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Abstract—A recent innovation in scoliosis monitoring is the
use of ultrasonography, which provides true 3D information
in one scan and does not emit ionizing radiation. Measuring
the severity of scoliosis on ultrasonographs requires identi-
fying lamina pairs on the most tilted vertebrae, which is
difficult and time-consuming. To expedite and automate
measurement steps, this paper detailed an automatic convo-
lutional neural network-based algorithm for identifying the
laminae on 3D ultrasonographs. The predicted laminae were
manually paired to measure the lateral spinal curvature on
the coronal view, called the Cobb angle. In total, 130 spinal
ultrasonographs of adolescents with idiopathic scoliosis
recruited from a scoliosis clinic were selected, with 70 for
training and 60 for testing. Data augmentation increased the
effective training set size to 140 ultrasonographs. Semi-
automatic Cobb measurements were compared to manual
measurements on the same ultrasonographs. The semi-
automatic measurements demonstrated good inter-method
reliability (ICC;; = 0.87) and performed better on thoracic
(ICC;5,; = 0.91) than lumbar curves (ICC;; = 0.81). The
mean absolute difference and standard deviation between
semi-automatic and manual was 3.6° & 3.0°. In conclusion,
the semi-automatic method to measure the Cobb angle on
ultrasonographs is feasible and accurate. This is the first
algorithm that automates steps of Cobb angle measurement
on ultrasonographs.

Keywords—Machine learning, CNN, Scoliosis, Ultrasonog-
raphy, Reliability.
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ABBREVIATIONS
AIS Adolescent idiopathic scoliosis
AOR Aid of previous radiograph
CI Confidence interval
COL Center of lamina
CNN Convolutional neural network
FOV Field of view
ICC Intra-class correlation coefficient
MAD Mean absolute difference
MT Main thoracic
MU-Cobb  Manual ultrasound Cobb angle
measurements
MX-Cobb  Manual radiographic Cobb angle
measurements
ROI Region of interest
SD Standard deviation
SEM Standard error of measurement
SU-Cobb Semi-automatic ultrasound Cobb angle
measurements
TL/L Thoracolumbar/lumbar
INTRODUCTION

Adolescent idiopathic scoliosis (AIS) is a spinal
disorder that develops mostly in adolescent females,
aged 10 to 16 years old, where the spine has undergone
3D structural changes. These changes typically take the
form of a lateral S-shaped curvature and axial verte-
bral rotation. AIS affects 1-3% of the adolescent
population and can lead to cardiopulmonary problems
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and back pain if left untreated.'® Monitoring the spinal
condition requires regularly taking posteroanterior
radiographs, which exposes adolescents to ionizing
radiation, and measuring the severity of the lateral
curvature using the Cobb angle.* Although the low
ionizing radiation dosage X-ray system (EOS Imaging,
France) has become more popular, the accumulated
radiation on children may still increase the risk of
cancer. Children with AIS are five times more likely to
develop cancer later in life,'* and girls with AIS were
found to have a 70% excess risk of dying from breast
cancer later in life when compared with the general
population.® Ultrasound, a radiation-free imaging
modality, for scoliosis monitoring has recently been
investigated and found to be comparable to radio-
graphic measurements in terms of accuracy and relia-
bility.?! Ultrasound also inherently provides 3D
information. This allows clinicians to directly measure
parameters, such as vertebral rotation,”> that would
normally require estimation methods using a single
posteroanterior radiograph.'® Clinicians can also ob-
tain a better understanding of the severity of the
structural changes by measuring true 3D parameters,
such as the Cobb angle on the plane of maximum
curvature.'® Figures la and 1b shows the Cobb angles
of a child with a major right thoracic and minor left

(a)

lumbar curve measured on a posteroanterior radio-
graph and ultrasonograph, respectively.

