛
⎜⎝

∑n

j=i atj (yj )1

...∑n

j=1 atj (yj )n

⎞
⎟⎠ =

n∑
j=1

atj yj ,
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and �−1(xt ) = vt , we see that the group homomorphism φ̃ = � ◦ φ ◦ �−1 is given on the
generators of X′ by the relations φ̃(xt ) = ∑n

j=1 atj yj . In matrix notation, we have the single
equation

( | . . . |
φ̃(x1) . . . φ̃(xn)

| . . . |

)
= YAT .

Since X is nonsingular, we can consider the matrix M = YAT X−1. We see that Mxi =
YAT X−1xi = ith column of YAT , which is by construction φ̃(xi). It follows that as a map
on lattices, φ̃ is the map z 
→ Mz. But the matrix M extends to a linear map on all of R

n,
satisfying M(X′) ⊂ Y ′, and so it descends to an isogeny

R
n/X′ −→ R

n/Y ′: z + X′ 
→ Mz + Y ′,

which we will also call φ̃.
Now suppose that M actually has integral coefficients. Then the map z 
→ Mz lifts to the

homomorphism z 
→ zM such that the following diagram commutes

(k∗)n
z 
→zM

l

(k∗)n

l

R
n

z 
→Mz

R
n

since for M ∈ Mn(Z) we have �(zM) = M�(z). Clearly, (z 
→ zM)|�1 = φ|�1 , so by the
following lemma, φ is the map z 
→ zM , and the same for ψ .

Lemma 2 Let � be a lattice in (k∗)n, and suppose that α,β: (k∗)n −→ (k∗)n are analytic
group homomorphisms such that α|� = β|�. Then α = β .

Proof It is enough to prove that the component functions gi(z) = ζi ◦ α(z) and hi(z) =
ζi ◦ β(z) are equal for all i. Since hi ∈ O((k∗)n)∗, the function F(z) = gi(z)/hi(z) is ana-
lytic. Then α|� = β|� implies that

F(λz) = gi(λz)

hi(λz)
= gi(λ)gi(z)

hi(λ)hi(z)
= gi(z)

hi(z)
= F(z), ∀λ ∈ �.

Let G be the torus (k∗)n/�. Since F is analytic on (k∗)n and �-invariant, it descends to an
element ρ ∈ OG(G) = k. Thus, gi(z) = ρhi(z), and since these functions are group homo-
morphisms, it follows that ρ = 1. Repeating this argument for each i shows that α = β . �

In general, k ⊂ Cp implies that |k∗| ⊂ |C∗
p| = pQ = {pν : ν ∈ Q}. So �(z1, . . . , zn) =

logp(ν1, . . . , νn) for νi ∈ Q. In particular, we can write X = (logp)X̄ and Y = (logp)Ȳ

where X̄, Ȳ ∈ Mn(Q). Thus, M = YAT X−1 = ȲAT X̄−1 ∈ Mn(Q). So we can find an integer
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b such that bM = B ∈ Mn(Z). Consider the following diagram:

(k∗)n

z 
→zB

φ

l

(k∗)n
z 
→zb

l

(k∗)n

l

Rn

z 
→Bz

z 
→Mz

Rn
z 
→bz

Rn

The top diagram commutes by Lemma 2, since (z 
→ zB)|�1 = (φb)|�1 . This proves the
theorem. �

Nota bene Strictly speaking, we have only shown that ψb ∈ Mn(Z). But since ψ is an
isogeny �⇒ ψb is an isogeny, we can assume that ψ = ψb , at least from the point of view
of detecting when two tori are isogenous. In practice, one would always find that b = 1, as
M ∈ Mn(Z) by [4].

We finally come to the main theorem of this section, about isogenies of rigid analytic tori.
It is modeled after the one-dimensional case, which says that two Tate elliptic curves Eq1 and
Eq2 are isogenous iff there are integers a and b such that qa

1 = qb
2 [8]. To state the theorem

in a concise form, we will write the matrix equation V B = AW as the multiplicative version
of BV = WA. In other words, if the columns of W are the vectors w1, . . . ,wn, then AW is
the matrix whose ith column is the vector

∏n

j=1 w
aji

j , whereas the ith column of V B is the
vector vB

i . In our case, the columns of V and W are the generators of the lattices �1 and �2,
respectively. Also, considering the remarks made prior to Theorem 1, we can dispense with
the condition k ⊂ Cp .

