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Abstract
The investigation of magnetohydrodynamic (MHD) blood flow within configurations that are pertinent to the human anatomy 
holds significant importance in the realm of scientific inquiry because of its practical implications within the medical field. 
This article presents an exhaustive appraisal of the diverse applications of magnetohydrodynamics and their computational 
modeling in biological contexts. These applications are classified into two categories: simple flow and pulsatile flow. An 
alternative approach of traditional CFD methods called Lattice Boltzmann Method (LBM), a mesoscopic method based on 
kinetic theory, is introduced to solve complex problems, such as hemodynamics. The results show that the flow velocity 
reduces considerably by increasing the magnetic field intensity, and the flow separation area is minimized by the increase 
of magnetic field strength. The LBM with BGK collision model has shown good results in terms of precision. Finally, this 
literature review has revealed a number of potential avenues for further research. Suggestions for future works are proposed 
accordingly.
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Introduction

Cardiovascular disorders are the primary cause of mortality 
globally. The expected number of fatalities is 17.7 billion, 
accounting for 31% of world mortality [1]. Recently, many 
researchers have been interested in studying and simulating 
blood flow in healthy and pathological blood vessels. The 
difficulty of the problem is related firstly to the complexity 
of human blood, which is a complex fluid constituted mostly 
of blood cells and plasma [2]. Red blood cells, also known 
as erythrocytes, white blood cells, and platelets, make up the 
majority of the blood cells [2]. Plasma operates similarly to 
a Newtonian fluid; however, entire blood behaves differently. 
In addition, the structure of blood vessels is complex [3]. 

Blood vessels are classified into three types: arteries, veins, 
and capillaries. The blood is transported from the heart by 
arteries at higher physiologic pressures. At lower physiologic 
pressures, veins return blood to the heart, and capillaries, 
relate between arteries and veins. Three layers make up the 
vessel wall: the adventitia, media, and intima. The intimal 
layer is the innermost layer of all blood vessels, composed of 
two structures: the endothelium and a subendothelial layer, 
and does not contribute to the overall mechanical behavior of 
the vessel wall because of its relatively small thickness and 
low stiffness. The thickest layer of the vessel wall is called 
the media, it is made of elastic lamina and smooth muscle 
cells, it has great strength and elasticity, and it is responsible 
of the most of the vessel mechanical properties. The adven‑
titia is the outer layer of the wall, composed of a loose con‑
nective tissue of elastin and collagen fibers [3]. The propor‑
tions and composition of the different layers vary in different 
types of blood vessels. The media is less elastic, the collagen 
adventitia is thicker, and the vein wall is thinner. Endothelial 
cells, which are highly permeable, make up the sole layer 
of the capillary walls, which are incredibly thin [4]. The 
movement of blood in the body is affected by several fac‑
tors, including the size of blood vessels and how they change 
during constriction and dilation, as well as the presence of 
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bifurcations and junctions. Blood flow also depends on 
the difference in pressure between the arterial and venous 
ends of the vessels and on the viscosity of the blood [5]. In 
the case of larger blood vessels, blood typically flows in a 
smooth and orderly manner called laminar flow. However, 
blood artery diseases such as stenosis, atherosclerosis, and 
aneurysm can induce turbulence and lower flow, disrupting 
blood flow and leading to organ failure [5]. In order to iden‑
tify diseases related to blood vessels, it is crucial to possess 
extensive knowledge about the circulation of blood. Blood 
flow must be thoroughly understood to diagnose vascular 
disorders. Magnetohydrodynamics (MHD) plays a crucial 
role in understanding the behavior of conducting fluids in the 
presence of a magnetic field. MHD blood flow refers to the 
study of blood flow in the presence of magnetic fields. When 
a conductive fluid, such as blood, flows in the presence of 
a magnetic field, it experiences electromagnetic forces that 
can significantly influence its behavior. This field of study is 
particularly relevant in the context of pathological vessels, 
where the understanding of blood flow dynamics is crucial 
for diagnosing and treating various cardiovascular diseases. 
It can provide insights into conditions like atherosclerosis, 
aneurysms, thrombosis, embolism, and stenosis. By simu‑
lating blood flow and considering the influence of magnetic 
fields, MHD modeling helps understand disease progres‑
sion, assess treatment strategies, predict complications, and 
optimize drug delivery.

In order to solve real engineering problems, different 
numerical methods have been developed for the treatment 
of partial differential equations. The finite‑element method 
(FEM) is based on a rigorous mathematical basis [6]. A vari‑
ational (or weak) formulation of the system of partial dif‑
ferential equations is established first and then the weak for‑
mulation is transformed to an algebraic system of equations 
using a double discretization of both space and the unknown 
fields. The solutions precision and validity depend on the 
mesh applied [6]. In retrospect, the historical origins of 
the FEM reveal that its functionality was initially acknowl‑
edged by Richard Courant during the early 1940s. FEM was 
applied in the first time in 1956 by Turner et al. [7], in order 
to solve problems related to structural mechanics. In the end 
of 1960, FEM became a powerful method allowing to solve 
problems of heat transfer and fluid mechanics [8–10]. In 
the same period, the finite difference method (FDM) was 
proposed to solve fluid mechanics problems [11]. The pre‑
sent methodology encompasses solving differential equa‑
tions through the implementation of finite differences as a 
means of approximating derivatives. During the process of 
solving mathematical problems, discretization is often uti‑
lized to approximate solutions in both the spatial domain 
and time interval. This approach involves the utilization of 
algebraic equations containing finite differences, as well 
as values obtained from neighboring points, to obtain an 

approximation of the solution at discrete points. The Finite 
Volume Method (FVM) was originated in 1980, specifically 
to solve fluid dynamics problems [12, 13]. Later, the method 
was developed by Spalding and Patankar [14] to treat trans‑
port phenomenon. The fundamental concept of FVM is pred‑
icated upon the integration of equations, expressed in the 
form of conservation laws, over basic volumes of uncompli‑
cated geometry. As a consequence, FVM inherently affords 
discrete conservative approximations. Consequently, it is 
highly pertinent for the mathematical equations utilized in 
the field of fluid mechanics. The three methods are all based 
on the concept of weighted residual methods. The differ‑
ence between them lies only in the type of weighting func‑
tions used. In pathological vessels, such as those affected by 
atherosclerosis or aneurysms, the blood flow characteristics 
deviate from those in healthy vessels. The presence of ste‑
nosis (narrowing of the vessel lumen), irregular geometries, 
and altered mechanical properties of vessel walls can lead to 
disturbed blood flow patterns, turbulence, and the formation 
of pathological phenomena, like thrombosis or embolism. 
To accurately model and predict these complex flow behav‑
iors, a mesoscopic modeling approach is often required. 
The mesoscopic modeling approach aims to bridge the gap 
between the macroscopic (whole organ) and microscopic 
(individual cell) scales by considering the intermediate‑scale 
phenomena that occur within blood vessels. This approach 
takes into account the interactions between individual blood 
cells, the vessel wall, and the magnetic field, which can have 
a significant impact on the overall flow behavior. The need 
for a mesoscopic modeling approach arises due to the limita‑
tions of both macroscopic and microscopic models in cap‑
turing the intricacies of blood flow in pathological vessels. 
Macroscopic models, such as computational fluid dynamics 
(CFD) simulations, offer a global view of blood flow but 
may oversimplify the behavior of individual cells and fail to 
capture local phenomena. On the other hand, microscopic 
models, such as particle‑based simulations, provide detailed 
information about cell‑level interactions but struggle to 
simulate large‑scale flows within entire vessels. The LBM 
as a mesoscopic approach simulates interactions between 
molecules in order to ascertain significant physical quanti‑
ties including velocity, pressure, and temperature at a large 
scale [15]. The LBM evolved from the lattice gas automata 
(LGA) [15–18] and has gained prominence in recent years as 
a numerical approach for addressing an extensive diversity 
of hydrodynamic problems. To simplify the Lattice Boltz‑
mann Equation, Higuera and Jimenez [19] proposed the 
utilization of a linearized form to approximate the collision 
operator, which considers an assumption that the distribu‑
tion of the system is in proximity to a state of equilibrium. 
Koelman [20] and Chen et al. [21] independently introduced 
a simple linearized collision operator that relies on the Bhat‑
nagar–Gross–Krook collision model. A Chapman–Enskog 
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analysis [22] recovers the Navier–Stokes equations using the 
Bhatnagar–Gross–Krook (BGK) model. The LBM is a way 
of describing fluids on a large scale and can also provide 
reliable numerical calculations for macroscopic behavior 
[15]. The popularity of LBM is owing to the BGK collision 
operator, which is known for its straightforward implemen‑
tation and simplicity. It has contributed significantly to the 
achievement of this method. In recent years, the LBM has 
become increasingly popular [23–31] and has been utilized 
for modeling a variety of systems, involving immiscible 
liquids [32], multi‑phase flows [33], heat transfer [34–41], 
heat and mass transfer [42–44], isotropic turbulence [45], 
magnetohydrodynamics [46], and porous media [47, 48].