The complication with using ultrasonography for
AIS is that the scans are less intuitive, and it is therefore
more time-consuming to analyze and make measure-
ments. Measuring the Cobb angle on ultrasonographs
requires identifying the laminae, which are flat surfaces
on the left and right of a vertebra and appear as very
bright isolated regions on the scan. Another feature that
is useful for Cobb angle measurement is the spinous
process column, which is the curve that is formed by the
spinous processes of all the vertebrae. The spinous
process is a protrusion out of the back of each vertebra
that appears as a dark thin region in the middle of the
spine on the ultrasound scan. Figure lc shows an
ultrasonograph with the spinous process column in the
middle and a pair of laminae on either side of this col-
umn. The Cobb angle can be measured using the center
of lamina (COL) method. This consists of drawing a line
joining each pair of laminae on the same vertebra, taking
the pairs with the steepest opposing tilt angles, and cal-
culating the difference between the angles.’ Identifying
which laminae are on the same vertebra involves
choosing pairs which form a line that is roughly per-
pendicular to the spinous process column in the middle
of the image. Identifying the lamina locations on ultra-
sonographs is more challenging, as it requires more

Pinous
cess
ol

é

S
..
' i

B
Lafninac ® %

%

= Lk D
. ‘.“l

.

¥
f'?'
),

FIGURE 1. (a) The measured Cobb angles labelled on a posteroanterior radiograph; (b) the measured Cobb angles labelled on a
coronal projection image of an ultrasonograph of the same subject using the center of lamina method; (c) the coronal projection
image of the same ultrasonograph with the spinous process column and a pair of laminae labelled; (d) the sagittal view (top) and
axial view of one frame (bottom) with the same pair of laminae labelled.
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knowledge of vertebral anatomy and uses three different
views (coronal, axial, and sagittal). Figure 1d shows the
sagittal view of the same subject (top) and the axial view
of one B-mode image frame (bottom).

The difficulty in measuring the Cobb angle on ultra-
sonographs leads to a barrier of entry for clinics to adopt
ultrasound monitoring for children with AIS. Conse-
quently, a few research groups have used the spinous
process features to automatically measure the spinous
process angle (SPA), which has demonstrated a strong
correlation with the Cobb angle. However, converting
the SPA to Cobb angle requires a large dataset to gen-
erate an equation. Wong et al. used phase congruency
and a thresholding algorithm on coronal ultrasound
images to obtain the SPA.?° Their automatic SPA
measurements were correlated (r = 0.82) with the
radiographic Cobb angle, but only 60% of their cor-
rected Cobb angles were within the 5° clinically accepted
error. Brink et al. used a similar image processing tech-
nique to extract the SPA from 33 children with AIS and
achieved a mean absolute difference (MAD) and stan-
dard deviation (SD) of 4.9°+3.2° between automatic
ultrasound SPA and manual radiographic Cobb angle
measurements.' Ge et al. used a gradient vector flow
snake model to automatically extract the SPA. The
MAD=SD between the automatic ultrasound SPA
versus the manual ultrasound and the manual radio-
graphic SPA were 3.3° &+ 2.4° and 2.7° £ 2.1°, respec-
tively.” Zhou et al. expanded on their phase congruency
and thresholding algorithm by leveraging symmetry
information in the axial views, which increased the
correlation with the manual radiographic Cobb angle to
0.87.% On the other hand, using the COL method on
ultrasonographs without and with the aid of previous
radiograph (AOR) produces direct comparison with the
radiographic Cobb angle. The MAD between the
ultrasound Cobb angle and the radiographic Cobb angle
was 4.6° + 3.8° (without AOR) and 2.7° £ 1.9° (with
AOR), with an R? of 0.58 (without) and 0.87 (with).>
Since measurement on a posteroanterior radiograph is
the gold standard for the Cobb angle,* automation using
the COL method is sought to produce that direct com-
parison, while also minimizing measurement error,
freeing up clinician workload, and improving measure-
ment accuracy and reliability.

A convolutional neural network (CNN) is a type of
machine learning model that is frequently used for
image classification and segmentation.''" CNNs have
been used in the medical field for segmentation and
have succeeded in both automating and expediting
segmentation while maintaining comparable accuracy
to clinicians.® Therefore, the objectives of this study
were to develop a semi-automatic method to extract
the Cobb angle from ultrasonographs using a CNN

and to determine the reliability and convergent validity
of this machine learning method.