Theorem 3 ψ : (k∗)n/�1 −→ (k∗)n/�2 is an isogeny ⇐⇒ ∃A,B ∈ Mn(Z) such that
V B = AW . Moreover, ψ = (z 
→ zB) is completely determined by A, �(�1) and �(�2).

Proof (⇐�) Given such matrices A and B , the map ψ(z) = zB is an analytic group ho-
momorphism (k∗)n −→ (k∗)n. Since ψ(vi) = ∏n

j=1 w
aji

j , where A = (aij ), it follows that
ψ(�1) ⊂ �2, so it descends to an isogeny of the tori.

(�⇒) Given an isogeny ψ of the tori, we lift it to a map φ ∈ End((k∗)n), which must
have the form z 
→ zB for some B ∈ Mn(Z), by the previous theorem. Then φ(�1) ⊂ �2,
which specifies the second matrix A = (aij ) ∈ Mn(Z) such that V B = AW .

Moreover, by passing to the induced map on the real tori, we see that in both directions,
the matrix B must equal �(�2)A

T �(�1)
−1. �

This theorem turns out to have important computational consequences, which stem from
the fact that the homomorphism � only depends on the valuation of its argument. We will
discuss this along with other advantages of p-adic uniformization in Sect 5.2.
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4 Jacobians of Mumford Curves

In this section we give an overview of Jacobians of Mumford curves. For comparison, the
theory is presented in parallel with the complex theory of Jacobians. As it turns out, Mum-
ford curves over any non-Archimedean field k admit the type of explicit description of their
Jacobians as is available only for curves over C in the Archimedean case. Our goal here is to
give a general idea of the concepts involved. For proofs of the statements and more details,
the reader is referred to [7, Chap. VI].

In general, given a nonsingular projective curve C over a field k, its Jacobian JC should
be an abelian variety whose group of closed points is isomorphic to Pic0(C), the group
of degree zero divisor classes on the curve. At least when C(k) �= ∅, the Jacobian of C is
defined by a universal property as a variety over k, so it is unique. In fact, JC is the unique
abelian variety which is birational to C(g), where g is the genus of the curve. However, since
the Jacobian is defined by a universal property, it is usually not given in terms of any explicit
equations which could be used for computations, except possibly in the case of elliptic
curves. The situation, though, is much better when k = C, as now the curve has a structure
of a compact Riemann surface, also denoted by C. Topologically, C is a g-holed torus with
a canonical basis {γ1, . . . , γ2g} for H1(C,Z). It also comes with a g-dimensional complex
vector space 
1(C) of holomorphic differentials. The map γ 
→ ∫

γ
identifies H1(C,Z) with

a subgroup of 
1(C)∨, and one could consider the quotient

J = 
1(C)∨/H1(C,Z).

Given any choice of a basis {ω1, . . . ,ωg} of 
1(C) over C, the 2g period vectors

vj =
⎛
⎜⎝

∫
γj

ω1

...∫
γj

ωg

⎞
⎟⎠ ∈ C

g

are R-linearly independent, and their Z-span defines the period lattice � of C. Moreover,
the evaluation map ∫

γ


→
(∫

γ

ω1, . . . ,

∫
γ

ωg

)

identifies J with the complex torus C
g/�. J also has a Riemann form, so in fact it is an

abelian variety.
To see which abelian variety it is, pick a basepoint P0 ∈ C and consider the map

C −→ J : P 
→
∫ P

P0

.

Moding 
1(C)∨ by H1(C,Z) guarantees that the integral on the right is path independent,
so the map is well defined. It extends to the map

ψ : Pic0(C) −→ J :

[∑
niPi

]

→

∑
ni

∫ Pi

P0

,

and the Abel–Jacobi Theorem says that ψ is a group isomorphism. Thus, J is an abelian
variety which is isomorphic as a group to Pic0(C), and so by uniqueness of Jacobians,
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J = JC . Therefore, when k = C, we obtain a nice representation of the Jacobian of a curve,
which is very useful for computations.