The LBM confers a conspicuous advantage over other 
numerical methods on account of its capability to trans‑
form intricate partial differential system into a less complex 
first‑order system [15]. In contradistinction to macroscopic 
numerical techniques, the LBM does not require the solving 
of a comprehensive system of equations; it solely relies on 
information obtained from neighboring nodes to progress 
the variables. The LBM presents itself as a viable and eco‑
nomical strategy for inter‑processor communication due 
to its explicit computation involving locality, making it an 
excellent choice for parallel computation [49–53]. In addi‑
tion, for incompressible unsteady flows, Laplace equation 
does not need to be solved at each time step to satisfy the 
continuity, contrary to the case in solving the Navier–Stokes 
(NS) equation. Moreover, the iterations on the time steps are 
relatively inexpensive because they involve simple arithme‑
tic calculations.

The process of mathematically modeling and conducting 
numerical simulations concerning blood magnetohydrody‑
namic problems is of considerable relevance to medical sci‑
ence. In this review paper, researches related to the study of 
hemodynamics and blood magnetohydrodynamics in patho‑
logical vessels are presented and an alternative numerical 
model based on LBM is introduced. This paper classifies the 
applications of magnetohydrodynamics in biological system 
into two categories: simple and pulsatile flow. Furthermore, 
the literature review has furnished valuable insights that 
allow for the formulation of conclusive recommendations 
and avenues for further research.

A Review of the Literature on Blood Flow 
Modeling and Methods

Despite the advancements made in experimental studies and 
blood flow measurement methods conducted by applying 
either in vitro [54–60], in vivo [61–65], or ex vivo [66–68] 
approaches, there are still some obstacles to overcome 
[69–74]. Measurement of in vitro wall shear stress (WSS) 
poses a significant challenge due to its intricate nature. 

Additionally, measurements of velocity also encounter sub‑
stantial errors. In vivo, the precise quantification of quan‑
tities of interest, such as shear stress, poses a significant 
challenge, thereby necessitating the adoption of numerical 
simulation as a valuable investigatory mechanism. However, 
owing to the complex nature of blood flow, many simplifica‑
tions of the flow boundary conditions, geometry, and blood 
flow nature are made by researchers, leading in some cases 
to unrealistic, weak, and uncertain results [75].

Rheological Behavior of Blood

Researchers have developed many rheological models to 
present the rheological behavior of blood (see Table 1). A 
common simplification in literature is to consider blood as 
Newtonian fluid. The validity of this assumption is con‑
strained to cases where the shear rate is in excess of 100s−1 
[76, 77]. The non‑Newtonian character of fluids is notably 
pronounced in situations where the rate of shear is relatively 
low. This is particularly relevant within the context of small 
diameter blood vessels, like in arterioles and capillaries [78]. 
Regarding the rheological properties of blood, it is deemed 
acceptable to regard blood as a Newtonian fluid within 
the context of large arterial vessels, namely the aorta [76, 
79, 80]. Various authors have pointed out the necessity of 

Table 1  Blood rheological models

Model Equation

Newtonian [85] � = const
Carreau [94]

𝜇(�̇�) = 𝜇∞ +
(

𝜇0 − 𝜇∞

)(

1 + (𝜁 �̇�)2
)

n−1

2

�∞ = 0.0035 Pa,�0 = 0.056 , Pa s
� = 3.313005, n = 0.3568

Carreau 𝜇(�̇�) = 𝜇∞ +
(

𝜇0 − 𝜇∞

)

(1 + (𝜁 �̇�)𝛼)
n−1

𝛼

Yasuda [95] �∞ = 0.0035 Pa,�0 = 0.16 Pa s,
� = 8.2, n = 0.2128, a = 0.64

Casson [96]
𝜇(�̇�) =

�

√

𝜇
c
+
√

𝜏
c
∕�̇�

�2

�
c
= 0.00414 Pa s, �

c
= 0.0038 Pa

Power law [94] 𝜇(�̇�) = k(�̇�)n−1

k = 0.017, n = 0.708

Generalized 𝜇(�̇�) = k(�̇�)n−1

Power law
k = k∞ + Δk exp

(

−
(

1 +
�̇�

a

)

exp
(

−b

�̇�

))

(GP) [85]
n = n∞ − Δn exp

(

−
(

1 +
�̇�

c

)

exp
(

−d

�̇�

))

𝜇(�̇�) = 𝜇∞ +
(

𝜇0 − 𝜇∞

)(

1 + (𝜁 �̇�)2
)−n

�∞ = 0.0035 Pa s,�0 = 0.0364 Pa s,
� = 0.38, a = 1.45

Cross [97] k∞ = 0.0035 Pa s,Δk = 0.025,
�∞ = 1,Δn = 0.45,
a = 50, b = 3, c = 50, d = 4
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considering the non‑Newtonian behavior of blood [81–83], 
while others consider it as unnecessary approximation [84, 
85]. Chaichana et al. [86] compared velocity fields and WSS 
given by Newtonian and non‑Newtonian power law general‑
ized model and obtained similar results. In the other hand, 
Cebral et al. [87] explored the effect of the viscous stress 
model on blood flow properties using Newtonian and non‑
Newtonian Casson model while simulating blood flow in 
four cerebral aneurysms. The findings show that the blood 
flow properties are only impacted by the viscous stress in 
low flow rate case. Kumar et al. [88] employed Newtonian 
and non‑Newtonian Casson model to investigate the velocity 
distribution, wall pressure, and WSS in an aortal vessel. The 
WSS values obtained are widely impacted by the meshing, a 
difference of 15.84% in the maximum WSS value is noticed 
which occurs when using medium mesh instead of coarse 
mesh. According to their findings, the non‑Newtonian flow 
has a larger WSS value than the Newtonian flow [89–91] and 
show similarity in results for the other parameters for Newto‑
nian and non‑Newtonian model. The authors concluded that a 
Newtonian model can lead to unrealistic results. Gaudio et al. 
[92] carried out a similar investigation, comparing between 
the Newtonian rheological model of blood and the non‑
Newtonian Carreau–Yasuda model. The findings revealed 
that the velocity for the Newtonian model is higher than for 
the Carreau–Yasuda model and shear stress is smaller for 
the Newtonian model. Carvalho et al. [93] obtained similar 
results using the Carreau non‑Newtonian model.