MATERIALS AND METHODS

Data Acquisition and Processing

Spinal ultrasound volume data of children with AIS
were acquired at the local scoliosis clinic. Ethics ap-
proval was granted by the local research health ethics
board and all participants signed written consent forms
prior to participating in the study. The inclusion cri-
teria were participants with AIS who had a major
Cobb angle less than 46°, no prior surgical treatment,
and an out of brace radiograph at that clinic. The
ultrasound scans were acquired using a Sonix TA-
BLET ultrasound system coupled with a C5-2/60 GPS
curvilinear convex transducer (BK Medical, USA).
The scanning parameters were 2.5 MHz scan fre-
quency with a 6cm penetration imaging depth and
10% gain with linear time gain compensation. This
system kept track of the position and orientation of the
transducer throughout the scan. Participants were in-
structed to stand in a standard posture similar to the
X-ray acquisition while the transducer was moved,
following the lateral spinal curvature. Each scan was
obtained by an experienced operator, starting at the C7
vertebra and ending at the L5 vertebra. Approximately
700 to 1000 axial B-mode images along with the
position and orientation data of the transducer were
obtained per spine. Using this series of images, 3D
spinal ultrasonographs were reconstructed using an in-
house developed software, called Medical Imaging
Analysis System. A total of 130 3D spinal ultrasono-
graphs were selected from the local database for this
study.

The original ultrasound data were first processed, as
they included other features, such as the skin, muscles,
and fat, that produce extraneous reflections. This
involved taking each axial B-mode image and then
identifying the transducer’s field of view (FOV) to crop
the region of interest. Identifying the FOV was
accomplished by locating the nonnegative pixel values,
as any pixels outside the transducer’s FOV were as-
signed negative values. A line Hough transform was
then employed to obtain both the position and tilted
angle of the FOV, and the superficial layer of voxels
was cropped a fixed distance below the top of the FOV
at the same tilted angle. This fixed distance was 40% of
the height of the FOV, the percentage being deter-
mined by what produced the clearest results for all
ultrasound volumes. Figure 2a illustrates the step of
eliminating this superficial area from the volume for
one axial image. This cropping is performed for all
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FIGURE 2. The process for preparing images for input to the CNN: (a) cropping off the ultrasound reflections from the skin,
muscles, and fat on an axial image; (b) steps for narrowing volume to the region of interest, shown on coronal projection images;
(c) coronal projection images of the ultrasound volume through the different stages of processing.

axial images in the 3D ultrasonograph, resulting in a
more pronounced spinous process column in the
coronal projection image. Next, the volumes were
narrowed to the region of interest (ROI) to reduce the
area that the network must search for laminae. This
step requires identifying the dark curve created by the
spinous process column using thresholding. First, the
coronal projection image was divided into horizontal
partitions of 50 rows, and each partition was iteratively
inverse binary thresholded, with each iteration
increasing the brightness threshold, until a certain
number of thresholded pixels was reached for each
partition (middle image of Fig. 2b). Once each parti-
tion underwent this thresholding, the geometric cen-
troids of each row of thresholded pixels was
determined to form the basis of the spinous process
column. Any rows with a lack of thresholded pixels
were filled in with linear interpolation. A moving
average with a window of 41 rows was used to smooth
out the calculated centroids into a curve. Finally, the
volume was cropped to maintain 40% of the coronal
projection image’s width, centered around the identi-
fied spinous process column, to obtain the ROI (right
image of Fig. 2b). A flowchart of these steps is depicted
in Fig. 2b. All processing steps were performed auto-
matically. Figure 2c illustrates the effects of each pre-
processing step from the original ultrasound image
(left) to the final pre-CNN processed image (right).
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Training Dataset Creation