Now let us consider the non-Archimedean case, where S = 
/	 is a genus g Mumford
curve. Even though we can no longer rely on Riemann surface theory, we can find analogues
of J , the Abel–Jacobi map ψ , and the identification of J with an analytic torus. These
analogues allow us to write down a description of the Jacobian of S which is as explicit as
it was over C.

The most important ingredient in the theory of Jacobians of Mumford curves is the theta
function. Essentially every object which we will consider is related somehow to this remark-
able function, so its definition is a good place to start. For any a, b ∈ 
, we define

�(a,b; z) =
∏
γ∈	

z − γ (a)

z − γ (b)
.

The product converges to give a meromorphic function on all of 
. If a and b are in the
same 	 orbit, then �(a,b; z) has no zeros or poles; otherwise, it has simple zeros at 	a

and simple poles at 	b, and no others. As a special case, for any α ∈ 	, we define on 
 the
analytic, nonvanishing function

uα(z) = �(a,α(a); z).

These functions are independent of the choice of a ∈ 
, and satisfy the relations

uαβ(z) = uα(z) · uβ(z) ∀α,β ∈ 	.

Also, uα(z) is constant if and only if α ∈ [	,	]. As α ≡ γ
n1
1 · · ·γ ng

g mod [	,	] for some
ni ∈ Z, where {γi} are the generators of 	, if we set ui(z) := uγi

(z), we have

uα(z) = a0u1(z)
n1 · · ·ug(z)

ng for some a0 ∈ k∗.

An automorphic form is defined as a meromorphic function f on 
 such that for any
α ∈ 	, there exists a constant c(α) ∈ k∗ for which f (z) = c(α)f (αz). c = cf is called the
automorphy factor of f . Quite remarkably, the automorphy factors are group homomor-
phisms 	 → k∗, since for any α,β ∈ 	,

f (z) = c(β)f (βz) = c(β)c(α)f (αβz), and

f (z) = c(αβ)f (αβz),

so c(αβ) = c(α) · c(β).
Returning to the theta function �(a,b; z), its automorphy factors depend analytically on

the parameters a and b, and are given by the equation

c�(a,b′z)(α) = uα(a)

uα(b)
.

Next, we state the two most important theorems of this section. The first one says that
every automorphic form is a product of theta functions, and the second says that every group
homomorphism 	 → k∗ is an automorphy factor of some automorphic form. Together, they
define the Abel–Jacobi isomorphism.
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Theorem 4 [7] Let f (z) be an automorphic form on 
. Then

f (z) = a0 · �(a1, b1; z) · · ·�(ar, br; z)
for a0 ∈ k, ai, bi ∈ 
.

In particular,

cf (α) =
r∏

i=1

c�(ai ,bi ;z)(α) =
r∏

i=1

uα(ai)

uα(bi)
.

Theorem 5 [7] Let 	∨ = Hom(	, k∗), and let c ∈ 	∨. Then there exists an automorphic
form f (z) on 
 such that c = cf .

To define the Abel–Jacobi map, we first need to describe the Picard group on S. Let f be
an automorphic form on 
, and a ∈ 
. Because of the relation f (z) = c(α)f (αz), we see
that if a is a pole or a zero of f of order r , then so is αa for every α ∈ 	. Hence the usual
function ordsf (z) is well defined for all automorphic forms on 
 and all points s ∈ S. We
define

divf =
∑

s∈S:ordsf (z)>0

ordsf · s −
∑

s∈S:ordsf (z)<0

(−ordsf (z)) · s.

Given a divisor a = ∑r

i=1 āi − b̄i ∈ Div0(S), a = div
∏r

i=1 �(ai, bi; z). Conversely, let
f (z) be an automorphic form on 
. If f (z) has no zeros or poles, then f (z) = a0 ·uα(z) for
some α ∈ 	, and divf = 0. Otherwise, f has a representation

f (z) = a0

r∏
i=1

�(ai, bi; z) such that ai	 �= bj	 ∀i, j,

and divf = ∑r

i=1 āi − b̄i . This gives an easy and explicit correspondence between degree
zero divisors a and automorphic forms f with divf = a.

