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Abstract—We present a novel automated tissue layer iden-
tification method for histology images. The method requires
a single user input: the number of layers to be identified. The
method incorporates a coarse boundary identification step
followed by a refinement step. The coarse identification
segments the image into 125 9 125 pixel sub-tiles, computes
the histogram of each sub-tile, implements K-means cluster-
ing to label each sub-tile, and uses Dijkstra’s algorithm to
form the layer boundary. The refinement step identifies hair
follicles, improves the detail and accuracy of the boundary,
and segments the epidermis. The method only uses one color
channel (blue). We test our proposed method using eight
excised porcine tissue samples taken at different anatomical
locations. The layer segmentations demonstrated that the
dermis thickness increased, and the subcutaneous thickness
decreased moving from breast to belly. Minimal variation in
the thickness of the epidermis layer across anatomical
locations was observed. Overall, these results highlight the
importance of quantifying and assessing the tissue environ-
ment. Moreover, we demonstrate that our proposed method
was robust across different histology stains and did not
depend on color-specific information.

Keywords—Histology imaging, Machine learning, Tissue

quantification, Porcine tissue.

INTRODUCTION

Histopathological analysis of the skin can be used
to assess and diagnose various diseases.12 Further,
histology images of tissue samples can provide

information on the tissue environment.8 Histology
images of tissue samples contain information about
tissue layer boundaries (i.e., dermis, subcutaneous) as
well as various tissue features (i.e., capillaries, ve-
nules) and information about the matrix composition
(i.e., collagen, hyaluronic acid). Combining the
structural and mechanical properties of skin tissue
samples can provide useful information needed for
various applications, including transdermal drug
delivery techniques,8 cancer diagnosis, evaluating skin
lesions, and wound healing and scarring. However,
such quantification requires accurate annotation of
histology images. Manual annotations, measurements,
and segmentations are time-consuming and lead to
high inter- and intra-user variability.6 Automated
methods can enable objective and rapid evaluation of
tissue samples, yet few such methods have been
reported.5,6

Identification of tissue layer boundaries can pro-
vide details on the anatomical structure of skin
samples to develop structural and computational
models.8 Previous methods have focused on the seg-
mentation of tissue layers. Typically, layer segmen-
tation methods use either an edge detection method
or a histogram-based approach.6 Edge or contour
detection algorithms aim to identify discontinuities in
the image and often use Otsu thresholding.6,13,14 For
example, Osman used an active contours-based
method where images are converted from RGB to the
HSV color space, and Otsu thresholding is used to
create a binary image to identify the epidermis and
dermis layers as well as adipocytes.13 Similarly, Hus-
sein et al. and Haggerty et al. used a color pre-pro-
cessing step such as adaptive color deconvolution
coupled with Otsu thresholding to segment the skin
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layers.6,7 Meanwhile, histogram-based algorithms aim
to create sets of region-based information to inform
the segmentation. For example, Chen et al. proposed
using neighborhood pixel information coupled with a
support vector machine classifier for each pixel to
yield a generalized segmentation approach.3 Kleczek
et al. developed an automated method for epidermis
segmentation using shape information and distribu-
tion of transparent regions.10 Diamond et al. ex-
tracted texture properties from 100 9 100 pixel
neighborhood regions and classified regions using
training data obtained from manual segmentations.4

Because tissue boundaries can be subtle in the image,
without significant edges, local histograms often out-
perform edge-based feature detection.11,12

While these methods are useful for their specific
purposes, many challenges have hindered the devel-
opment of generalized automated tissue layer analy-
sis methods. Using human skin samples would
provide the most relevant information for these
models, but such samples are difficult to obtain.9

Porcine skin provides a high fidelity alternative, but
limited studies have reported pig skin automated
layer segmentation. Further, different stains of the
tissue samples can produce varying color distribu-
tions within the image, presenting a significant
challenge for methods that rely on color-space
information or thresholding. Automated algorithms
can also fail because tissue samples can tear apart in
processing, resulting in blank and overlapping
regions within the image.12 Furthermore, only small
numbers of samples are often available, essentially
limiting robust training datasets for machine learn-
ing-based methods.