Blood Vessels Assumptions

Blood vessels are not rigid and static. In reality, the blood 
flow is affected by the movement of the vessel wall and its 
surrounding tissue and vice versa, in healthy and diseased 
blood vessels. In addition, wave propagation phenomena 
cannot be modeled without taking into consideration the 
deformability of the vessel wall. Due to the complexity of 
treating and modeling the interaction between blood flow 
and vessel wall deformation, the majority of researchers 
have assumed the wall to be rigid. Berin Seta et al. [98] 
have studied blood flow through the aortic arch by consid‑
ering a simplified model. The aorta walls are considered 
rigid and smooth. For more accurate results, the aorta wall 
deformability has to be integrated to the model as well as 
the interaction of blood and the wall. Recently, Lijian Xu 
et al. [99] have studied blood flow in aorta with a specific 
aortopathy, namely aortic dilatation using laminar and LES 
modeling methods. The two approaches give approximately 
the same results. Despite the high performance of LES 
method in simulating blood flow in an artery with potential 
turbulence, it suffers from limited spatio‑temporal resolution 
[100–102]. In the other hand, direct numerical simulation 
is expensive in terms of computational cost [103, 104]. In 

their investigation, the aorta wall is considered to be rigid; 
this technique reduces computing effort and simplifies the 
analysis. However, this statement overlooks the interplay 
between the fluid and adjacent tissue, resulting in the exclu‑
sion of the impact of wall deformation on the circulation 
of blood. This simplification can have severe influence on 
the simulation results due to the fact that the aerotic walls 
actively deform during a cardiac cycle in reaction to blood 
pressure pulsations [105, 106]. Many studies have pointed 
out that neglecting the deformation of aortic wall causes an 
excess in WSS [107, 108]. An investigation into the level 
of accuracy regarding estimations is required. The rigid 
wall assumption in blood flow simulations, done in many 
researches, have lead researchers to investigate the impact 
of this assumption on the results.

Fluid–Structure Interaction (FSI)

Lopes et al. [111] conducted a fluid–structure interaction 
investigation of carotid blood flow using COMSOL Mul‑
tiphysics software with the comparison of the Newtonian 
and Carreau viscosity models. The results reveal that veloc‑
ity at the geometry center are similar for the Newtonian and 
non‑Newtonian models; however, blood viscosity affects 
WSS, which is significantly greater for the Carreau model. 
Additionally, it is demonstrated that blood viscosity has no 
effect on the arterial wall displacement, which is dependent 
on fluid pressure. Saeedi et al. [112] conducted a simulation 
of 3‑dimensional blood flow within an aneurysm located in 
the Circle of Willis, a crucial region of the middle cerebral 
artery (MCA) utilizing fluid–structure interaction (FSI). This 
study aims to assess how a partially blocked artery affects 
an aneurysm. The Mooney–Rivlin model and the Carreau 
model have been utilized to take into account the hyperelastic 
feature of the wall and the blood non‑Newtonian properties. 
The outcomes of the study reveal that in the case of partly 
blocked vessel, the maximum WSS is 12% greater result‑
ing in an increase in the aneurysm growth and rupture risks. 
Zhao et al. [113] showed that the simulated flow behavior 
obtained using fluid–structure interaction models is univer‑
sally equivalent to that attained by invoking the supposition 
of a rigid wall. Nevertheless, a comprehensive analysis of the 
wall dynamics elicits a discernible decline in the amplitude of 
the WSS. Another comparison between the FSI and rigid wall 
models is done by Torii et al. [114], which exhibits irrelevant 
difference in time‑averaged WSS (TAWSS) and oscillatory 
shear index OSI. In contrast, variations in instantaneous WSS 
profiles were remarkable, especially in the distal region of the 
artery. Blessy Thomas and Sumam [115] concluded, based 
on their literature review, that considering the vessel wall 
and the blood flow interaction give more realistic results. 
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However, consideration of three‑dimensional FSI problem 
increases the computational work.

For more details, Tables 1, 2, and 3 summarize the sev‑
eral geometries, boundary conditions, and flow character‑
istics used by various researchers in recent years. Regard‑
less of the geometry, it can be observed that the majority of 
researchers perceive blood as a non‑Newtonian fluid and 
used Carreau–Yasuda model to approximate its behavior. In 
addition, for boundary conditions, rigid wall assumption was 
applied by almost all the authors. The CFD solvers employed 
are based principally on FVM and FEM (Table 4).

A Review on Blood Flow Modeling Using LBM

LBM is a numerical mesoscopic approach employed in 
simulating complex flows. It presents a powerful alternative 
of traditional computational fluid dynamic CFD methods. 
The LBM method is efficient in treating complex problems, 

including multi‑phase flows [135] and non‑Newtonian flows 
[136]. In addition, the process of programming is inherently 
less complex and amenable to computational parallelization 
[137]. The blood flow simulations applying Lattice Boltz‑
mann approach, found in literature, treat mainly aneurysm. 
Fang et al. [138] developed a lattice Boltzmann model for 
modeling viscous flow in large distensible blood veins by 
incorporating a boundary condition for elastic and moving 
boundaries, with blood considered to be Newtonian fluid. 
The findings presented evince consonance with both experi‑
mental and analytical outcomes. Tamagawa et al. [139] pre‑
dicted thrombus formation, by considering shear rates and 
adhesion force to wall, using LBM. The results show that 
the accuracy of LBM is as almost the same as experiment 
and FDM in predicting the flow field in the orifice pipe. 
Artoli et al. [140] employed the LBM to model a steady 
blood flow in a two‑dimensional (2D) symmetric bifurca‑
tion. The flow fields and stress tensor components acquired 

Table 2  Computational models of blood flow and the related assumptions

Vessel Vessel condition Geometry Schematic rep‑
resentation

CFD solver Fluid Wall Authors

Aorto‑Iliac 
Bifurcation

Healthy Patient specific ANSYS‑CFX 4 Newtonian Rigid Long et al.[116]

Cerebral artery Aneurysm Patient specific ANSYS‑ICEM‑
CFD

Newtonian Rigid Marie Oshima 
et al. [117]

Aorta Healthy Patient specific ANSYS Fluent Newtonian Rigid Morris et al.
[118]

Thoracic and 
cerebral ves‑
sels

Aneurysm Patient specific N.A Newtonian Flexible Guanglei Xiong 
et al. [110]

Coronary artery Healthy Patient specific N.A Newtonian Flexible Kim et al.[119]

Aorta‑Iliac 
arteries

Healthy  ste‑
nosis

Patient specific Ansys‑CFX Non‑Newtonian 
(Generalized 
power law 
model)

Rigid Alishahi et al. 
[109]

Coronary artery Stenosis Patient specific ANSYS‑CFX Non‑Newtonian 
(Generalized 
power law 
model) and 
Newtonian

Rigid Chaichana et al. 
[86]

Carotid artery 
bifurcation

Healthy Idealized N.A Newtonian Flexible Lee et al. [120]

Thoratic aorta Aneurysm Patient specific N.A Newtonian Rigid Hiroshi Suito 
et al. [121]

Artery Stenosis Idealized ANSYS‑CFX Non‑Newtonian 
(Cross model)

Rigid and Flex‑
ible

Mulani and 
Jagad [122]
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were juxtaposed with those produced by a Navier–Stokes 
(NS) solver. Boyd et al. [141] implemented a two‑dimen‑
sional model to simulate stenosis development in the human 
carotid artery. The walls are considered as rigid and blood 
is assumed to be Newtonian. The present study examines 
the variability of wall shear under conditions of stenosis 
progression. Persistent zones of low velocity and near‑wall 
shear have been identified, specifically located in close prox‑
imity to the wall upstream from the growth of the stenosis. 
A second‑order accurate lattice Boltzmann non‑Newtonian 
flow model was developed by Boyd et al. [142]. The find‑
ings of the study indicate that the application of the LBM is 
well suited for modeling non‑Newtonian flows. The authors 
[142] have conducted an investigation on both steady and 
unsteady flows utilizing the LBM in conjunction with the 
Casson and Carreau–Yasuda models. The findings of the 
study highlight discernible distinctions between the out‑
comes of these respective models. A comparative study to 
analyze the distinctive features of the Newtonian and non‑
Newtonian Carreau–Yasuda models was conducted by Boyd 
and Buick [143] to simulate blood flow in 2D carotid artery 

geometry. The results show that the non‑Newtonian behavior 
of blood can be neglected under certain conditions. Berns‑
dorf and Wang [144] simulated cerebral aneurysms using 
Newtonian and non‑Newtonian Carreau–Yasuda models. 
The results indicate that the non‑Newtonian model displays a 
lower WSS and lower viscosity near the walls relative to the 
Newtonian flow. Hence, when non‑Newtonian impacts are 
ignored within the simulation, an overestimation of the WSS 
values happens. Ashrafizaadeh and Bakhshaei [145] simu‑
lated non‑Newtonian blood flows using K–L model, Casson, 
and Carreau–Yasuda. The predicted velocity profiles show 
great agreement with those of exact solutions. However, dif‑
ferent results are acquired from the three models showing 
the importance of selecting the adequate model for more 
realistic blood flow simulations. Chopard et al. [146] con‑
ducted research on the cerebrovascular blood flow dynamics 
in cases of cerebral aneurysms. The utilization of Palabos, 
an open source software predicated on LBM, is deployed to 
simulate shear stress and velocity in the aneurysm. Recently, 
Cherkaoui et al. [147, 148] conducted a numerical study 
using LBM based on BGK approximation to investigate the 