The degree zero principal divisors are the divisors of the form divh, where h is a
	-invariant meromorphic function on 
, that is, an actual meromorphic function on S. Then
as usual, we define an equivalence on Div0(S) by

a ∼ b ⇐⇒ a − b is principal,

and denote by Pic0(S) the group of equivalence classes.
Considering what guided our choice of the model J for the Jacobian in the complex

case, we can isolate two important factors. First, there was an evaluation map, given by path
integration, which identified J with a complex torus, and through this map J acquired the
structure of an abelian variety. Second, there was a connection between degree zero divisors
and elements of J , through which we proved that the abelian variety J is the Jacobian.
In the case at hand, we have just described a connection between degree zero divisors and
automorphic forms. Also, the automorphy factors of these forms are maps into k∗, which
could be used to define an evaluation map. This suggests that the right analogue of the group

1(C)∨ in the complex case is the group 	∨ in the non-Archimedean case. Theorem 5 tells
us that every element of 	∨ is the automorphy factor of some automorphic form. So the
connection with divisors could simply be c = cf 
→ divf . Moreover, in the complex case, a
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genus g curve gave a choice of g basis elements {ω1, . . . ,ωg} of 
1(C) over C, which then
defined an identification

e: 
1(C)∨ −→ C
g:

∫
γ


→
(∫

γ

ω1, . . . ,

∫
γ

ωg

)
.

In the present case, a genus g Mumford curve is defined by a matrix group 	 on g generators,
and a choice of a basis {γ1, . . . , γg} of this group defines an identification

e: 	∨ −→ (k∗)g: c 
→ (c(γ1), . . . , c(γg)).

Next, we develop these ideas into a construction of JS .
Consider the map

λ: 	∨ −→ Pic0(S): c 
→ [divfc(z)],
where the brackets denote an equivalence class, and fc is an automorphic form on 
 with
the factor c. λ−1 is the more usual form of the Abel–Jacobi map, and can be defined as
follows: since every a = ∑r

i=1 āi − b̄i can be written as div
∏r

i=1 �(ai, bi; z), λ−1 sends
a = divf to cf . Returning to the map λ, one can show that it is a well defined, surjective
homomorphism whose kernel is a subgroup L of 	∨ of rank g. L is exactly the subgroup of
automorphy factors of the forms uα(z) for different α ∈ 	, and its image under the evaluation
map is a lattice � in (k∗)g . Thus, we define

J = 	∨/L = Hom(	, k∗)/L,

and obtain the following isomorphisms:

Pic0(S) J
�

λ e

�
(k∗)g/�.

The identification e endows J with the structure of a rigid analytic group variety. There
is a p-adic analogue of the Riemann period relations, which determines when an analytic
torus is a projective algebraic space. The requirement is that the period matrix defining the
torus be symmetric and definite. As we will see below, this is true of e(L). Thus, by the rigid
analytic version of GAGA, the analytic group structure on J is an algebraic group structure,
which makes J into an abelian variety. Now the group isomorphism λ and uniqueness of
Jacobians imply that the abelian variety J is the Jacobian of the Mumford curve S. For more
details, see [7].

We can also give an explicit description of the analytic, birational map φg between S(g)

and the analytic torus (k∗)g/� = e(J ). We start with the analytic mappings

φ: 
 −→ (k∗)g: z 
→ (u1(z), . . . , ug(z)),

and

φg: 
g −→ (k∗)g: (z1, . . . , zg) 
→ φ(z1) · φ(z2) · · ·φ(zg).

Recall that � = e(L), where L was the subgroup of the automorphy factors of the forms
uα(z). The value in k∗ of cuα on β ∈ 	 is given by the quotient

Q(α,β) = uα(z)

uα(βz)
.
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Q is a symmetric, bimultiplicative form

	̄ × 	̄ −→ k∗,

where 	̄ = 	/[	,	]. With respect to the basis {γi} of 	, if α ≡ ∏
i γ

ni

i and β ≡ ∏
j γ

mj

j

mod [	,	], then

Q(α,β) =
∏

i

(
ui(z)

ui(βz)

)ni

=
∏

i

cui
(β)ni

=
∏

i

(∏
j

cui
(γj )

mj

)ni

=
∏
i,j

Q(γi, γj )
mj ni ,

so � = e(L) is generated by the columns of the n × n period matrix (qij ) = (Q(γi, γj )).
The form Q is also positive definite, in the sense that

|Q(α,α)| < 1 for any α �≡ id mod [	,	].