In this work, we present an unsupervised tissue
layer segmentation algorithm for use with histology
images. Our method was designed for use with por-
cine tissue samples but does not use pig-specific
information so that it is adaptable to other species
samples. Further, it does not require any training
data and the only user input is the number of layers
to be identified. The algorithm combines neighbor-
hood-based histograms of pixel intensity, K-means
clustering, and Dijkstra’s algorithm to identify the
dermis, subcutaneous, and muscle layers in porcine
tissue samples. Subsequently, a model-fit step is used
to refine the identified boundaries and segment the
epidermis. We test this method using eight H&E
stained histology images of tissue samples taken from
different anatomical locations of the pig. Finally, we
demonstrate the utility of the method at assessing the
tissue environment by using the identified layer
boundaries to evaluate layer thicknesses as a function
of anatomical location.

MATERIAL AND METHODS

Proposed Algorithm

A primary challenge of tissue layer identification
methods in histology images is that each distinct layer
spans similar pixel intensity ranges. Thus, single pixel
intensity information alone cannot be used to deter-
mine the layer to which the pixel belongs. However, if a
local neighborhood of pixels (i.e., 100 9 100 pixel
window) is considered, the pixel intensity distribution
can differ depending on which layer the neighborhood
was extracted from. Thus, the neighborhood his-
tograms can readily be used to inform a clustering-
based classifier. The drawback of this approach is that
it is computationally expensive if the image is not
subsampled, but subsampling yields coarser bound-
aries. In addition, the neighborhoods with the highest
classification uncertainty will be those which span
across two different tissue layers, which are the most
critical for determining the layer boundaries.

For this reason, the proposed algorithm incorpo-
rates two primary steps: a coarse boundary identifica-
tion step using neighborhood histogram clustering,
followed by a detailed boundary refinement step. The
boundary refinement step also identifies the epidermis.
The algorithm requires the user to input the histology
image to analyze as well as the number of layer
boundaries to be identified. The refined boundary step
and identification of the epidermis adds computational
cost and complexity; thus, we also provide the option to
use the ‘cluster-change boundary lines’ in cases where
less detailed boundaries are acceptable. Figure 1 shows
a schematic of the coarse boundary identification step,
including the cluster-change boundary result. Figure 2
shows a schematic of the boundary refinement step and
Fig. 3 shows the final boundary with refinement. The
method was implemented in MATLAB.

Histology Image Pre-Processing

Figure 1a shows a sample histology image and
demonstrates the typically low contrast of histology
images. Thus, a contrast enhancement step is used to
pre-process the images and is performed according to:

ICE ¼ 255 � I� T1ð Þ
T2 � T1ð Þ ; ð1Þ

where ICE is the contrast enhanced image, I is the raw
image, and T1 and T2 are constant values. From Eq. 1,
any pixel values less than zero are set to zero, and any
pixel values greater than 255 are set to 255. T1 and T2

are set as the 1st and 99th percentile pixel intensity of
the raw image, respectively. The images are then
smoothed with a 9 9 9 pixel median filter. Each color
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channel is pre-processed individually and indepen-
dently of the other channels. To reduce the computa-
tional cost, the images are also sub-sampled by a factor
of 2. Figure 1b shows a sampled pre-processed image.

Coarse Boundary Identification

The coarse boundary identification is done using
histograms of the pixel intensity of windowed sub-tiles
of the image. K-means clustering is then used to opti-
mally classify each tile such that tiles with similar his-
tograms belong in the same cluster while tiles of
differing histograms belong in different clusters. To
compute the neighborhood histograms, the raw image
must first be segmented into N sub-tiles. Herein, we use
sub-tiles of size 125 9 125 pixels for pre-processed
images with an average size of approximately
5,000 9 2,500 pixels. Other window sizes were tested,
and it was found that windows of size less than
125 9 125 pixels could yield erroneous boundaries at
times. Boundary results were steady with increasing
window size, but larger windows lead to coarser
boundaries so a smaller window is desirable. No win-

dow overlap was used to reduce computational cost. A
ten-bin histogram of the pixel intensity of the blue-
color channel within each tile is then computed. The
blue channel was used because it contained slightly
higher contrast across the different stains used herein
(i.e., Alcian Blue stain and Masson’s trichrome), as
compared to other color channels. In general, for the
proposed method, only one color channel is needed
because the method does not depend on color infor-
mation. However, for the images tested herein, similar
boundaries were obtained whether using the blue-only
or the red or green color channels. For other applica-
tions, the use of other color channels, a magnitude
image, or all color channels should be explored. Fig-
ure 1c demonstrates sample image tiles and Fig. 1d
shows the corresponding 10-bin histograms from the
dermis, subcutaneous, and muscle layers. Figure 1d
highlights that the histograms are uniquely different
depending on the layer the tile was extracted from.