Table 3  Computational models of blood flow and the related assumptions

Vessel Vessel condi‑
tion

Geometry Schematic repre‑
sentation

CFD solver Fluid Wall Authors

Vessels Stenosis Idealized STAR‑CCM+ Newtonian Rigid Andrea Boghi et al. 
[123]

Arteries Stenosis Idealized ANSYS‑ICEM‑
CFD and 
OpenFOAM

Non‑Newtonian 
(Carreau‑Yas‑
uda)

Rigid Jabir [124]

Aortic arch Healthy Patient specific Star‑CCM+ Non‑Newtonian 
(Carreau‑Yas‑
uda)

Rigid Berin Seta et al. 
[98]

Abdominal aortic 
bifurcation

Healthy Patient specific ANSYS Fluent Newtonian and 
Non‑Newtonian 
(Walburn‑Sch‑
neck)

Rigid Carlos Oliveira 
[125]

Aortic Bileaflet Healthy Idealized ANSYS Fluent Non‑Newtonian 
(Carreau‑Yas‑
uda)

Rigid Syed Samar Abbas 
et al. [126]

Coronary arteries Stenosis Patient specific ANSYS 18.2 Non‑Newtonian 
(Carreau‑Yas‑
uda)

Flexible Mongkol Kaew‑
bumrung et al. 
[127]

Artery Stenosis Idealized ANSYS Fluent Non‑Newtonian 
(Carreau‑Yas‑
uda)

Rigid Alamgir Kabir 
[128]

Coronary artery Stenosis Idealized 
and Patient 
specific

ANSYS 17.1 Newtonian Rigid Malota et al. [129]
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impact of magnetic field intensity on laminar blood flow in 
a stenotic artery. The study outcomes show that the increase 
in magnetic field strength decreases the flow velocity and 
reduces the recirculation zones and the WSS in the con‑
stricted region.

A Review of the Literature on Modeling MHD 
Blood Flow

Blood is regarded as a vital biofluid, possessing intrin‑
sic biomagnetic properties [149–153]. Since there are 
numerous diseases, including cancer, there is a need to 
improve therapeutic modalities that are both cost‑effective 
and minimally intrusive. The widespread use of Magnetic 
Resonance Imaging (MRI) as a standard medical pro‑
cedure has increased exposure to high magnetic fields, 
raising concerns in the research community and provid‑
ing an incentive to study the impact of magnetic fields on 
human physiology and their effects on patient health. In 
this regard, scientists have been interested in researching 

the effect of magnetic fields on blood flow. The magne‑
tohydrodynamics principles control how a conducting 
fluid, like blood, moves under the influence of an external 
magnetic field. When the body is subjected to a magnetic 
field, the Lorentz force deflects charged blood particles 
running transverse to the field, resulting in electrical cur‑
rents and voltages across vessel walls and in surround‑
ing tissues. Furthermore, a reduction in the rate of flow 
can arise as a consequence of the interplay between the 
currents produced and the magnetic field [154]. Several 
researchers have demonstrated the interaction of magnetic 
fields with blood flow through in vitro and in vivo assess‑
ments, wherein the measurement of pressure and flow rate 
was recorded. Higashi et al. [155] studied experimentally 
the impact of magnetic field up to 8T on red blood cells. 
The findings demonstrate that the orientation of red blood 
cells are strongly impacted by the application of magnetic 
field. Research has proven that red blood cells line up com‑
pletely at 4T. The change in red blood cells orientation 
affect the macroscopic properties of blood. It was revealed 
experimentally by Haik et al. [156] that the magnetic field 

Table 4  Computational models of blood flow and the related assumptions

Vessel Vessel condition Geometry Schematic repre‑
sentation

CFD solver Fluid Wall Authors

Abdominal aorta Aneurysm Idealized N.A Non‑Newtonian 
(Oldroyd‑B 
and Carreau–
Yasuda)

Rigid Ahmed Elhanafy 
et al. [130]

Aorta Healthy Patient specific Computer simu‑
lator based on 
FEM

Newtonian Flexible Marwa Selmi et al. 
[131]

Coronary artery Stenosis Patient specific ANSYS‑CFX Newtonian Rigid Lo et al. [132]

Coronary bifurca‑
tion

Stenosis Idealized ANSYS Fluent Newtonian Flexible Reza Jahromi et al. 
[133]

Aorta Dilatation Patient specific ANSYS‑CFX 15 Non‑Newtonian 
(Carreau–Yas‑
uda)

Rigid Lijian Xu [99]

Coronary artery Healthy Patient specific ANSYS Fluent Non‑Newtonian 
(Carreau–Yas‑
uda)

Rigid Rizzini et al. [75]

Cerebral vessel Healthy Patient specific N.A Non‑Newtonian 
(Power law)

Rigid Shu‑Rong Yan 
[134]

Coronary artery 
bifurcation

Curvature Idealized ANSYS Fluent Non‑Newtonian 
(Carreau–Yas‑
uda)

Rigid Vishesh Kashyap 
[135]
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affect the apparent viscosity of blood, which increase con‑
siderably resulting in a decline in blood flow rate.

However, theoretical calculations for the blood flow 
caused by magnetohydrodynamics have been made far ear‑
lier, dating back to the early 1960s. Under the presumption 
that blood is Newtonian, Korchevskii, and Marochnik [157] 
initially provided a solution for the velocity profile of blood 
flow between two parallel plates subjected to a uniform pres‑
sure gradient and influenced by a magnetic field normal to the 
plane of the plates. In order to enhance the precision of arte‑
rial blood flow modeling, select studies have directed their 
focus toward flow within a non‑deformable circular conduit, 
characteristically possessing non‑conducting walls, that is 
subjected to a transverse magnetic field. In this instance, R. 
Gold [158] presented the most comprehensive solution to 
the magnetohydrodynamic equations of a conducting fluid. 
Gold [158] derived formulas for the velocity profile and the 
induced magnetic field through the utilization of a uniform 
pressure gradient. Sud et al. [159] used a sinusoidal pressure 
gradient to characterize the pulsed pattern of blood flow in 
arteries later on, while Abdallah et al. [160] recently offered 
a more realistic arterial flow solution based on a physiologi‑
cal pressure gradient model under the assumption of rigid 
vessel walls and Newtonian fluid. Recently, Shit and Roy 
[161] examined analytically the influence of a magnetic field 
on blood flow through a restricted tube, using a nonlinear 
micropolar fluid model. The investigation demonstrates 
that as the strength of the magnetic field amplifies, the flow 
toward the channel wall accelerates, while the axial veloc‑
ity at the channel center line decreases. The complexity of 
analytical resolution of magnetohydrodynamics problem has 
introduced several numerical investigations.