Using a custom-built ultrasound volume labelling
graphical user interface, the primary author manually
labelled the laminae on 70 spinal ultrasonographs
based on 3D information. The selected ultrasono-
graphs have a radiographic Cobb angle of 23.6° &+ 9.1°
(range 9°—44°) for the main scoliosis curve. The age of
these participants was 14.5 4+ 1.9 years old (range 10—
18 years) and there were 7 males and 63 females. The
procedure for labelling involved using the coronal view
to obtain the general lamina locations. Once the lam-
inae on the coronal view were selected with a mouse
click, the corresponding axial views of the laminae
would be used to adjust and confirm placement. After
the 17 pairs of laminae from T1 to L5 were identified,
the sagittal view was then used to verify that the
laminae placement created a smooth sagittal profile.
The primary author has over three years of scoliosis
research experience and reviewed over 300 images
prior to labelling. Additionally, a senior co-author
with over 25 years of experience confirmed the lamina
placement on 10 of the ultrasonographs labelled by the
primary author before the other 60 were labelled.

For input into the CNN, the volumes and labels
were scaled down to the size 384 x 96 x 48 pixels,
which is about a third of the dimensions of the average
spinal ultrasonograph. This size was chosen in con-
sideration of the computational limits for network
training (GPU memory size), network architecture
(downsampling by a factor of 2 multiple times), and
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ability to visually distinguish the COL when down-
scaled. Trilinear interpolation was used in the down-
scaling of the input volumes. The Ilabels were
downscaled by first determining the centroids of the
labelled laminae in the unscaled labelled volume,
translating the coordinates of these centroids to the
downscaled size, and centering a 7 x 7 x 7 voxel cube
around the translated centroid. The voxels in this cube
were encoded with a maximum value of 1 in the center
of the cube, with values decreasing as you moved
further from the center. The degree to which these
values decreased was determined using a Gaussian
neighborhood function with a standard deviation of 2.
Encoding the labels in this ‘fuzzy’ manner forced the
network to focus more on the COL and improved
network performance over using purely binary labels.
Finally, the scaled volume intensities were normalized
to zero mean and unit variance. Figure 3 shows an
example of an unscaled labelled volume and the cor-
responding downscaled encoded volume.

Neural Network Architecture and Training

A variant of the U-net CNN architecture'® was used
for segmentation. The U-net is a very common archi-
tecture for medical segmentation tasks, as it has been
proven to perform well even with very little training
data. Three changes were made to this architecture.
First, all operations (convolution, pooling, and
upsampling) were adapted to take in 3D inputs. Sec-
ond, to reduce computational complexity, one pooling
and one upsampling stage were removed. Third, same
padding was employed, which meant that the volumes
did not decrease in size after a convolution layer. This
design choice was made because in some cases, laminae
can be present at the edges of the scans. Figure 4 dis-
plays the architecture of the 3D U-net variant. The
CNN was trained to identify single COL instead of
pairs because for some ultrasonographs, only one
lamina of a vertebra is visible. Therefore, encoding the
labels as pairs would result in more inaccurate place-
ment for both laminae in these cases. On the other
hand, for single lamina encoding, a more accurate
placement would be obtained for the visible lamina,
which would provide a strong foundation for esti-
mating the position of the other lamina in the pair
through post-processing.

Because of the ‘fuzzy’ encoding of the labels, a mean
squared error loss function was used instead of the
typical binary cross entropy or soft Dice loss. This did
come at the expense of longer training time; however,
the performance of the network improved significantly
by employing this heatmap regression method. The
network was trained using an Adam optimizer’ with a
learning rate of 10™*. A linear activation function was

(a)

FIGURE labelled

3. Coronal
ultrasonographs (a) original labels; (b) ‘fuzzy’ encoded
labels with yellow to dark red indicating higher to lower
probabilities for the center of lamina locations, respectively.

projections of the

used for the output layer and a leaky rectified linear
unit activation function with an alpha value of 0.01
was used for the hidden layers. The regularization
technique of dropout with a probability of 0.5 was
used after each pooling and upsampling layer. Because
of the intensive memory requirements of the CNN, a
batch size of 1 was used. Due to the computational
complexity of training a 3D U-net, a hyperparameter
optimization strategy, such as a grid search, could not
be conducted. Instead, these parameters were tuned
through an iterative process of training a network,
analyzing the training curve and predictions, and
making educated judgments on how to tune the
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FIGURE 4. 3D U-net architecture for lamina segmentation with cyan boxes indicating feature maps and white boxes representing
copied feature maps. The size of the feature maps in each tier is to the left of each convolutional block and the number of feature

maps is above each box.

parameters to improve network performance by
investigating different aspects of the training curves,
such as the smoothness and rate of decrease.