K-means clustering is used to classify the tile his-
tograms. The optimal number of clusters is not known
a priori; thus, K-means is run using 2, 3, 4, and 5

FIGURE 1. Schematic of the proposed tissue layer segmentation method. (a) Raw histology image. (b) Pre-processed image.
(c) Sample extracted sub-tiles from the dermis, subcutaneous, and muscle layers and (d) the ten-bin histograms of the sample sub-
tiles. (e) Initial K-means clustering labels and (f) connected components refined labels. (g) Layer boundary line identified using
Dijkstra’s algorithm. (h) Cluster-change boundary lines before (blue) and after (red) Dijkstra’s algorithm.
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clusters. The optimal number of clusters is autono-
mously determined for each image according to:

max
1

NC
� nSil4

nSSE0:3

� �
for 2 � NC � 5; ð2Þ

where NC is the number of clusters, nSil is the nor-
malized Silhouette value, and SSE is the normalized
sum-squared error (SSE) of the final cluster labels. nSil
and nSSE are normalized by each’s maximum value
across clusters. The Silhouette value is computed
according to:

Sil ¼ ðdistIC � distNCÞ
max distIC; distNCf g ; ð3Þ

where distIC is the average distance between the current
point being evaluated and all other points in the same
cluster and distNC is the average distance between the
current point and the nearest-neighboring cluster cen-
ter. Because the Silhouette value calculation is com-
putationally expensive, it is only computed for fifty
randomly sampled sub-tiles. Testing was done to
confirm that this limited Silhouette score sample size

did not affect the optimal number of cluster determi-
nation. SSE was computed by:

SSE ¼
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXi � Xcent

i Þ2 þ ðYi � Ycent
i Þ2

q
; ð4Þ

where (Xi, YiÞ is the center point of the ith sub-tile and

(Xcent
i , Ycent

i Þ is the location the ith sub-tile’s cluster

centroid. Figure 1e illustrates the initial cluster labels
for the sample image. For this image, three clusters
were determined to be optimal. It can be observed in
Fig. 1e that the initial labeling contains some outliers,
since it is known that each segmented label should be a
single connected region of sub-tiles. Thus, connected
components are used to adjust tile labels, as demon-
strated in Fig. 1f.

The number of boundary lines to be identified is
known from the user-input. The boundary lines of
each layer are known to exist near the change points
between different cluster labels. However, the sub-tile
evaluation yields a coarse ‘cluster-change’ boundary
line, as seen by the blue lines in both Figs. 1g and 1h.
Thus, Dijkstra’s algorithm is used to produce a finer
boundary (red lines in Figs. 1g and 1h). Dijkstra’s

FIGURE 2. Schematic of the refinement step of the proposed algorithm. (a) Evaluation of perpendicular lines at each boundary
point to limit the image to a more specific region of interest and (b) K-means clustering of the pixel intensity within the region of
interest. (c) Boundary identified between the two main clusters identified. Epidermis identification step including (d) the pixel
intensity extracted along the perpendicular line and (e) the model fit to identify the end of the epidermis. (f) Final epidermis
boundary line. Hair follicle identification step including (g) a coarse and fine boundary around the clusters from (b), and (h) the
identified hair follicle.
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algorithm is a graph-theory based method that deter-
mines the lowest cost path between a start and end
node. In this application, the tissue layers are expected
to be primarily horizontal in the image such that no
image transform is needed to use Dijkstra’s algorithm
here. Only points within one sub-tile length (i.e., 125
pixels) away from the cluster change line are included
as nodes for Dijkstra’s algorithm.