Simple Blood Flow

Loukopoulos and Tzirtzilakis [162] conducted a numerical 
investigation on the magnetic field impact on biomagnetic 
fluid flow in a channel. The findings show that a vortex is 
developing near the magnetic source and get wider with the 
increase of magnetic intensity. Kenjereš [163] conducted a 
study to examine the hemodynamic behavior of blood flow in 
anatomically accurate arterial structures under the influence 
of a significantly non‑uniform magnetic field. The momen‑
tum equations include both the Lorentz and magnetization 
forces. The results show that by imposing non‑uniform 
magnetic field on blood flow can create noticeable changes 
in the local pressure and the secondary flow patterns. Ikbal 
et al. [164] employed the finite difference method to exam‑
ine the hemodynamics in stenosed artery under the impact 
of a transverse magnetic field. The study treated blood as a 
non‑Newtonian fluid governed by the generalized Power law 
model. The findings demonstrate that the flow rate is dropped 

considerably by the magnetic field and the gradient nature of 
the magnetic field has a significant influence in determining 
the flow field. Mustapha et al. [165] conducted an examina‑
tion into the impact of a magnetic field on the flow of blood 
that exhibits unsteadiness within an artery that is character‑
ized by an irregular, double stenosed shape. This analysis 
was performed through the utilization of a finite difference 
scheme that is founded on staggered grids. The particularity 
of this work remains in considering a couple of constric‑
tions in the vessel lumen and with the wall irregularities. 
The outcomes of the study prove that it is possible to greatly 
regulate the flow separation that results from such a com‑
plicated flow situation by applying a magnetic field to the 
fluid stream. A computational study on the non‑steady and 
laminar flow behavior of a biomagnetic fluid that is viscous, 
incompressible, Newtonian, and electrically conductive is 
carried out within an infinitely long channel, featuring mul‑
tiple unsymmetrical stenoses. The system is exposed to an 
externally applied magnetic field that varies spatially. This 
investigation is conducted through implementation of a finite‑
element methodology by Turk et al [166]. The results show 
an increase in the vortices length with the increase of the 
magnetic field intensity and the constriction severity. Shit and 
Majee [167] use the finite difference approach to computa‑
tionally model the unsteady magnetohydrodynamics and heat 
transfer properties. The flow pattern in an aneurysmal artery 
was the focus of the authors in this paper. The findings show 
that vortices size in the aneurysm decrease with the increase 
of the magnetic field intensity (see Fig. 1), additionally, it is 
shown that the quantity of low WSS area within the aneurysm 
lowers when exposed to magnetic field strength, making the 
arterial state less severe. Tzirtzilakis [168] looked into the 
movement of biomagnetic Newtonian fluid in an aneurysm 
under a concentrated magnetic field. The statistics on skin 
friction, heat transfer, and velocity and temperature fields 
all demonstrate that the magnetic field has a considerable 
impact on the flow. Using the finite volume approach, Sharifi 
et al. [169] conducted a study to investigate the influence of 
a magnetic field generated by two wires on the conduction 
of heat and flow of electrically conducting Newtonian fluid 
within an aneurysm. The findings of the study indicate that 
the employment of magnetic fields reduces the probability 
of aneurysm rupture risk factors. Javadzadegan et al. [170] 
conducted a study on magnetohydrodynamic blood flow in 
individuals diagnosed with coronary artery disorder. The 
findings of the investigation reveal a considerable decrease 
in the maximum WSS (MWSS), alongside diminished zones 
featuring low WSS (ALWSS) and decreased size of vortex 
attributable to the application of a magnetic field, more spe‑
cifically in coronaries that exhibit moderate to severe stenosis 
(see Fig. 2) (Tables 5).
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Pulsatile Blood Flow

Pressure and flow in a pulsatile system vary with time, and 
the velocity profile varies during the cardiac cycle. The flow 
waveform of blood in an artery is presented in terms of the 
instantaneous Reynolds number during one cardiac cycle 
(see Fig. 3).

Numerous investigations have been undertaken to exam‑
ine the physiological fluid dynamics occurring in stenosed 
arterial systems in the presence of a magnetic field. The 
fundamental objectives of these studies are to assess the 
flow patterns and shear stresses experienced by the arterial 
walls under pulsatile conditions. An in vivo experimental 
investigation was conducted by Chi et al. [171] to examine 
pulsatile flow in a patient‑specific cerebral aneurysm located 
on the lateral aspect. The empirical observations suggest 
that, as the frequency of pulsatile inflow increases, there 

is a concurrent elevation in the oscillation of wall defor‑
mation. Shit and Roy [161] conducted an inquiry into the 
impact that externally applied body acceleration and mag‑
netic field have upon pulsatile blood flow within a stenosed 
artery, utilizing the FDM. The results show that by apply‑
ing a magnetic field on blood flow, the erythrocytes align 
their disk plane parallel to the magnetic field’s axis adding 
an additional viscosity and causing a drop in blood veloc‑
ity. Shit and Majee [172] conducted a numerical study of 
pulsatile blood flow in overlapping constricted artery in the 
presence of magnetic field in a vibration environment. The 
outcomes of the study show a reduction in blood velocity by 
10% under 8‑T magnetic field strength. A numerical study 
of pulsatile magnetohydrodynamics in a constricted tube is 
conducted by Bandyopadhyay and Layek [173] using finite 
difference approach. It is observed that when the magnetic 
field strength increases, the axial velocity gradually flattens. 

Fig. 1  Streamlines for various values of Hartmann number, a Ha = 0, b Ha = 2, c Ha = 4, and d Ha = 6, at Re = 300, Pr = 21, t = 2 (Figure 
reprinted from Shit and Majee [167])

Fig. 2  Streamline patterns per‑
taining to a representative artery 
exhibiting a diameter stenosis 
of 60%, under varying magnetic 
field intensities ranging from 
0 T to 10 T. The abbrevia‑
tion “RL” denotes the length 
of recirculation zones (Figure 
reprinted from Javadzadegan 
et al. [170])
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Alimohamadi and Imani [174] investigated numerically the 
impact of external magnetic field on pulsatile blood flow 
through a constricted artery. It is shown that the stenosis 
region experiences a rise in shear stress value due to the 
applied external magnetic field, which can help in reduc‑
ing the fatty deposits on the plaques. Abbas et al. [126] 

computationally modeled blood flow through an overlapping 
stenosed arterial blood artery under the influence of exter‑
nally imposed body acceleration and a uniform magnetic 
field. The Sutterby fluid model is used to represent blood 
rheology. The problem equations are solved using FDM and 
the results show that the flow velocity reduces considerably 
by increasing the magnetic field intensity. Using the com‑
mercial program COMSOL Multiphysics 5.1, Sedeghi et al. 
[175] conducted an investigation to examine the impact of 
uniform magnetic fields with varying degrees of intensity on 
pulsatile non‑Newtonian blood flow in a vessel with elastic 
wall, characterized by axial symmetry and featuring single 
and double stenosis. The findings suggest that increasing the 
stenosis degree causes a rise in pressure drop, which is espe‑
cially pronounced in double stenosis. Furthermore, exposure 
to a magnetic field elicits an elevation in arterial pressure, 
particularly discernible during instances of maximal flow 
rate. Teimouri et al. [176] conducted an analysis on the 
impact of magnetic field on the pulsatile blood flow within 
a curved artery exhibiting stenosis. The results demonstrate 
that the proportion of variations in blood flow is associated 
to the magnetic field intensity. These effects are more dras‑
tic in areas of the vessel subjected to a stronger magnetic 
field (see Fig. 4). Ali et al. [177] performed an analysis of 
the pulsating movement of micropolar (MP) non‑Newtonian 

Table 5  Computational simulations of magnetohydrodynamics and the related assumptions

vessel condition Geometry Schematic representation CFD solver Fluid Wall Authors

Channel Idealized FDM Newtonian Rigid Loukopoulos and 
Tzirtzilakis [162]

Stenosed coronary artery Patient specific FVM Newtonian Rigid kenjereš [163]

Stenosed artery Idealized FDM Non‑Newtonian 
(Generalized 
Power law)

Rigid Ikbal et al. [164]

Artery with irregular 
paired stenosis

Patient specific FDM Newtonian Rigid 
and 
Flex‑
ible

Mustapha et al. [165]

Multiple stenosed artery Idealized FEM Newtonian Rigid Marie Türk et al. [166]

Aortic aneurysm Idealized FEM Newtonian Rigid Tzirtzilakis et al. [168]

Abdominal aortic aneu‑
rysm

Idealized FDM Newtonian Rigid Shit and Majee [167]

Aortic aneurysm Idealized FVM and 
SIMPLE 
algorithm

Newtonian Rigid Sharifi et al. [169]

Fig. 3  A typical Reynolds number in an artery during the cardiac 
cycle [190]
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fluid in a tube with symmetrical constrictions. The results 
obtained using a finite difference‑based solver reveal that 
the streamlines got smoother as the magnetic field intensity 
increased, and the flow separation area was minimized by 
increasing the magnetic field intensity (Table 6). Recently, 
Cherkaoui et al. [191] investigated numerically the effect of 
magnetic field on pulsatile non‑Newtonian blood flow in an 
aneurysmal artery. The application of a magnetic field has 
been observed to decrease the size of recirculation zones and 
elevate the WSS. Such effects act as a preventive measure 

against the development and rupture of vascular disorders, 
particularly in the region of an aneurysm.