To determine the optimal number of epochs, the 70
volumes were split into a 50-volume training, 10-vol-
ume validation, and 10-volume test set. The validation
set was used during training to monitor the validation
loss. The validation loss was lowest at around 750
epochs, and so this was deemed the optimal number of
epochs for the network. The test set was used to
evaluate the performance of the CNN’s COL place-
ment. The network was then trained from scratch for
750 epochs using all 70 labelled volumes to use for
Cobb angle measurement.

A data augmentation method of randomly flipping
along the sagittal plane was employed when the vol-
umes were presented to the network for training to
increase the diversity. This has the effect of switching
right and left on the coronal projection and effectively
doubles the size of the training set. Other geometrical

BMES
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augmentation methods, such as rotation and transla-
tion, were not implemented because in some cases,
laminae can exist close to the edges of the volume and
therefore could be moved outside the boundaries of the
image under these augmentation methods.

Cobb Angle Measurement

The outputs of the 3D U-net can be interpreted as
“probability heatmaps”, where each voxel value rep-
resents the probability of being a COL. To determine
the COL from the probability heatmaps, a more
localized and adaptive form of thresholding was
implemented. This thresholding is done in an iterative
manner since there can be cases where a connected
component for a lamina area has more than one peak
probability if the probability threshold is high enough.
Therefore, the probability threshold was iteratively
decremented from 0.5 to 0.1 probability in intervals of
0.05 such that the local peaks could be extracted from
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FIGURE 5. Flowchart of entire procedure from dataset creation for U-net training to semi-automatic Cobb angle measurement of a

test ultrasonography.

the probability heatmap. A distance threshold based
on the average anatomical measurements of vertebrae
was used to determine whether two predicted COL
were too close to each other.'? If two were deemed too
close to each other, the one with the highest proba-
bility was chosen as the COL for that area.

A program was developed to facilitate the semi-
automatic measurement procedure. Using the spinous
process column, a preliminary pairing algorithm was
implemented to expedite measurement. A pair of
laminae on the same vertebra was estimated such that
the two laminae are approximately equidistant from
the center of the spinous process column and the line
joining the pair forms an angle roughly perpendicular
to the spinous process column. These predicted lamina
pairs were then displayed. To finalize lamina place-
ment for Cobb angle measurement, a rater needed to
confirm and manually adjust any incorrect lamina
pairings. No adjustments to the positions of the pre-
dicted laminae were made during measurement; only
pairing decisions were adjusted. Once the adjustment
was finished, the most tilted relevant pairs were man-
ually chosen to calculate the Cobb angle. Figure 5
illustrates a flowchart of the training and testing pro-
cedure.

All code was implemented in the Python program-
ming language, using the TensorFlow library for CNN
development. The network was trained using a Linux
virtual machine on the Industry Sandbox & AI Com-
puting (ISAIC) at the University of Alberta with an
Intel Xeon Gold 6138 dual processor, 64GB of RAM,
and an NVIDIA Tesla V100 16GB GPU.

Validation

To evaluate the performance of the CNN in pre-
dicting COL, a distance metric d describing how far
away a ground truth COL (as initially labelled by the
primary author) was from any predicted COL was
calculated. Let a ground truth and predicted center be
denoted as y and ¢, respectively, with the list of pre-
dicted centers as @. The distance metric is then defined

for a ground truth center y as the minimum distance
from y to any of the centers in @, or:

dy=j= ls'Nq;min{ Y — (pj|}

where Ng is the total number of predicted centers. This
metric was reported for the 340 COL in the initial 10-
volume test set.