The cost assigned to each node is the image gradient
magnitude at that point. The image gradient was cal-
culated using the built-in MATLAB function (imgra-
dient). The node costs are normalized by the average
cost across all nodes, and then squared. To reduce the
computational cost, only the lowest cost nodewithin a 4-
pixel neighborhood is kept and used for Dijkstra’s
algorithm. Further, the node costs are sorted in
ascending order, the elbow of the sorted cost curve is
identifiedusing a two-line fitmethod,2 and all nodeswith
a cost beyond the elbow are discarded. Because the
nodes for Dijkstra’s algorithm are not on a structured
grid, a distance limit is needed to define the neighbors of
each node. But the optimal distance limit value is not
known a priori. A low distance limit can causeDijkstra’s
algorithm to fail if large jumps in the boundary exist,
while a high distance limit can lead to the algorithm
jumping over and clipping parts of the boundary. Thus,
a distance limit of 50 pixels is initially used, and this limit

is increased in increments of 5 pixels until Dijkstra’s
algorithm successfully finds a path. Figure 1g illustrates
the cost matrix of nodes and the final Dijkstra’s algo-
rithm path identified for the upper edge of the tissue.
Figure 1h demonstrates the boundaries produced by
Dijsktra’s algorithm for the dermis, subcutaneous, and
muscle layers of the sample image. The boundaries
shown in Fig. 1h are the cluster-change tissue bound-
aries. In-house written functions (as opposed to built-in
MATLAB ones) were used for both K-means clustering
and Dijkstra’s algorithm.

Boundary Refinement and Epidermis Identification

While the use of Dijkstra’s algorithm mitigates the
coarseness of the boundary, some undesired boundary
jumps can persist. For example, in Fig. 1h the boundary
identified between the dermis, and upper tissue edge
jumps and skips part of the tissue near the left-hand side,
as denoted by the black arrow. In addition, the bound-
ary between the dermis and subcutaneous layers con-
tains errors due to the presence of a hair follicle, as
denoted by the orange arrow. Thus, a boundary refine-
ment step (Fig. 2) is incorporated to further improve the
boundary accuracy and identify the epidermis layer.

For each point along the boundary, a perpendicular
line of a total length of 80 pixels (approximately 2/3 the
sub-tile size) is drawn and defined between �Lp toþLp,

as shown in Fig. 2a. For the refinement step, the region
of interest (ROI) is limited to only pixels that fall on at
least one perpendicular boundary line. The pixels within
the ROI are then clustered using K-means with three
clusters, which represent: (1) the area outside the ROI,
(2) the upper region (ROIupper), and (3) the lower region
(ROIlower). Figure 2b shows the labeled ROI. For the
upper boundary line that separates the dermis and re-
gion above the tissue (Bout;derm), the algorithm follows

the steps shown in Figs. 2c–2f. For the boundary sepa-
rating the dermis and subcutaneous layers (Bderm;subq),

the algorithm proceeds to the steps shown in Figs. 2g
and2h. For the boundary line between the subcutaneous
and muscle layers (Bsubq;muscle), no refinement is done.

For Bout;derm, a line separating the upper and lower
region clusters is drawn, as shown by the red line in
Fig. 2c. For each point along the red line, perpendic-
ular boundary lines are again evaluated from �Lp to

þLp, and the pixel intensity extracted, as shown in

Fig. 2d. As illustrated in Fig. 2e, the best fit of the
pixel intensity from the perpendicular line half located
inside the dermis (from �Lp to 0) is then computed.

Two distinct parts define the fit: (1) a parabolic best fit
from 0 to some change point between 0 and �Lp, and

(2) a constant linear fit from the change point to �Lp.

Every possible change point is evaluated, and the
optimal change point is selected to minimize the error

FIGURE 3. The final refined layer boundaries for the dermis,
subcutaneous, and muscle layers (blue) and epidermis (red).
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between the image pixel intensity, Pim, and the fit pixel
intensity, Pfit. The error is computed as:

fit error ¼ 2 � PkErrþ 10 � LocErr

þ 1

N

XN
i¼1

Pim;i � Pfit;i

� �2
; ð5Þ

where N is the number of points on the line, PkErr is
the difference in pixel intensity at the minimum para-
bolic peak point between Pim and Pfit, and LocErr is
the difference in the location along the line of the
parabolic peak point between Pim and Pfit. The optimal
change point denotes the ‘fit epidermis’ edge point in
Fig. 2f. If the fit error was sufficiently high (> 500),
the fitting process failed, and no ‘fit epidermis’ edge
point is placed for the corresponding boundary point.
The failure error threshold is set high as further steps
will remove possible epidermis outlier points. From the
initial set of ‘fit epidermis’ edge points, an average
epidermis thickness, tepi-fit,avg, can be computed. ‘Ex-
pected epidermis’ edge points can subsequently be de-
fined for boundary points where the fit failed as the
point along the perpendicular line that is a distance tepi-
fit,avg away from the boundary. Finally, Dijkstra’s
algorithm is used to determine the final epidermis line
and remove any outlier epidermis boundary points.
The ‘fit’ and ‘expected’ epidermis points are used as
nodes for Dijkstra’s algorithm, and a 50-pixel distance
tolerance between neighboring nodes is allowed. Fig-
ure 2f demonstrates the epidermis boundary identified
for the sample image region.