Magnetohydrodynamic problems have practical utility 
and relevance in the field of medical science, as evidenced 
by their application in mathematical modeling and numeri‑
cal simulations. In the next section, an accurate and efficient 
mathematical model of blood magnetohydrodynamics, based 
on LBM with single relaxation time (SRT) is presented.

Fig. 4  WSS contour of artery 
consisting of deoxygenated 
blood for a Mn = 0, b Mn = 
8.5, and c Mn = 11.5 (upper 
set: front view, lower set: back 
view) (Figure reprinted from 
Teimouri et al. [176])
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Modeling MHD Blood Flow Using LBM

Mathematical Equations

The governing equations that describe the magnetohydrody‑
namics phenomenon can be mathematically formulated by the 
combination of the incompressible Navier–Stokes equations 
and the Maxwell equations, as outlined below [163]:

Electromagnetics

The following equations depict the magnetic field elements:

The electrical field elements are given by
The Poisson’s equation:

(1)∇.B = 0 ,

(2)
�B

�t
=

1

�0�
∇2B .

(3)∇2Φ = ∇.(V × B) .

The Ohm’s law:

Fluid Dynamics

The Lorentz force (J × B) and magnetization force 
�0(M.∇)H , which affect the fluid, are two forms of body 
forces included in the momentum equation. Electromagnetic 
fields that are applied produce these forces. The Lorentz 
force is produced by the fluid’s electrical conductivity as it 
moves in the presence of a magnetic field, while the magnet‑
isation force is produced by the fluid becoming magnetized 
as a result of the magnetic field’s non‑uniformity.

(4)E = −∇Φ .

(5)J = �(E + V × B).

(6)∇.V = 0 ,

(7)

�V

�t
+ (V .∇)V = �∇2V +

1

�

[

−∇p + (J × B) + �0(M.∇)H
]

.

Table 6  Computational simulations of pulsatile magnetohydrodynamics and the related assumptions

Vessel condition Geometry Schematic representation CFD solver Fluid Wall Authors

Stenosis Idealized FDM Newtonian and Non‑
Newtonian

Rigid Shit and Roy [161]

Stenosed artery Idealized FDM Newtonian Rigid Bandyopadhyay and 
Layek [173]

Stenosed artery Idealized FEM (COMSOL 4.3) Non‑Newtonian Rigid Alimohamadi and Imani 
[174]

Overlapping con‑
stricted artery

Idealized FDM (Crank–Nicolson 
scheme)

Variable viscosity Rigid Shit and Majee [172]

Stenosed artery Idealized FEM (COMSOL Mul‑
tiphysics 5.1)

Non‑Newtonian Elastic Sadeghi et al. [175]

Stenosed curved 
artery

Idealized FDM (Crank‑Nicolson 
scheme)

Non‑Newtonian (Car‑
reau model)

Rigid Teimouri et al. [176]

Stenosed artery Idealized FDM Non‑Newtonian Rigid Ali et al. [177]
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LBM with Single Relaxation Time (SRT‑LBM)

The problem of obtaining a solution to the magnetohydro‑
dynamic equations may be approached via the utilization of 
two interdependent lattice Boltzmann equations. The initial 
equation presents a forecast of the development of the dis‑
tribution function for particles, denoted as Fi , while the sub‑
sequent equation encompasses a function of a vector nature, 
given by hi , depicting the magnetic field progression. The 
utilization of the D2Q9 lattice Boltzmann model relying on 
the BGK collision operator is presented for the purpose of 
investigating fluid dynamics and magnetic field progression.

The dynamics are characterized by a particle distribution 
function exhibiting an evolution over discretized time and 
space. Hence, the Lattice Boltzmann Equation (LBE) can be 
expressed as follows:

The collision operator, denoted by Ωi , encompasses the 
alteration of particle distribution following particle colli‑
sions. The estimation of the collision term can be carried 
out through the utilization of the BGK approximation, which 
has been extensively employed in the field of academic writ‑
ing. In order to replicate two‑dimensional fluid flows, it is 
possible to utilize various models, such as the D2Q4 , D2Q5 , 
D2Q7 , or D2Q9 approaches. The present study employs the 
D2Q9 model as illustrated in Fig. 5.

The lattice Boltzmann BGK equation may be expressed as 
follows:

The collision step is represented as following:

The streaming step is presented by

The superscript * denotes the post‑collision variables.
In the present context, the relaxation parameter denoted 

by � is correlated with the fluid kinematic viscosity, wherein 
the relation is specified as � = (� − 0.5)c2

s
 , which necessi‑

tates the selection of 𝜏 > 0.5 since viscosity is positive. The 
equilibrium distribution function denoted as Feq

i
 is defined 

in terms of the local fluid velocity and density. Specifically, 
it is expressed as follows:

(8)Fi

(

x + �
�
Δt, t + Δt

)

− Fi(x, t) = Ωi(F).

(9)

Fi

(

x + �
�
Δt, t + Δt

)

− Fi(x, t) = −
1

�

[

Fi(x, t) − F
eq

i
(x, t)

]

.

(10)F∗
i
(x, t) = Fi(x, t) −

1

�

[

Fi(x, t) − F
eq

i
(x, t)

]

.

(11)Fi

(

x + �iΔt, t + Δt
)

= F∗
i
(x, t).

The weighing factor, denoted as �i , is defined as follows:

The quantity denoted by cs refers to the sound speed, 
which can be expressed as c2

s
= Δx2∕3Δt2 . The notations 

Δx and Δt denote the dimensions of the lattice width and 
time step, consecutively. The values of Δx and Δt have been 
selected to be equivalent, with both being equal to 1. As 
a result, the velocity constant, c, is equal to 1. The D2Q9 
model comprises a total of nine lattice velocities, expressed 
as follows:

The fluid density (denoted by � ) and velocity (represented 
by u ) can be readily determined using the density distribu‑
tion function at each discrete lattice point.

The application of the LBM has been utilized in the 
investigation of the spatial and temporal changes that occur 

(12)

F
eq

i
= �i�

[

1 +
3�

�
.u

c2
+

9
(

�
�
.u
)2

2c4
−

3u.u

2c2

]

i = 0 → 8.

(13)

⎧
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⎨

⎪

⎩

�i =
4

9
i = 0

�i =
1

9
i = 1, 2, 3, 4

�i =
1

36
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.
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during the magnetic field evolution. Consequently, the mag‑
netic lattice Boltzmann equation can be denoted as follows:

where Δt is the time step and �m is the relaxation parameter. 
hi =

[

hix, hiy
]

 presents the evolution of the magnetic field

with i=0,...,8 in the D2Q9 space.

