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Abstract
Musculoskeletal models can uniquely estimate in vivo demands and injury risk. In this study, we aimed to compare muscle 
activations from subject-specific thoracolumbar spine OpenSim models with recorded muscle activity from electromyo-
graphy (EMG) during five dynamic tasks. Specifically, 11 older adults (mean = 65 years, SD = 9) lifted a crate weighted 
to 10% of their body mass in axial rotation, 2-handed sagittal lift, 1-handed sagittal lift, and lateral bending, and simu-
lated a window opening task. EMG measurements of back and abdominal muscles were directly compared to equivalent 
model-predicted activity for temporal similarity via maximum absolute normalized cross-correlation (MANCC) coefficients 
and for magnitude differences via root-mean-square errors (RMSE), across all combinations of participants, dynamic tasks, 
and muscle groups. We found that across most of the tasks the model reasonably predicted temporal behavior of back 
extensor muscles (median MANCC = 0.92 ± 0.07) but moderate temporal similarity was observed for abdominal muscles 
(median MANCC = 0.60 ± 0.20). Activation magnitude was comparable to previous modeling studies, and median RMSE 
was 0.18 ± 0.08 for back extensor muscles. Overall, these results indicate that our thoracolumbar spine model can be used 
to estimate subject-specific in vivo muscular activations for these dynamic lifting tasks.
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Introduction

Spinal disorders are highly prevalent global health problems 
with immense societal and medical costs [19, 50]. Spinal 
disorders such as back pain, vertebral fractures, degenerative 
disk disease, spine deformity, and lumbar spinal stenosis, 
can affect spinal kinematics, trunk postures, and spine tissue 
loading (e.g., [6, 12, 14, 31, 39, 40, 47]). Older adults, who 

are at increased risk of spinal disorders, back injuries, and 
mobility deficits, constitute the fastest growing segment of 
the labor force [49]. Work force participation for individuals 
aged 65–74 is expected to be 30% by 2026, a near doubling 
of the rate observed in 1996 [18]. Therefore, it has become 
imperative to improve our understanding of spinal demands 
in older adults, in an attempt to mitigate their risk of back 
injury and pain.

Musculoskeletal models are computer-based tools that 
utilize anatomic details combined with engineering prin-
ciples to non-invasively estimate internal tissue demands 
[29]. Model estimates of trunk tissue demands are associ-
ated with risk of injury [45]. However, prior to applying 
a musculoskeletal model to assess demands, it should first 
be validated for equivalent tasks. An established approach 
of model validation is comparing predicted muscle activa-
tions from the model to directly recorded activations from 
electromyography (EMG) [33]. However, while prior studies 
have used EMG to validate lumbar spine models (e.g., [2, 
11, 13, 46]), no thoracolumbar spine model has been directly 
compared to EMG during dynamic activities. Furthermore, 
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prior studies exclusively focused on young or middle-aged 
adults, and thus, the model validation of dynamic tasks for 
older adults has not been reported.

Our lab developed a fully articulated thoracolumbar 
spine musculoskeletal model capable of estimating trunk 
muscle activations and musculoskeletal loading throughout 
the spine [15, 16]. We also developed methods for rapid 
generation of subject-specific musculoskeletal models by 
incorporating spine curvature and muscle morphology meas-
urements obtained via medical imaging [17]. Our model has 
been validated for estimating spine tissue demands during 
static poses [15], but a validation during dynamic tasks is 
lacking. Thus, the objective of this study is to further evalu-
ate the performance of our thoracolumbar musculoskeletal 
model by determining the association (pattern and mag-
nitude) between model-predicted muscle activation and 
experimental EMG recordings of muscle activities during 
dynamic activities in older adults.