To evaluate whether the CNN-based algorithm
was positioning the lamina predictions accurately for
Cobb angle measurement, the other 60 ultrasono-
graphs which had not been employed for training
were used for measurement validation. Currently, the
gold standard to measure the Cobb angle is per-
formed on posteroanterior radiographs using the
Cobb method.* Therefore, semi-automatic ultrasound
Cobb angle measurements (SU-Cobb), which were
performed by the primary author (rater R1), were
compared to manual ultrasound measurements per-
formed with aid of previous radiograph (AOR)*
(MU-Cobb) and manual X-ray or radiographic Cobb
angle measurements (MX-Cobb). The MU-Cobb with
AOR were performed by two raters who had over
three years of experience and intra-rater reliabilities
(ICC,,1) of 0.96 and 0.94 with their ultrasound mea-
surements being 2.1° and 2.8° from manual radio-
graphic measurements on average.”'*> The MX-Cobb
were recorded in the clinical records which were
measured by clinicians with over 15 years of experi-
ence. The rater R1 was blinded to other manual
measurements and did not use AOR.

The accuracy of the CNN-based algorithm was
evaluated by calculating the mean absolute difference
(MAD), standard deviation (SD), and standard error
of measurement (SEM) between SU-Cobb vs. MU-
Cobb with AOR and SU-Cobb vs. MX-Cobb. The
inter-method intraclass correlation coefficient using a
two-way mixed model with single measures (ICCs )
with 95% confidence intervals (CI) was calculated. The
ICC was qualitatively evaluated using Currier’s defi-
nitions of poor (< 0.70), fair (0.70-0.79), good (0.80—
0.89), and excellent (0.90-0.99).° Additionally, the
percentage of semi-automatic measurements within
clinical acceptance of the MU-Cobb with AOR was
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calculated. Clinical acceptance was defined as within at
most 5° of the manual measurement.'® Categorical
analysis on curve region and severity was performed to
identify any systematic differences in performance. The
curve region was defined according to the apical ver-
tebral level with main thoracic (MT) as T2-T11 and
thoracolumbar/lumbar (TL/L) as T12-L4.'® Curve
severity analysis was split into mild (< 25°) and
moderate (= 25°) curves. Statistical analysis was per-
formed using the pingouin and pandas Python li-
braries.

RESULTS

The CNN predicted the 340 COL in the initial test
set with a mean d and standard deviation of 2.7 4+ 3.7
pixels. This means that on average, the closest pre-
dicted COL was roughly 3 pixels away from a given
ground truth COL. The original ultrasound scans have
a resolution of 0.2mm per pixel.'” Since these scans
were scaled down roughly one third of its original
dimensions, a 3-pixel distance corresponds to roughly
1.8mm. The distribution of d for the COL, separated
by thoracic (T1-T12) and lumbar (L1-L5) vertebrae, is
illustrated in Fig. 6. The thoracic vertebrae were more
consistently placed closer to their true COL with a d of
1.8 £+ 1.6 pixels, whereas the lumbar vertebrac were
more frequently missed by the CNN, resulting in a d of
5.0 &+ 5.8 pixels. The average discrepancies in each
anatomical axis between the true and predicted centers
were also calculated. The COL were placed more
accurately on average in the superficial-deep axis (0.6
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pixels) than the lateral-medial (1.0 pixels) or the
superior-inferior (2.0 pixels) axes.

Among the 60 spinal ultrasonograph measurement
test set (10M, 50F), the mean age of participants was
14.5 £ 1.9 years old (range: 10.8-17.6). A total of 104
MX-Cobb was reported in the clinical records (range:
9°-45°). There were 118 MU-Cobb with AOR (range:
8°-45°) and 107 SU-Cobb (range: 8°-42°) measured.
Table 1 shows the 107 paired comparison of SU-Cobb
and the MU-Cobb with curve type and severity dis-
tribution. The MAD for all categories of measure-
ments were below the clinically acceptable error of 5°.
Additionally, the reliability of the semi-automatic
method was excellent for MT curves (0.91), and good
for all curves (0.87) and TL/L curves (0.81). Figure 7
illustrates the Bland-Altman plot of SU-Cobb vs. MU-
Cobb. The SU-Cobb underestimated the MU-Cobb
with bias and limits of agreement of — 1.4° (— 10.1°,
7.4°). The bias was significant as 0 was not contained
within its 95% confidence interval [— 0.54°, — 2.25°].
The biases and limits of agreement were — 1.6°
(= 9.2°,59° and — 1.1° (= 11.2°, 9.0°) for the MT
and TL/L categories, respectively.