Since the form Q is definite and symmetric, so is the period matrix (qij ) of the Mumford
curve S, which ensures that the Jacobian JS is an abelian variety.

Now as ui(αz) = ui(z) · cui
(α) ≡ ui(z) mod �, the maps φ and φg induce analytic map-

pings

S −→ (k∗)g/� and Sg −→ (k∗)g/�,

respectively. Moreover, the map φg is clearly invariant under the permutation group � on
{1, . . . , g}, so it induces an analytic mapping

φg: S(g) −→ (k∗)n/�,

which is actually bianalytic outside a hypersurface, and birational. Thus, we obtain explicitly
the embedding φ of the curve S into its Jacobian e(J ), the birational map φg between e(J )

and S(g), and the Abel–Jacobi group isomorphism λ−1: Pic0(S) −→ J .
To complete the picture, we could define another map

φ̃g: S(g) −→ J : (a1, . . . , ag) 
→ cf ,

where f (z) = ∏g

i=1 �(ai,∞; z). Here we assume that ∞ ∈ 
, but if not, we can choose any
other basepoint. divf = ∑g

i=1 āi − g · ∞̄, so λ ◦ φ̃g is the usual map

S(g) −→ Pic0(S): [a1 + · · · + ag] 
→ [(a1) + · · · + (ag) − g(∞)].

Moreover, we have e ◦ φ̃g = φg . To see this, note that ∀i, ui(∞) = 1. Since c�(a,b;z)(α) =
uα(a)

uα(b)
, we see that c�(a,∞;z)(α) = uα(a), and so for f (z) = ∏g

i=1 �(ai,∞; z), cf (γj ) =∏g

i=1 uj (ai). Thus, for (a1, . . . , ag) ∈ S(g),

e(φ̃g(a1, . . . , ag)) = (cf (γ1), . . . , cf (γg)) =
(

g∏
i=1

u1(ai), . . . ,

g∏
i=1

ug(ai)

)

= φ(a1) · φ(a2) · · ·φ(ag) = φg(a1, . . . , ag).
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If, in addition, we define the map

ψ = e ◦ λ−1: Pic0(S) −→ (k∗)g/� : a = divf 
→ (cf (γ1), . . . , cf (γg)),

then we obtain the following commutative diagram which summarizes this section:

(k∗)g/�

S(g)

φg

φ̃g

λ◦φ̃g

(a1,...,ag)
→[∑g
i=1 āi−g·∞̄]

◦ ◦ Pic0(S)

ψ

J

e ∼

∼
λ

5 Non-Archimedean Uniformization

5.1 Comparison with Complex Uniformization

The main difference between complex and p-adic uniformization of a curve C, from a prac-
tical point of view, is the step at which one must do the bulk of the work. In the complex
case, the main difficulty lies in trying to explicitly represent the basis of H1(C,Z) in a way
that computer can use to approximate line integrals. The resulting integrals, computed to a
reasonably high precision, form the period lattice of the Jacobian of C. In the p-adic case,
once a description of the Mumford curve 
/	 is obtained, the period lattice and all of the
desired maps are explicitly given in terms of �, and one only needs to approximate this
infinite product. Therefore, most of the work is centered around obtaining the generators
for 	 so that 
/	 is isomorphic to C. (Note: this procedure is what we refer to as p-adic
uniformization of a curve. In some special cases, it is possible to obtain the Jacobian using
p-adic line integrals—see for example [2]. We do not analyze those methods here.)

This type of p-adic uniformization has a nice benefit. Since the analytic object we need
to approximate is a curve, the complexity of the problem does not increase rapidly with
the genus of C. As the genus grows, more generators of 	 need to be computed, but these
are always 2 × 2 matrices acting on P

1. In the complex case, the analytic object we are
approximating is the Jacobian, which is defined by a g × 2g period matrix, generating a
lattice in C

g . Ignoring the obvious computational advantages of working in PGL2, one must
in general solve for 2g2 unknowns over C, but p-adically only 3g unknowns (g matrices,
projectively 3 coefficients each).

Moreover, let’s consider the problem of detecting isogenies. In the complex case, uni-
formization produces the period matrices V and W , and the following system must be solved
for M ∈ Mg(C) and A ∈ M2g(Z):

MV = WAT , V,W ∈ Mg,2g(C).