Methods and Materials

Participants

We recruited eleven healthy older adults (6 women, 5 men) 
from the local community through fliers and online postings. 
Participants’ average (SD) ages, statures, body weights, and 
body mass indices (BMIs) were 65 (9) years, 168 (11) cm, 
72.8 (19.6) kg, and 25.2 (4.0) kg/m2, respectively. Exclusion 
criteria included patient-reported conditions that might alter 
spine biomechanics, such as a history of traumatic spine 
injury or spinal surgery; severe scoliosis which needed 
brace or surgical treatment; neuromuscular conditions such 
as Parkinson’s disease, hemiplegia, multiple Sclerosis, or 
muscular dystrophy; a score ≥ 10 on the Short Blessed Test 
(suggesting possible impaired cognitive function or demen-
tia); BMI > 30 kg/m2; self-reported musculoskeletal injury 
affecting the normal activity or movement. All participants 
ranged in age from 50 to 85 years and were able to per-
form activities of daily living (such as walking, standing, 
sitting, bending, or lifting) without assistance. The study was 
approved by the Institutional Review Board of Beth Israel 
Deaconess Medical Center, and written informed consent 
was provided by all participants prior to participation.

Experimental Procedures

Kinematic and Kinetic Measurements of Dynamic Tasks

Anthropometric data including age, height, and body weight 
were recorded from all participants. Participants wore com-
pression shorts and a tailored tank top to expose their back 
and allow for direct placement of retroreflective markers 

and EMG sensors. To assign the proper placement of the 
markers, anatomical landmarks were palpated and marked. 
Ninety-seven passive markers (two marker sizes were used: 
14 mm and 9.5 mm) were affixed to the skin using double-
adhesive tape in accordance to anatomical landmarks [44] 
and on the top corners of a 30 × 30 × 30 cm crate individu-
ally tailored to 10% of each participant’s body weight.

Participants first performed a standing calibration 
pose, followed by five different dynamic tasks. Four of the 
dynamic tasks involved lifting/lowering the crate in: (1) 
axial rotation, (2) two-handed (2 h) sagittal flexion/extension 
lifting, (3) one-handed (1 h) asymmetric flexion/extension 
lifting with the right hand only, and (4) lateral bending. The 
fifth task simulated opening a window as an activity of daily 
living, starting with arms extended anteriorly at waist height 
and raising them to head height with a 9 N dumbbell in each 
hand. This force was chosen based on an estimated mass of 
about 1.8 kg for a typical window sash. During axial rota-
tion, participants rotated their trunk axially to lift the crate 
with both hands from a waist high platform on their left side 
and then transferred the crate to an equivalent platform on 
their right side. For flexion/extension lifting (2 h and 1 h), 
participants flexed the trunk forward to lift the crate from the 
ground to waist height and then lowered the crate to ground 
in the same manner. In the lateral lifting task, participants 
lifted/lowered the crate from a stool 30 cm above the ground 
on their right side to waist height using only their right hand. 
For each participant, all dynamic tasks were repeated three 
times at a self-selected pace (< 10 s per task), but only one 
trial for each task was selected for analysis, based on review 
of the quality of the kinematics and EMG recording. Partici-
pants rested at least one minute between each task. During 
all tasks, the participants’ feet remained in contact with two 
embedded force plates (AMTI OR6-7-1000, Watertown, MA 
USA) and began and ended in a neutral standing posture 
without the crate. Three-dimensional full-body kinematics 
were collected at a 100 Hz sample rate with a 10-camera 
motion analysis system (Vicon Motion Systems, Oxford, 
UK). The two embedded force plates measured the ground 
reaction forces of each lower limb and were recorded syn-
chronously within the motion capture software at a sampling 
rate of 1 kHz.

Electromyography (EMG) Recordings and Processing

Surface EMG signals were recorded during all tasks using a 
wireless system (Delsys TrignoTM, Delsys Inc., Natick, MA, 
USA) synchronized and recorded at 1925.93 Hz within the 
motion capture system. Prior to EMG sensor placement, the 
skin sites were prepared and cleaned according to estab-
lished standards [48]. In total, eight sensors were placed 
bilaterally on the skin over four major muscle groups of 
the back (i.e., longissimus erector spinae (LT), iliocostalis 
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erector spinae (IC)) and abdominal (i.e., external oblique 
(EO) and rectus abdominis (RA)) muscles, as previously 
described [1, 9]. Throughout the experimental protocol, all 
signals were inspected for quality and appropriate muscle 
function.