The post‑collision distributions are presented by

The relaxation frequencies, represented by �� satisfying 
the inequality 𝜔𝜂 < 2 , are associated with the magnetic resis‑
tivity of the fluid according to the following relationship:

The interconnection of the velocity field and magnetic 
field is manifested in the equilibrium functions denoted as 
follows:

(16)

hi
(

x + �iΔt, t + Δt
)

= hi(x, t) −
Δt

�m

[

hi(x, t) − h
eq

i
(x, t)

]

,

(17)
hix

(

x + �iΔt, t + Δt
)

− hix(x, t) = −
Δt

�m
[

hix(x, t) − h
eq

ix
(x, t)

]

,

(18)
hiy

(

x + �iΔt, t + Δt
)

− hiy(x, t) = −
Δt

�m
[

hiy(x, t) − h
eq

iy
(x, t)

]

(19)hix
(

x + �iΔt, t + Δt
)

= h∗
ix
(x, t) ,

(20)hiy
(

x + �iΔt, t + Δt
)

= h∗
iy
(x, t) .

(21)h∗
ix
(x, t) = hix(x, t) + ��[h

eq

ix
(x, t) − hix(x, t)] ,

(22)h∗
iy
(x, t) = hiy(x, t) + ��[h

eq

iy
(x, t) − hiy(x, t)] .

(23)� =

(

1

��

− 0.5

)

c2
s .

(24)
F
eq

i
= �i�

[

1 +
�
�
.u

c2
s

+

(

�
�
.u
)2

2c4
s

−
u.u

2c2
s

]

+
�i

2c4
s

[

1

2
∣ �

�
∣2∣ b ∣2 −

(

�
�
.b
)2
]

,

(25)h
eq

ix
= �i

[

bx +
�iy

c2
s

(

uybx − uxby
)

]

,

(26)h
eq

iy
= �i

[

by +
�ix

c2
s

(

uxby − uybx
)

]

,

where �i is the weighting factor defined in D2Q9 as follows:

The magnetic macroscopic variables are expressed as 
follows:

Lattice Boltzmann Approach for Non‑Newtonian 
Flows

Numerous studies in the literature have presented a variety of 
numerical findings pertaining to non‑Newtonian flows using 
LBM. Aharonov and Rothman presented the first work [178]. 
The researchers successfully demonstrated the feasibility of 
utilizing the LBM for addressing non‑Newtonian flows that 
conform to the power law model. This was achieved through 
the introduction of modifications to the relaxation time of 
the BGK collision model, which enabled its alignment with 
the local viscosity of the fluid. The accuracy of the LBM 
has been thoroughly examined by Gabbanelli et al. [136] 
with regard to the scenarios involving the rheological behav‑
iors of shear‑thinning and shear‑thickening truncated power 
law fluids. A linear decline in relative error with respect to 
analytical solutions was observed as the lattice resolution 
increased. The authors conducted an experimental analysis 
to validate their LBM approach in re‑entrant flow geometry. 
The study revealed that the solutions obtained through LBM 
precisely corresponded to those generated by finite‑element 
techniques. It was confirmed once more that LBM is suit‑
able for non‑Newtonian flows and shear‑dependent viscosity 
using a variable parameter [179]. Vikhansky [180] presented 
a variation of the LBM approach for the yield stress liq‑
uids by resolving a nonlinear algebraic equation linking the 
local stress and shear rate. These studies further illustrated 
LBM’s adaptability in simulating non‑Newtonian flows. The 
LBM enables simple computations of the local shear rate to 
second‑order precision because of its kinetic nature. Thus, it 
is used to imitate the non‑Newtonian blood flows.

(27)
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Power Law Model for Blood

The power law model is a fundamental model employed 
in blood modeling due to its simplicity. This model allow 
expressing both pseudo‑plastic and dilatant material behav‑
ior, when applied in LBM. In the power law model, the 
apparent viscosity is a function of strain rate and it is given 
by

with m which is the consistency constant and n is the power 
law model exponent, n<1 for blood. The shear rate is deter‑
mined by

The second invariant of the strain rate tensor, denoted by 
Damalg , is expressed by

In a two‑dimensional model scenario, the parameter l is 
assigned a value of 2.

In the lattice Boltzmann approach, the shear rate tensor 
is locally calculated and written according to the non‑equi‑
librium distribution function, as follows [181]:

The local and instantaneous relaxation times for each 
lattice are calculated once the apparent viscosity has been 
established. The power law model suggests that the appar‑
ent viscosity of blood flow exhibits a shear‑thinning behav‑
ior, characterized by an exponent n which is less than unity. 
Under this framework, it is observed that the apparent vis‑
cosity shows an increasing trend as the shear rate decreases 
and eventually diverges when the shear rate approaches zero. 
To circumvent this difficulty, a truncated power law model 
for LBM [136] was formulated, incorporating predefined 
constraints on the upper and lower bounds of relaxation 
times. Furthermore, when the value of the relaxation time 
approaches � ≥ 0.5 ( � ≤ 0.001 ), the LBM scheme becomes 
unstable and its accuracy degrades as � ≤ 1 ( � ≥ 1∕6 ). An 
approach entails decomposing the collective non‑Newtonian 
viscous force into two distinct components, a Newtonian 
viscous force and an externally generated force, which is 
suggested by Wang and Ho in order to overcome the possible 
instabilities that the varied relaxation times may generate.

(30)𝜈(�̇�) = k𝛾 ��
n−1

(31)�̇� = 2
√

D
⨿
.

(32)D
⨿
=

l
∑

�,�=1

S��S�� .

(33)S =
−1

2c2
s
��

8
∑

i=0

(Fi − F
eq

i
)�

�
.�

�
.

Boundary Conditions

The significance of boundary conditions in the simulation of 
blood flow, particularly in intricate geometries, is consider‑
able. Inadequate consideration of boundary conditions can 
result in outcomes that are weak, misleading, and not reflec‑
tive of reality. Typically, in hemodynamic research, a veloc‑
ity profile is imposed at the inlet, while a no‑slip condition 
is applied to the internal surface of the wall. Furthermore, 
a combination of velocity and traction‑free constraints are 
enforced at the outlet. The appropriateness of these bound‑
ary conditions is contingent upon a prior knowledge of the 
flow distribution. In different cases, where the pressure and 
velocity fields need to be predicted or in the case where the 
wall is compliant, boundary conditions have to be selected in 
a way to tolerate the blood domain to be coupled to deforma‑
ble wall models at the lateral surface. This approach pointed 
out new challenges, such as considering the mechanics of 
the wall and modeling the fluid–solid interactions between 
the blood and the blood vessel. In LBM, many boundary 
conditions have been proposed [30, 182–188]. Implement‑
ing boundary conditions in LBM is a significant challenge 
since it requires translating supplied information from mac‑
roscopic variables to particle distribution function. In this 
section, most common boundary conditions, used in LBM to 
treat blood flow pathologies, such as aneurysm and stenosis, 
are introduced.

Bounce‑Back

The bounce‑back scheme serves as an instantiation of the 
“no‑slip” boundary constraint, denoting the absence of 
fluid motion in the close proximity of the boundaries. The 
bounce‑back boundary condition, as described by reference 
number [189], postulates that when particles reach a bound‑
ary, they scatter back to the fluid in the direction from which 
they originally arrived. The utilization of the bounce‑back 
boundary condition on the boundary nodes results in the 
provision of initial order precision. The implementation 
of the bounce‑back boundary condition results in second‑
order accuracy when a wall is positioned at a location that 
is half of the grid spacing away from both a flow node and a 
bounce‑back node (Fig. 6).

The unknown distribution functions, for a D2Q9 model, 
are expressed by

(34)
F5(x, y, t) = F7(x, y, t)

F2(x, y, t) = F4(x, y, t)

F6(x, y, t) = F8(x, y, t)

.
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Improved Bounce‑Back Boundary Condition

Yu et al. [188] proposed an improved bounce‑back bound‑
ary condition, valid for curved wall, based on linear inter‑
polation scheme, given by

with

where F
i
 indicates post‑collision state.

Curved Boundary Condition

Bouzidi et al. [30] proposed a treatment for curved bound‑
aries that fulfills the no‑slip condition to the second order 
in Δx and maintains the geometric boundary integrity of 
the wall. The boundary condition is given by the following 
equation (Fig. 7):

(35)F
i
(xw) = F

i
(xw) +

Δ

1 + Δ
(F

i
(xf + ci) − F

i
(xw)).