For Bderm;subq, a ‘fine’ and ‘coarse’ boundary is
drawn around ROIlower, as illustrated in Fig. 2g. A
circle is fitted to each individual area between the ‘fine’
and ‘coarse’ boundaries, denoted in yellow in Fig. 2g.
The error between the fitted circle mask and the area
mask is computed and normalized by the size of the
area mask. Any area with a normalized error of less
than 0.5 is denoted as a hair follicle, and the area
within the hair follicle is added to ROIlower (i.e., added
to the subcutaneous layer). Figure 2h shows the iden-
tified hair follicle region, marked in blue. A new
Bderm;subq boundary is then computed as the minimum

area boundary encompassing the entire hair follicle
adjusted ROIlower. To remove any residual outliers
from the boundary, Dijkstra’s algorithm is then used
to determine the final Bderm;subq boundary. Figure 3

shows the final, refined boundaries segmenting the
epidermis, dermis, subcutaneous, and muscle layers for
the given tissue sample.

Porcine Tissue Samples

Eight porcine tissue samples, shown in Fig. 4, were
used to test the proposed algorithm. The samples were

collected from a single castrated male Yucatan minipig
that weighed 33 kg. The tissue was collected from the
belly immediately (within 30 min) after euthanasia,
following a Purdue University approved IACUC pro-
tocol. First, the extraction area was shaved, and a
sterile scrub was performed using alternating washes of
chlorhexidine and saline. Next, the tissue was extracted
using a scalpel, and then the extracted tissue was
chilled to 4 �C to allow the fat to solidify for section-
ing. As shown in the diagram in Fig. 4, samples were
collected starting at the nipple (most anterior, medial
position) and spaced every 10 cm moving posteriorly
and every 9 cm moving laterally (towards the belly).
Four samples, denoted as circles with a red outline,
were damaged during the extraction process and could
not be used for processing. The samples were then
fixed using 4% paraformaldehyde (PFA) for 24 h.
After fixation, the samples were rinsed with PBS three
times for 5 min. The tissues were then paraffin
embedded, sectioned, and stained for Masson’s tri-
chrome (MTC) and Alcian blue (AB). All histology
images were taken within 1-week after fixation. Serial
sections were used to determine the distribution of
hyaluronic acid in the tissues. One section was stained
with AB and the second section with hyaluronidase for
30 min before AB staining. For the remainder of the
manuscript, we refer to the AB-only stained sample as
‘AB-only’, the section treated with hyaluronidase as
‘Hase + AB’, and the section treated with MTC
staining simply as ‘MTC’.

RESULTS

Figure 5 shows the tissue boundary layers identified
by the proposed algorithm across all eight tissue
samples. In general, the initial results demonstrate the
method’s accuracy across all skin samples and all
anatomical locations. Figures 5a, 5d, and 5h demon-
strate that the algorithm was robust to hair follicles
(denoted by black arrows) in the image. It is also
observed that the algorithm primarily struggles in
regions where high-density collagen exists near the
boundaries, particularly if the collagen is oriented
parallel to the layer segmentation. For example, in
Fig. 5e, the boundary identified between the dermis
and subcutaneous layers on the right side of the tissue
sample contains large high-density collagen. The
algorithm includes these regions in the dermis, though
it is more likely that they should be segmented into the
subcutaneous layer.