Prior to performing the dynamic tasks, participants per-
formed a series of maximum voluntary isometric contrac-
tions (MVICs) to normalize their EMG signals. Partici-
pants performed three repetitions of four different seated 
trunk exertion tasks (i.e., trunk flexion, extension, and right 
and left lateral bending) designed to isolate the back and 
abdominal muscles. For most of the MVICs, the trunk was 
positioned in a neutral upright posture, with the exception 
of the extension task where the trunk was positioned in 20° 
of forward flexion [7, 35, 41]. Verbal encouragement was 
provided during all MVICs and subjects rested at least 30 
seconds between exertions [10].

EMG signals were band-pass filtered (20–450 Hz, 6th-
order Butterworth filter, bidirectional). The resulting fil-
tered signals were then full-wave rectified and subsequently 
smoothed with root-mean-square envelopes from a mov-
ing window of 400 ms [9]. Processed EMG activations of 
each muscle group were then normalized with respect to 
each participant’s maximum EMG activity observed dur-
ing either the MVICs or the dynamic tasks. The resulting 
normalized EMG (nEMG) was used for comparison with 
model-predicted muscle activations. All of the EMG data 
were processed using custom MATLAB scripts (The Math-
Works Inc., Natick, MA).

Acquisition and Analysis of CT Scans 
of Thoracolumbar Trunk

All participants underwent volumetric CT scans of the 
chest, abdomen, and pelvis using a multi-detector scanner 
(Aquillon Prime SP). Scans were acquired at a tube volt-
age of 120 kVp, a nominal in-plane voxel size of 0.5 mm, 
and a slice thickness of 0.5 mm. CT scans were analyzed to 
get information about the spinal curvature and trunk muscle 
morphology using commercial software packages (Spine-
Analyzer, Optasia Medical, Cheadle, UK; and Analyze, 
Biomedical Imaging Resource, Mayo Clinic, Rochester, 
MN) [17, 36]. Sagittal spine morphometry was extracted to 
accurately model the subject-specific spine geometry and 
curvature. Muscle size and centroid position relative to the 
spine were measured to represent the subject-specific mus-
culature for each model more accurately [17, 36].

OpenSim Musculoskeletal Model Development and Model 
Muscle Activations

Creating and  Solving Musculoskeletal Models  Our full-
body thoracolumbar model is based in OpenSim version 4.3 

[28]. The base model includes 620 musculotendon actua-
tors, 78 rigid bodies, and 165 degrees of freedom [15, 21], 
with specific models for men and women. The thoracolum-
bar spine is modeled with 575 musculotendon actuators 
along with 17 rigid bodies with the total of 51 degrees of 
freedom. Crate inertia was added to the model by welding a 
rigid body to each hand with half of the inertial properties 
of the crate [4]. Each model was tailored to each participant 
according to gender, height, body weight, and marker posi-
tions from their neutral standing posture. In addition, cus-
tom MATLAB scripts were used to further refine the model 
to subject-specific spine (i.e., intervertebral joint angles and 
distances) and trunk muscle (i.e., muscle cross-sectional 
area and distances from joints) parameters obtained from 
the CT scans [17]. The maximum isometric force of trunk 
muscles was adjusted based on the measured cross-sectional 
area from CT scans, assuming a maximum muscle stress of 
78 N/cm2 based on our prior report for back muscles in older 
adults [20]. Subject-specific models were subsequently used 
for all of the simulations and analyses.

Participants’ kinematics were tracked via OpenSim 
inverse kinematics, which fit subject-specific musculoskel-
etal models to recorded marker positions. Coordinate cou-
pling constraints were assigned to reduce spinal degrees 
of freedom from 51 to 6 during the inverse kinematics 
tracking [8, 11]. To estimate the kinetics responsible for 
the tracked kinematics, musculotendon actuator forces 
were calculated from a static optimization algorithm that 
minimized the sum of all activations cubed [26, 34]. All 
estimated muscle activation thresholds ranged from 0 (no 
activation) to 1.0 (fully activated to achieve maximum 
force).