Using the real and imaginary parts separately, this system involves 4g2 equations in 5g2 un-
knowns. The complexity of the linear algebra involved grows significantly with the genus,
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since solving the system requires finding linear integral relations among a collection of com-
plex numbers. On the p-adic side, after uniformization we are presented with the equation

V B = AW, A,B ∈ Mg(Z), V ,W ∈ Mg(k).

As explained in Sect. 3.3, we can apply the � homomorphism and invert �(V ), to obtain
the equation B = �(W)AT �(V )−1 over R, which determines B in terms of the coefficients
of A. Thus, V B = AW is a system of g2 equations in g2 unknowns, and can be solved rather
quickly (for example, by considering the induced mod pn equations).

Another, and perhaps the most important advantage of p-adic uniformization, is that
the homomorphism �(x) = − log |x|, which is used to solve for B , only depends on the
valuation of x. For example, if k = Qp and we are approximating the period lattice (qij )

using p-expansions of the coefficients, then even a very poor approximation of qij (i.e. just
getting the first term right) will produce the correct value of �(qij ). This does not completely
solve the problem, as we still have to determine the matrix A. However, it is clear that in a
generic case, only few terms of qij are needed to solve for A, if it exists. Thus, in general,
finding an isogeny or determining if it exists does not require a good approximation of the
period lattices. This phenomenon does not have an analogy in the complex case, where poor
approximations of the lattices simply result in incorrect answers.

To see a concrete example, let’s consider the case of two Tate elliptic curves Eq1 and
Eq2 over Qp . As the only maps Q∗

p/(qZ
1 ) −→ Q∗

p/(qZ
2 ) of the rigid tori are of the form

x 
→ xa, a ∈ Z, we see that Eqi
are isogenous (in fact over Q) iff there exist a, b ∈ Z such

that qa
1 = qb

2 . Let a = na′, b = nb′, where n = gcd(a, b), and let vi = Valuation(qi), and
v′

i = vi/(gcd(v1, v2)). Applying � to the equation qa
1 = qb

2 gives us (a′, b′) = (v′
2, v

′
1). So if

an isogeny φ: Eq1 → Eq2 exists, then q
v′

2
1 /q

v′
1

2 must be an nth root of unity, where n|degφ.
It is clear that in a generic case, only few terms of qi are needed to determine n, if it exists,
especially if deg φ is known. What is even better is that much information can be deduced
without ever actually computing the uniformizations. Since

j (Eq) = 1

q
+ 744 + 196884q + · · · ,

we see that |j (Eq)|p = 1/|q|p , so we can obtain vi from the j invariants of the curves,
without knowing the actual periods qi . This allows us, for example, to make the following
statement:

If a rational isogeny φ: Eq1 → Eq2 exists, then v′
1|degφ,

which is a consequence of p-adic uniformization, but doesn’t require any computations.
Having discussed some of the advantages of rigid uniformization, it is important to point

out one significant drawback: the methods only apply to curves with totally split reduction.
This technical condition means that the curve has a stable model whose special fiber is a
union of projective lines, intersecting only at ordinary double points (see [4] or [7]). In con-
trast, all smooth curves can be studied through complex uniformization. This is an important
difference, which limits the application of rigid uniformization to the problem of detecting
isogenies. For example, in the case of elliptic curves, totally split reduction simply means
“bad reduction” (i.e. |j (E)|p > 1 if E/Qp). Given a curve E/Q, one can always find a
prime p of bad reduction, and find the uniformization for E(Qp). However, to determine if
there is an isogeny between a given pair of curves, one would need a common prime of bad
reduction, and that is quite restrictive.
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5.2 Examples Drawn from Genus 2 Hyperelliptic Curves

To obtain concrete examples, we chose the field Q5 and generated six “random” (with totally
split reduction) genus 2 hyperelliptic curves Xi . Each curve is defined by three ramification
points, with the choice of 0,1,∞ for the remaining three. All computations were done
in Magma, which conveniently outputs x ∈ Q5 in the form x = (. . .) · 5v , where v is the
valuation of x.