(36)0 ≤ Δ ≤ 1,

xw represent nodes on the wall boundary, xf  represent nodes 
in the fluid domain, and xb represent nodes in the solid 
region. Δ presents the fraction of an intersected lattice with 
the wall boundary that is placed within the fluid region. It 
is given by

Zou–He Boundary Condition

The velocity boundary condition of Zou–He [35] is applied 
at the flow inlet. The velocity profile at the inlet is expressed 
by Poiseuille profile ( ux(y) and uy = 0 ). After streaming 
F2,F3,F4,F6,F7 are known at the inlet. The unknown den‑
sity �,F1,F5,F8 can be determined by

Numerical Model Applications

Using the lattice Boltzmann approach based on the BGK 
approximation, laminar flow simulation of magnetohydro‑
dynamic blood flow in stenosed artery in two dimensions is 
carried out by Cherkaoui et al. [147, 148]. It is an applica‑
tion of the suggested lattice Boltzmann model with certain 
boundary conditions (bounce‑back and Zou–He) and the 
consideration of blood as Newtonian fluid. The model has 
been verified in the absence and in the presence of various 
magnetic field intensities, and it exhibits strong concurrence 
with various findings in the literature. The various compari‑
sons show the efficacy and precision of the LBM‑BGK sug‑
gested model of magnetohydrodynamics.

Magnetic Field Impact on Streamlines

Figures 8, 9, and 10 depict the effect of magnetic field inten‑
sity, presented by various Hartmann number values (Ha= 0, 
Ha= 10, Ha= 50, Ha= 75 and Ha= 100) on blood velocity 
for Re= 400, Re= 600, and Re= 800.

(37)F
i
(xf , t + Δt) = Fi(xf , t) +

2Δ − 1

2Δ
F
i
(xf , t + Δt),

(38)Δ =
xF − xw

xF − xb
.

(39)

� = 1
1−ux

[

F0 + F2 + F4 + 2(F3 + F6 + F7)
]

,
F1 = F3 +

2
3
�ux,

F5 = F7 −
1
2
(F2 − F4) +

1
2
�uy +

1
6
�ux,

F8 = F6 +
1
2
(F2 − F4) −

1
2
�uy +

1
6
�ux.

.

Fig. 6  Bounce‑back boundary condition

Fig. 7  Layout of the regularly spaced lattices and the boundary of the 
curved wall
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According to the study [147], an increase in the mag‑
netic field strength reduces the recirculation zones con‑
siderably and reduces the flow rate. The red blood cells 
(RBCs) aggregation, which increased as blood is exposed 
to a magnetic field, is the reason of the decrease in velocity. 
The results reported in the literature and our findings are 
fairly consistent. In the approaches based on FEM, FDM, 
and FVM, the introduction of a Lorentz force term into 
the Navier–Stokes equations results in the imposition of a 
single, unequivocal direction for the magnetic field. In our 
approach, it is noteworthy that the magnetic field direction 
could be predicted at each node due to the association of 
a vector possessing nine conceivable orientations which 
serve to provide a magnetic field to every individual parti‑
cle within the given flow.

Magnetic Field Impact on Pressure Drop

The magnetic field intensity impact on pressure drop across 
a constricted zone with various degrees of stenosis (DOS) 
at different Reynolds and Hartmann numbers is presented 
in Fig. 11.

Research [147] has demonstrated that as stenosis degree 
increases, pressure drop also increases. However, the appli‑
cation of a magnetic field with a Hartmann number value 

of 10 results in a 90% reduction in pressure drop, while 
a Hartmann number value of 50 leads to a decrease of 
98.25%. This reduction is attributed to a decrease in veloc‑
ity caused by the magnetic field. Nonetheless, across all 
cases, there has been a sudden surge in pressure from DOS 
80% to 85%. The study concludes that powerful magnetic 
fields are highly effective in decreasing pressure drop in a 
stenotic artery.

Magnetic Field Impact on WSS

In cardiovascular diseases, WSS is a crucial hemodynamic 
variable that significantly affects stenosis progression. Fig‑
ure 12 demonstrates how an external magnetic field affects 
WSS in a stenotic artery at various Hartmann number values 
and Reynolds number of 360. The study [148] reveals that 
the maximum WSS occurs in the restricted zone, where the 
diameter is reduced. The non‑Newtonian behavior of blood 
is particularly pronounced in the stenotic region, owing to 
the clustering of red blood cells within that particular zone. 
Fig. 12 shows that an external magnetic field considerably 
reduces WSS in the stenotic region.

The outcomes of the study have applications in the man‑
agement of hypertension and several cardiovascular dis‑
eases. Furthermore, the regulation of blood circulation can 

(a) Ha = 0 (b) Ha = 10

(c) Ha = 50 (d) Ha = 75

(e) Ha = 100

Fig. 8  Effect of Hartmann number on streamlines at Re = 400 (Figure reprinted from Cherkaoui et al. [147])
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(a) Ha = 0 (b) Ha = 10

(c) Ha = 50 (d) Ha = 75

(e) Ha = 100

Fig. 9  Effect of Hartmann number on streamlines at Re = 600 (Figure reprinted from Cherkaoui et al. [147])

(a) Ha = 0 (b) Ha = 10

(c) Ha = 50 (d) Ha = 75

(e) Ha = 100

Fig. 10  Effect of Hartmann number on streamlines at Re = 800 (Figure reprinted from Cherkaoui et al. [147])
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be facilitated via the utilization of a magnetic field, a valua‑
ble technique particularly in the field of surgical procedures.

Conclusion

In this review, numerical simulations of hemodynamics 
and magnetohydrodynamics of blood in pathological ves‑
sels using FVM, FEM, FDM, and LBM are presented. The 
LBM is an accurate alternative approach to simulate com‑
plex flows, such as blood flow. In addition, complex bound‑
ary shapes can be easily dealt with in the LBM. The majority 
of studies presented in this review treat blood flow in large 
vessels, such as arteries. Simulations of blood flow in small 
vessels such as veins and capillaries are required. The con‑
sideration of non‑Newtonian behavior of blood in small ves‑
sels is necessary to identify the flow related properties, such 
as WSS; however, the selection of non‑Newtonian model is 

crucial. Based on this review, Carreau–Yasuda, generalized 
power law, and Casson models seem to give more accurate 
predictions of blood behavior compared to other models. For 
more realistic results, consideration of deformable vessels 
and the interaction between the vessel wall and blood flow 
are necessary. The analysis of wall mechanics and character‑
ization of fluid–solid interactions between the blood and the 
blood vessel are pertinent areas of investigation. The great 
majority of LBM simulations presented in the review imple‑
mented single relaxation time collision model; however, the 
effects of collision model selection on predicted velocity 
fields in pathological blood flow need further research. LBM 
proved its precision in two dimensions in the simulation of 
steady and time‑varying fluid flow within complex geom‑
etries. On the contrary, the three‑dimensional LBM has poor 
accuracy due to the lack of adequate boundary conditions. 
Additional research is required to thoroughly explore the 
velocity and pressure boundary conditions, particularly for 

(a) Ha = 0 (b) Ha = 10

(c) Ha = 50

Fig. 11  Pressure drop across stenosis at varying degrees of stenosis and Reynolds numbers, while considering three distinct values of Hartmann 
number (namely, Ha=0, Ha=10, and Ha=50) (Figure reprinted from Cherkaoui et al. [147])
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complex geometries. The implementation of LBM has the 
potential to advance the medical field and can contribute 
to advancements in medicine. The LBM can simulate the 
blood flow through complex geometries, such as blood ves‑
sels and heart chambers. By accurately modeling the behav‑
ior of blood cells and the interactions between blood and 
vessel walls, LBM can help in understanding diseases, like 
atherosclerosis, thrombosis, and aneurysms. It can also aid 
in modeling drug transport within the body and in optimiz‑
ing medical devices, such as stents and artificial heart valves.
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