Extracting Model Muscle Activations  EMG sensor loca-
tions were mapped onto each subject-specific model in 
accordance with the nominal placement of the EMG sen-
sor. For LT and IC muscle groups, this was immediately 
lateral to L1 and L2 vertebral levels, respectively. For EO 
muscle group, the location was halfway between the ante-
rior superior iliac crest (ASIS) and distal border of the 
rib case, at L3 vertebral level. For RA, the placement was 
1  cm above the umbilicus at approximately the L2 ver-
tebral level. Then, only the musculotendon actuators in 
the target muscle group whose paths crossed the sensor 
location in the axial plane were identified. Muscle activa-
tions resulting from those actuators were then averaged to 
produce the model-estimated muscle activations for each 
frame in the time series. It should be noted that the model 
muscle activations were not filtered similar to the experi-
mental nEMGs because the model was solved at a much 
lower frequency than EMG recordings, and therefore, 
similar filtering would not be feasible.
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Statistical Analysis

Ensemble average plots of experimental nEMGs versus 
model-predicted muscle activations for back and abdom-
inal muscles were illustrated for all dynamic tasks. In 
addition, to quantitatively validate our subject-specific 
thoracolumbar spine model, we focused on two outcomes: 
(1) the maximum absolute normalized cross-correlation 
(MANCC) coefficient, to quantify the temporal similarity 
(i.e., trend/pattern similarity) between model-predicted 
and normalized experimental muscle activities; and (2) 
the root-mean-square error (RMSE), quantifying the 
magnitude of the difference between model-predicted 
and normalized experimental muscle activities. Both out-
comes were calculated for each combination of partici-
pant, dynamic task, and muscle group. Note that MANCC 
values larger than 0.9, 0.7, and 0.4 would indicate excel-
lent, strong, and moderate pattern similarity, respectively.

Results

Ensemble Average Plots of Model‑Predicted Muscle 
Activities Versus Experimental nEMG for All Muscle 
Groups and Tasks

Ensemble average plots of model-predicted muscle activa-
tions versus experimental nEMG indicate that the model 
predicts the general trend of the back muscles, but it tends 
to underpredict the activations of longissimus erector spinae 
muscles in the majority of the tasks (Fig. 1). The model 
tended to underpredict the muscle activations of trunk flex-
ors, but given the low overall magnitude of the activations 
of these muscles, their relative differences tended to be small 
(Fig. 2).

Temporal Similarity Between Model‑Predicted 
Muscle Activities and Experimental nEMG (MANCC 
Coefficients)

In general, we observed a high temporal similarity between 
model-predicted and experimental nEMG for back extensor 

Fig. 1   Ensemble average plots of experimental nEMG (red lines and 
shading) vs. model-predicted (blue lines and shading) muscle activ-
ity for all of the back muscles (left/right longissimus erector spinae 
and left/right iliocostalis erector spinae, shown in columns) during 

five dynamic tasks (i.e., axial rotation, 2-handed (2  h) sagittal lift-
ing, 1-handed (1 h) sagittal lifting, lateral lifting, opening a window, 
shown in rows). Task times from each participant were scaled from 0 
to 100%.
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muscles and moderate similarity for flexors (Figs. 1, 2, 
3). Both the longissimus (0.95 ± 0.08) and the iliocostalis 
(0.92 ± 0.13) erector spinae muscle groups had high aver-
age median MANCC coefficients across all lifts, with the 
exception of the right iliocostalis during the lateral lift task 
(0.64 ± 0.17). The abdominal muscles (both external oblique 
and rectus abdominis) had a moderate level of temporal 
similarity during all of the tasks, except during the window 
opening task, which demonstrated excellent temporal simi-
larity (median MANCCs ≥ 0.94).

Magnitude Difference Between Model‑Predicted 
Muscle Activities and Experimental nEMG (RMSE 
Values)

On average, in the back muscles, the left and right long-
issimus (0.23 ± 0.12) erector spinae muscles had larger 
median RMSEs compared to the left and right iliocostalis 
(0.14 ± 0.09) erector spinae muscles (Fig. 4). The left lon-
gissimus muscle had the highest RMSE values (i.e., poorer 
performance) across all tasks with an average median 
RMSE of 0.26. All other back muscles had average median 
RMSEs ranging from 0.13 to 0.16 across the five tasks. In 

Fig. 2   Ensemble average plots of experimental nEMG (red lines and 
shading) vs. model-predicted (blue lines and shading) muscle activity 
for all of the abdominal muscles (left/right external oblique and left/
right rectus abdominis, shown in columns) during five dynamic tasks 

(i.e., axial rotation, 2-handed (2 h) sagittal lifting, 1-handed (1 h) sag-
ittal lifting, lateral lifting, opening a window, shown in rows). Task 
times from each participant were scaled from 0 to 100%.