Additionally, in Figs. 5f and 5g, an extended hori-
zontal collagen region closely located to the muscle
and subcutaneous layer boundary causes the algorithm
to jump and denote the collagen as the boundary ra-
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ther than the muscle. In Fig. 5b, a horizontal collagen
region is observed near the dermis-subcutaneous
boundary but slightly farther away. In this case, the
algorithm correctly marks the boundary at the dermis
edge without including the thick collagen fiber. Fig-
ure 5c demonstrates that the algorithm is robust to
high-density isolated collagen regions connected to the
dermis. Specifically, near the right-hand side of the
tissue, the boundary skips past the connected high-
density collagen region, marking this in the subcuta-
neous layer. In general, the boundary between the
dermis and outside the tissue sample is the most
accurate and robust. For this boundary, no visible
collagen is present nearby. The boundary is typically
smooth but contains increased fluctuations in samples,
such as in Fig. 5d, where high pixel intensity fluctua-
tions exist throughout the dermis.

Figure 6 illustrates the cluster change point
boundary lines for three tissue samples (denoted as -i, -
ii, and -iii) for images of the tissue samples with (a)
AB-only, (b) Hase + AB, and (c) MTC staining
treatments. The boundary lines are drawn using the
cluster change method along each column. Boundary

lines are consistent across the H&E, AB, and MTC
stains for all samples, demonstrating that the K-means
clustering and cluster change boundary line methods
are agnostic to the histology stain and thus the image
color information. Further, the method is robust to
tears and image dropout, as observed in Figs. 6a-ii and
6c-ii. The boundary identification struggles to segment
the muscle layer in Fig. 6c-ii, where only a thin region
is present on the left-hand side. Further, Figs. 6b-i and
6b-iii demonstrate that the cluster change boundary
method is susceptible to errors caused by hair follicles
or other image artifacts.

A primary utility of this automated tissue layer
identification method is that it enables the extraction of
layer-specific information. For example, when study-
ing the efficacy of subcutaneous drug delivery tech-
niques, variables describing the tissue environment,
such as tissue layer thickness, are of great interest.
Thus, we now demonstrate that such variables can be
objectively evaluated using our novel method. Figure 7
illustrates the thicknesses of the dermis and subcuta-
neous layers across all tissue samples, which span dif-
ferent anatomical locations of the pig. Figure 7 also

FIGURE 4. Histology images of eight excised porcine tissue samples used for algorithm testing. The schematic of the pig shows
approximately where the samples were extracted from. Circles with red outlines denote samples that were damaged during
extraction and could not be used for processing. The location labels are A: anterior, P: Posterior, M: Medial (breast), L: Lateral
(belly).
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compares the thickness distribution of the tissue layers
for both the detailed Dijkstra and basic cluster change
boundary identification methods. The thickness of the
dermis layer is observed to generally increase from
about 1.5 to 2.5 mm, moving anatomically from breast
to belly. The dermis layer thickness showed minimal

dependence on the anterior/posterior location of the
tissue sample. Meanwhile, the subcutaneous layer
decreased in thickness from about 5 mm down to
about 3.5 mm from breast to belly. Towards the belly,
the subcutaneous layer tended to be thicker in the most
anterior locations (toward the neck of the pig), then

FIGURE 5. Refined boundaries identified for the dermis, subcutaneous, and muscle layers (blue) and epidermis (red) for each of
the eight tissues samples denoted by (a)–(h). Black arrows denote locations of hair follicles in the tissue sample. The schematic of
the pig shows approximately where the samples were extracted from. Circles with red outlines denote samples that were damaged
during extraction and could not be used for processing. The location labels are A: anterior, P: Posterior, M: Medial (breast), L:
Lateral (belly).
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got thinner for more posterior locations, a finding in
agreement with a prior study.1 However, towards the
breast, the subcutaneous region became thicker mov-
ing from anterior to posterior. Considering Figs. 5 and
7 together, broader PDF distributions are observed
when the layer boundaries contain more deviations
from horizontal, as expected. In general, these trends
highlight that tissue layer thickness is influenced by
anatomical location. Similar distributions of thickness
are observed between the two boundary identification
methods. The difference in mean thickness across the
two boundary identification methods was on average

6.9% for the dermis and 2.2% for the subcutaneous
layers.