For each hyperelliptic curve Xi , we compute the Mumford curve Si with affine model Xi .
The Mumford curves are described by the pair of matrices generating their Schottky
group 	. Finally, for each Mumford curve we compute its period matrix Pi , and its image
under the �/ log 5 homomorphism. Since we are primarily interested in the isogeny problem,
only few digits of precision are required, and to avoid unnecessary clutter, we give only the
first six.

The hyperelliptic curves:

X1: y2 = x5 − 326x4 + 1052 · 52x3 − 5914 · 52x2 + 39 · 55x,

X2: y2 = x5 − 1126x4 + 14519 · 52x3 − 1395074 · 52x2 + 55224 · 54x,

X3: y2 = x5 − 34876x4 + 69609 · 53x3 − 567866 · 54x2 + 4432 · 57x,

X4: y2 = x5 − 11250626x4 − 163599 · 54x3 + 9966639 · 56x2 + 8342073 · 516x,

X5: y2 = x5 + 1624999x4 + 4424271 · 56x3 + 18836006 · 510x2 − 13455749 · 522x,

X6: y2 = x5 − 209060401x4 + 18131925775313 · 54x3

−7291674407447953921259 · 52x2 + 291666958165992716034 · 54x.

The Mumford curves:

S1: g1 =
(−375001 ∗ 5 938432 ∗ 5

2 78116

)
, g2 =

(
928593 ∗ 53 95939 ∗ 53

2 839746

)
,

S2: g1 =
(−481331 ∗ 5 −322158 ∗ 5

2 −453534

)
, g2 =

(−480457 ∗ 52 960914 ∗ 52

2 −292679

)
,

S3: g1 =
(

548603 ∗ 52 338894 ∗ 52

2 43196

)
, g2 =

(
232706 ∗ 53 −465412 ∗ 53

2 −208629

)
,

S4: g1 =
(

968583 ∗ 53 −652916 ∗ 53

2 −20879

)
, g2 =

(−84456 ∗ 510 168912 ∗ 510

2 −4

)
,

S5: g1 =
(−543576 ∗ 55 −378473 ∗ 55

2 543746

)
, g2 =

(−599148 ∗ 512 −754829 ∗ 512

2 −4

)
,

S6: g1 =
(

704404 ∗ 5 −754828 ∗ 5
2 −384234

)
, g2 =

(
423453 ∗ 52 −846906 ∗ 52

2 820696

)
.

The period matrices:

P1 :
(−661001 ∗ 52 −486614 ∗ 52

−486614 ∗ 52 46676 ∗ 56

)
, P2 :

(
13734 ∗ 52 23926 ∗ 52

23926 ∗ 52 69326 ∗ 54

)
,

P3 :
(

193531 ∗ 54 913819 ∗ 54

913819 ∗ 54 −895176 ∗ 56

)
, P4 :

(−294049 ∗ 56 −132671 ∗ 56

−132671 ∗ 56 −238496 ∗ 520

)
,

P5 :
(

809529 ∗ 510 85486 ∗ 510

85486 ∗ 510 −119224 ∗ 524

)
, P6 :

(
41994 ∗ 52 56706 ∗ 52

56706 ∗ 52 29006 ∗ 54

)
.
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The homomorphism �/ log 5 simply produces the matrix of valuations, so for example

�

log 5
(P1) =

(
2 2
2 6

)
and

�

log 5
(P5) =

(
10 10
10 24

)
.

To check for possible isogenies, we first took each period matrix, and considered only
the leading term in the p-expansion of each coefficient. This was enough to conclude that
none of the curves could be isogenous, except possibly for X2 and X6, where we obtained
two pairs of matrices

(B,A) ∈
{((

3 1
8 −1

)
,

(
1 4
3 1

))
,

((
5 0

10 −1

)
,

(
1 2
4 3

))}
,

satisfying P B
2 = AP6. This equation continues to hold as we allow more terms in the

p-expansion of the coefficients in P2 and P6, suggesting that the pairs (B,A) define ac-
tual isogenies (which is true, since we chose X6/Q5 to be isogenous to X2). Technically
speaking, one could never obtain a definite, positive answer using this method, since the
results only hold up to the precision under consideration. However, if A and B satisfy the
equation P B

2 = AP6 to a reasonably good precision, there is a high probability that the curves
are isogenous. If one wanted to know for sure, one could try to use the matrices A and B to
construct the actual map. This was successfully done in the complex case in [10].
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