Fig. 3   Heatmap of median values for maximum absolute normal-
ized cross-correlations (MANCC) between modeled and normalized 
experimental muscle activities (LLT/RLT: left/right longissimus erec-
tor spinae, LIC/RIC: left/right iliocostalis erector spinae, LEO/REO: 
left/right external oblique, LRA/RRA: left/right rectus abdominis) 
during the five dynamic tasks (Ax Rot: axial rotation, Sag lift (2 h): 
2-handed sagittal lifting, Sag Lift (1 h): 1-handed sagittal lifting, Lat 
Lift: lateral lifting, and Open a Window: opening a window).
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the abdominals, the external obliques had a lower (i.e., bet-
ter matched) average median RMSE compared to rectus 
abdominis muscles (0.08 vs 0.11). Overall, abdominal mus-
cles had lower RMSEs than the back muscles during most 
tasks, but the iliocostalis had the lowest RMSEs during the 
open-window task. It is worth noting that the abdominal 
muscles had far lower overall activation levels than the more 
agonistic back extensors (Figs. 1, 2) and this low level of 
activation would favorably impact the interpretation of their 
RMSE values.

Discussion

In this study, we validated the performance of a thoracolum-
bar spine model for predicting the activations of trunk mus-
cles during five lifting tasks by quantifying their pattern 
of temporal similarity and magnitude difference between 
model-predicted muscle activations and experimentally 
measured EMGs. Our results indicated that the thoracolum-
bar model reasonably predicts the temporal trends of meas-
ured muscle activations for most of the observed trunk mus-
cles and tasks. Moreover, both the temporal and magnitude 
results compare well with prior model-predicted estimates 
of trunk muscle activity.

Our temporal associations, expressed as MANCC, are 
similar to or better than previous evaluations of lumbar spine 
musculoskeletal models [2, 13, 30]. Specifically, Favier et al. 

[30] reported cross-correlation values ranging from 0.93 to 
0.98 for back muscles during a 5 kg lift, which is equiva-
lent to the 2-handed and 1-handed sagittal lift tasks and 
values we examined. Our MANCC results of back muscles 
demonstrate that the temporal similarity between the thora-
columbar model and EMG recordings is generally strong and 
does not markedly vary by task. For the abdominal muscles, 
we had strong temporal similarity during the open-window 
task, but moderate temporal similarity for the other tasks. 
Prior studies have not explicitly reported cross-correlations 
for abdominal muscles, but our ensemble average plots of 
rectus abdominis for 2-handed and 1-handed sagittal lifting 
were qualitatively similar to those reported by Beaucage-
Gauvreau et al. [13]. Abdominal muscle activity was quite 
low relative to the back muscle activity, a finding that could 
contribute to our moderate correlation results. Further, the 
applied modeling approach tends to underpredict the acti-
vations of abdominal muscles during lifting tasks because 
abdominal muscles function primarily as antagonists in 
these activities and static optimization penalizes antagonist 
co-contraction [3, 13].

The magnitude of the error between measured and model-
predicted muscle activations varied by muscle group, but 
was comparable with previous model evaluations conducted 
in younger and/or middle-aged subjects [2, 13, 30, 43]. Due 
to low activation levels of abdominal muscles, their median 
RMSE values did not vary between the tasks (Fig. 2). These 
findings are comparable with those qualitatively reported 