Figure 8 illustrates the median layer thicknesses of
the epidermis, dermis, and subcutaneous layers for all
eight tissue samples. Figure 8d highlights the percent
distribution of each layer to the total tissue sample
thickness. The muscle layer was not included in any
thickness calculations since the entire layer is not rep-
resented in the images. The average epidermis thick-
ness across all eight samples was 0.035 mm. Minimal
trends were observed between the epidermis thickness
and the anatomical location. The average dermis

FIGURE 6. Cluster-change boundaries (red line) identified for three tissue samples (i, ii, and iii) imaged with (a) ‘AB-Only’, (b)
‘Hase + AB’, and (c) ‘MTC’ stains. Black triangles indicated cluster change points. Open triangles are identified as outliers and not
used in the boundary.
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thickness across the eight samples used here was
1.73 mm. Figure 8b confirms previous observations,
demonstrating that the dermis layer increased thick-
ness from on average 1.37 to 2.25 mm, a 64% increase,
for samples moving from breast to belly. Near the
breast, the median dermis thickness maintained no

dependence on the anterior/posterior location. The
average subcutaneous thickness across all samples was
3.96 mm. Figure 8c demonstrates that near the breast,
the subcutaneous layer increased 47% from 3.72 to
5.47 mm from anterior to posterior. Anteriorly, the
subcutaneous layer increased in thickness from breast

FIGURE 7. Layer thickness distribution computed for the dermis (D) and subcutaneous (SQ) layers for each of the eight tissue
samples denoted by (a)–(h). ‘Dij’ indicates boundaries using the refinement step. ‘CC’ indicates boundaries using the cluster-
change method. The schematic of the pig shows approximately where the samples were extracted from. Circles with red outlines
denote samples that were damaged during extraction and could not be used for processing. The location labels are A: anterior, P:
Posterior, M: Medial (breast), L: Lateral (belly).
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to belly, while posteriorly, it decreased in thickness
moving from breast to belly. Figure 8d provides the
relative thickness of the epidermis, dermis, and sub-
cutaneous layers for each of the eight tissue samples.
Figure 8d highlights the relative thickness of the der-
mis layer increased from on average 24 to 37% from
breast to belly. The relative thickness of the subcuta-
neous layer decreased from 76 to 62% from breast to
belly. Again, minimal trends in relative thicknesses
were observed between anterior and posterior loca-
tions. Overall, the layer thickness analysis demon-
strates that the dermis and subcutaneous layer
thicknesses depend primarily on the breast to belly
anatomical location and can vary significantly between
locations.

DISCUSSION

In this study, we present a novel automated algo-
rithm to segment tissue boundary layers in histological
images of porcine skin samples. Subsequently, we
demonstrated the utility of our method for extracting
layer-specific tissue information by assessing the
thickness of the different layers as a function of
anatomical location. Our method requires one user
input, namely the number of layers to be segmented.
The proposed method combines a coarse identification
step that implements neighborhood histograms of
image sub-tiles, K-means clustering, and Dijkstra’s
algorithm, followed by a boundary refinement step.
The algorithm can segment the epidermis, dermis,
subcutaneous, and muscle layers. In cases where only
general (less detailed) layer boundaries are needed, we
show a cluster change line boundary identification
(omitting the refinement step) can be used to reduce
computational cost.

Extracting quantitative information on the tissue
environment is important across a range of applica-
tions. For example, such details can be used to inform
computational models evaluating transdermal drug
delivery. Herein, we demonstrated that the thickness of
the dermis and subcutaneous tissue layers maintained a
dependence on the anatomical location. We note that
only one pig was used, so concrete conclusions on
trends of tissue layer thicknesses as a function of
anatomical location cannot be drawn from these re-
sults alone. Nonetheless, this highlights the importance
of assessing variables such as the tissue layer thick-
nesses and punctuates the need for automated layer
identification methods. The layer segmentations pro-
vided herein are a first step in enabling higher fidelity
models and informing injectable biologics and other
histopathological diagnostic techniques. For further
advancements to this end, additional studies should
aim to develop automated methods for quantifying
and annotating tissue features such as collagen and
vessels.

In its present form, the method uses only the blue
color channel and thus does not rely on specific color
information. This is a major contribution of our
algorithm as compared to those previously reported in
the literature.6,7,13 By not relying on color information,
our method is robust across varying histology stains as
demonstrated in Fig. 6. Ultimately, this further ex-
pands the tissue environment information that can be
extracted using our algorithm. For example, by com-
paring the change in blue color (i.e., change in AB
stain) between the AB-Only and Hase + AB images,
we can evaluate the distribution of hyaluronic acid
within the tissue layers. Such analysis is the subject of
future work.