Fig. 4   Boxplots of root-mean-square error (RMSE) between mod-
eled and normalized experimental muscle activities (LLT/RLT: left/
right longissimus erector spinae, LIC/RIC: left/right iliocostalis erec-
tor spinae, LEO/REO: left/right external oblique, LRA/RRA: left/
right rectus abdominis) during five dynamic tasks (axial rotation (Ax 
Rot), 2-handed sagittal lifting (SagLift (2  h), 1-handed sagittal lift-

ing (SagLift (1  h), lateral lifting (Lat lift), and opening a window 
(Open Window)). Boxplots indicate the RMSE values of all partici-
pants (black dots) as well as 25th percentile (lower limit of each box), 
median (open space within each box), and 75th percentile RMSE val-
ues (upper limit of each box).
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by Beaucage-Gauvreau et al. [13]. For back muscles, left 
longissimus erector spinae had a higher RMSE (ranging 
from 0.25 to 0.31) compared to other back muscles (rang-
ing from 0.04 to 0.22). Overall, the higher error for longis-
simus than for iliocostalis erector spinae muscles may par-
tially be explained by the method of normalizing the EMG 
activations. In previous studies, the maximum muscle activ-
ity has typically been defined as the maximum activation 
recorded during each task. However, the maximum in our 
study was defined as the maximum muscle activity observed 
across all tasks and MVICs. This method of EMG normali-
zation allows for a consistent and more physiologically rel-
evant maximum across different tasks. The source of the 
maximal EMG signal depended on the muscle and activity, 
and for example, generally occurred during MVICs for ili-
ocostalis, but during dynamic tasks for longissimus erector 
spinae. This variation, along with the fact that our model 
often underpredicted the EMG activations, suggests that 
muscles may not have been normalized to a true maximum 
in some cases, thereby increasing RMSEs. Our sample of 
older adults might have affected the accuracy of MVIC data 
as older adults generally have more recruitment variability 
compared to younger adults due to their reduced ability to 
generate smooth and accurate movement [23]. Older adults 
can also be more reluctant to exert a true maximal effort, 
perhaps due to their perceived risk of injury, and thus, vol-
untary exertions might not reflect their true capacity [38]. 
These factors may have impacted the accuracy and precision 
of experimental nEMG, and therefore, this model evalua-
tion, particularly for the muscle activation magnitudes that 
were underpredicted by model. In addition, maximal muscle 
stress was assumed to be equivalent among all participants 
and muscle groups. Studies that evaluate maximum muscle 
stress indicate large variations between individuals as well 
as differences between muscle groups [20, 32], which would 
directly alter model-estimated muscle activations. Additional 
individualization of the strength of each subject-specific 
model could further reduce the RMSE between measured 
and model-predicted activations [11, 20]. Combined, these 
factors make determining the definitive sources of error 
between model and EMG magnitudes difficult. Nonethe-
less, it is important to report the differences [33], in order 
to highlight the limitations and areas for improvement in 
current approaches.

A key goal of this study was to provide a validation of 
this musculoskeletal model for use in assessing dynamic 
tasks. Validation of musculoskeletal models using EMG 
is recommended to focus on temporal comparisons [33] 
specifically due to difficulties related to EMG normaliza-
tion. Here, we show evidence of model validity in dynamic 
tasks as the model showed good temporal associations 
with EMG data. A model outcome of particular inter-
est is spinal loading, as it is associated with conditions 

including low back pain [24], vertebral fractures [37, 51], 
and spinal stenosis [44]. We note that the model used here 
has been previously validated for estimating spine loading 
during static poses [15] using the same static optimization 
approach for model evaluation. The findings of temporal 
validity here, combined with previously established valid-
ity to estimate spine loads, provide support for the use of 
this model in evaluating spine loading outcomes during 
dynamic tasks. Direct assessment of dynamic spinal load-
ing validity remains desirable, although the difficulty of 
obtaining comparison measurements remains an obstacle.