Collagen fibers in the subcutaneous layer were a
primary source of error in the algorithm. The collagen
generally did not affect the K-means clustering step as

FIGURE 8. Heatmap of the median thickness of the (a) epidermis (ED), (b) dermis (D), and (c) subcutaneous (SQ) layers. (d)
Relative thicknesses of each layer within each tissue sample. The schematic of the pig shows approximately where the samples
were extracted from. Circles with red outlines denote samples that were damaged during extraction and could not be used for
processing. The location labels are A: anterior, P: Posterior, M: Medial (breast), L: Lateral (belly).
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the neighborhood size was larger than the collagen fi-
bers. However, collagen regions nearby or connected
to the dermis or muscle layers could cause the
boundary line to be incorrectly drawn around the
collagen. Even with the use of robust path finding
methods such as Dijkstra’s algorithm and the refine-
ment step, the collagen fibers still caused errors in the
boundary lines drawn in certain samples, such as
Fig. 5e. Conversely, Dijkstra’s algorithm was critical in
avoiding errors due to isolated collagen regions (i.e.,
spanning a small horizontal width), such as those
present between the dermis and subcutaneous layers in
Figs. 5c and 5g. In these cases, the K-means clustering
typically labels the collagen region to belong to the
same cluster as the dermis layer. Further, because these
sub-tiles are connected to the dermis, the connected
components-based label refinement cannot correct this.
Instead, Dijkstra’s algorithm will skip over these
regions since adding more points to the path induces a
higher cost path.

While the boundary refinement step and the iden-
tification of the epidermis layer add robustness to the
algorithm, they also increase the computational com-
plexity and cost. The refinement step of the algorithm
takes in the range of 9–11 min to process one image
(run non-compiled using a MacBook Pro with the
Apple M1 chip, 8 cores, 16 GB RAM, on a histology
image of size 5,220 9 2,550 pixels). This includes
about 60–90 s per boundary of added time caused by
the refinement and about 7–8 min of added time as a
result of the epidermis identification. For this reason, if
average layer thicknesses are primarily of interest ra-
ther than highly detailed boundary lines and the epi-
dermis is not of interest, we tested the case where the
boundary line is drawn simply using the cluster change
point lines. In doing so, this reduces the computational
cost by two orders of magnitude, to 10–15 s. Com-
paring Figs. 5 and 6, it is observed that the cluster
change boundary line method does not have the same
level of detail in the layer segmentation. However,
Fig. 7 highlights that the cluster change boundary line
method is robust in yielding similar thickness distri-
butions. Thus, using the cluster change boundary lines
yields a robust method for varying histological stains.
Nonetheless, a detailed boundary line identification
method that is computationally inexpensive while still
being accurate across various tissue stains should be
explored in future work.

Several notable limitations of both the proposed
method and this study exist. The proposed method
identifies tissue layer boundaries in porcine skin sam-
ples with no dependence on color-specific information.
While it is an automated method, it still requires the
user to input the number of layers to be identified. The
algorithm also maintains parameters, such as the

window pixel size, that could, in principle, be user-
adjusted. This could lead to a cumbersome user expe-
rience for certain applications not explicitly tested
herein. Additional studies should aim to make such
values more universally and robustly selected. Further,
the tissue layers must span the entire horizontal length
of the image, or the boundary identification may fail.
The method, in principle, can segment any number of
boundaries, but it has only been rigorously tested for
samples that include the dermis, subcutaneous, and
muscle layers. While the algorithm is designed to be
robust, it does not contain any specific way to handle
regions where the tissue tore, and such regions could
cause the algorithm to fail or give erroneous bound-
aries. For this study, no artificial or ‘‘ground-truth’’
boundaries were available. Thus, the evaluation of the
accuracy of the proposed method could not be rigor-
ously quantified. In future work, the use of other
species (i.e., human skin samples) where experts can
manually segment the layers and provide a ‘‘ground
truth’’ should be explored. This study was also limited
to only a single pig, largely due the limited and
unpredictable availability of the animals. As a result,
only eight tissue samples were available for testing the
algorithm, limiting the validation and statistical anal-
ysis that could be performed. Although these samples
were sufficient to demonstrate the algorithm, as was
the objective of this paper, future studies testing and
advancing the utility of the method across a larger
cohort of pigs should be considered.
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