Study Limitations

Several limitations need to be acknowledged for the cur-
rent work. First, our sample size (n = 11) was relatively 
small, but this is comparable to or larger than other stud-
ies in which EMG was used to validate a full-body spine 
model [2, 11, 13, 30, 46]. Second, we examined only lift-
ing tasks, and more research is needed to confirm whether 
the current findings extend to other tasks. Third, our par-
ticipants performed isometric MVICs in a seated position, 
while dynamic tasks were performed standing. Force pro-
duction capability and/or maximal EMG signal may have 
been different in the seated versus the standing position, 
which could alter the nEMG. As previously noted, we 
attempted to address these concerns by normalizing to the 
maximal signal observed in any of the MVICs or dynamic 
activities. Fourth, our study did not assess how different 
approaches to personalized model creation might affect 
the results, as we only examined our standard approach. 
Several studies of gait suggest that muscle activity timing 
is not very sensitive to the personalization approach in 
modeling [5, 25]. Fifth, our model does not incorporate 
the loading contribution of passive structures including 
muscles, ligaments, and intervertebral disks, though it 
is unclear whether adding these elements to the model 
would improve the model-predicted muscle activations 
with experimentally measured EMG values. Finally, the 
model currently uses a static optimization approach to 
solve for muscle redundancies. While this approach has 
been validated in this model for evaluating spine load-
ing in static poses [15], it has several limitations [22, 27] 
and can be influenced by how many actuators the muscles 
are partitioned into. This, along with the aforementioned 
normalization methods, makes direct comparisons of acti-
vation magnitude with EMG challenging [33]. Moreover, 
there are countless muscle recruitment patterns that could 
satisfy the kinetic demands, but musculoskeletal loads can 
be very different even between plausible solutions [42]. 
Future work should examine the sensitivity of spine model 
loading outcomes to alternative solution patterns.
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Study Strengths

Our study had several scientific strengths and innovations. 
First, we demonstrated the validity of our model to predict 
trunk muscle activity during five unique lifting tasks, in 
terms of temporal similarity pattern and the magnitude dif-
ference between model-predicted muscle activations and 
experimentally recorded EMGs. Most previous validations 
concentrated only on sagittal lifting tasks, but here we indi-
cated that the muscle activations from our model are also 
reflective of non-sagittal lifts. Second, prior studies only 
examined young to middle-age adults, while we examined 
older adults. Given the growing number of older adults in 
the workforce today and high rate of spinal disorders in this 
group, including this population in model validation efforts 
is important. Third, using medical imaging (i.e., CT scan) 
data to create subject-specific thoracolumbar spine models 
is innovative, and our group has previously reported that 
incorporating subject-specific spine curvature and muscle 
morphology can significantly influence the estimates of 
spinal loading [17]. Fourth, in many previous studies, the 
maximum muscle activity has been defined as the maximum 
during each task, which only allows for within-task normali-
zation. This approach limits the ability to examine overall 
model performance between tasks. Our method of EMG nor-
malization allows for a more consistent and relevant maxi-
mum across different tasks, which we feel is an important 
strength. Finally, there is no established or recommended 
approach for extracting muscle activation from the results 
of static optimization analysis for comparison to measured 
EMG, and indeed, most studies have not clearly described 
their methodology. In our current work, we used an average 
of musculotendon actuators in the target muscle groups that 
were near the nominal EMG electrode locations, which is to 
our knowledge a novel approach. Further research is neces-
sary to examine the sensitivity of model-predicted muscle 
activations to the methods used for extracting them from the 
results of static optimization analyses.

Conclusions

In this study, we performed a comprehensive EMG vali-
dation of muscle activity predicted by static optimization 
analyses of subject-specific thoracolumbar spine musculo-
skeletal models during measured dynamic activities in older 
adults. We determined the capability of using these subject-
specific thoracolumbar spine models to estimate the pat-
tern and magnitude of muscle activities relative to recorded 
nEMG. Overall, we found that the model-predicted muscle 
activity estimates the EMG-measured temporal activity 
patterns of back muscles well during dynamic tasks, how-
ever, with only moderate temporal similarity for abdominal 
muscles. Our magnitude results compare well to equivalent 

evaluations of other spine models, but differences between 
model and EMG outcomes can be high, and the specific 
sources of error can be difficult to determine.

The current results provide confidence in the validity of 
this model for evaluating subject-specific dynamic lifting 
tasks, based on the temporal validity of estimated muscle 
recruitment throughout the thoracolumbar spine with EMG 
measurements. We propose that this, given the prior valida-
tion of this model for predicting static spinal loading out-
comes [15], suggests that the model has similar validity for 
predicting dynamic spine loading as for static spine loading. 
Overall, this supports the use of this modeling process for 
predicting musculoskeletal loading outcomes during a vari-
ety of dynamic lifting activities to estimate risk of injury and 
identify biomechanical mechanisms contributing to spinal 
disorders.
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