For MX-Cobb, there were 98 paired measurements
with SU-Cobb and 95 paired measurements with MU-
Cobb. The MAD = SD of the respective paired mea-
surements was 5.1° £+ 4.1° for MX-Cobb vs. SU-Cobb
and 2.9° 4 2.7° for MX-Cobb vs. MU-Cobb. Table 2
shows the paired comparisons of 98 SU-Cobb vs. MX-
Cobb and 95 MU-Cobb vs. MX-Cobb for all curves.

The CNN took approximately 15 h to train on our
hardware. The average measurement time when using
the CNN’s lamina predictions was 28.9 s + 13.6 s with
the network taking less than a second on average to

Vertebra type
EEm Thoracic
Lumbar

11 12 13 14 15 17 19 20 22 24 29

Minimum distance between true and predicted laminae [pixels]

FIGURE 6. Histogram of the distance metric d for the 340 centers of lamina in the initial test set, separated by thoracic and lumbar

vertebra type.
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TABLE 1. Results for SU-Cobb vs. MU-Cobb with AOR comparison on the measurement test set.

Category # detected % clinical MAD + SD SEM (°) ICC3,1 [95% CI] # missed
All 107 76 3.6° + 3.0° 1.1 0.87 [0.81,0.91] 11
MT 59 80 3.2° + 2.6° 0.8 0.91 [0.85,0.94] 6
TL/L 48 71 4.1°+ 3.3° 1.4 0.81 [0.69,0.89] 5
Mild 79 75 3.4° + 2.8° 1.6 0.66 [0.52,0.77] 10
Moderate 28 79 4.2° + 3.4° 1.9 0.67 [0.41,0.83] 1
MT Main thoracic, TL/L thoracolumbar/lumbar, mild < 25°, moderate > 25°.
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FIGURE 7. Bland-Altman plot of SU-Cobb vs. MU-Cobb with AOR, separated by region, with bias (black line) and limits of

agreement (red lines).

TABLE 2. Results for SU-Cobb vs. MX-Cobb and MU-Cobb vs. MX-Cobb comparison on the measurement test set.

Comparison # detected % clinical MAD+SD SEM (°) ICC3,1 [95% Cl] # missed
SU vs. MR 98 60 5.1° + 4.1° 1.9 0.78 [0.69,0.85] 6
MU vs. MR 95 88 2.9°+2.7° 0.8 0.90 [0.85,0.93] 9

detect the COL, which was much faster than a manual
ultrasound measurement (average 4 min per image>).
Figure 8 shows the semi-automatic Cobb measure-
ments on three test volumes.

DISCUSSION

To our knowledge, this is the first CNN-based
method for measuring coronal curvature severity on
3D spinal ultrasonographs. The other literature on the
topic of coronal curvature measurement automation
reports on the spinous process angle (SPA) and uses
image processing techniques instead of a form of ma-
chine learning. No comparison has been performed

with the SPA automated extraction methods because
they are a different measure of coronal curvature
severity that typically underestimates the Cobb angle.

The d metric results on the validation set showed
that the CNN performed well in terms of positioning
COL close to the ground truth. Having a three-pixel
positioning difference is little, especially since this is for
three dimensions. The distance metric histogram
showed that the CNN performed worse at identifying
laminae in the lumbar region. This is because the
lumbar vertebrae have larger bony flat surface area
that can cause extraneous ultrasound reflections and
produce brightness oversaturation. It is more difficult
to distinguish the true COL in this area. Consequently,
only lumbar vertebrae had a distance metric above 14
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FIGURE 8. Semi-automatic Cobb angle measurement output examples with laminae (green circles) and relevant pairs for Cobb
angle (red lines) plotted. Green circles that were left unpaired were deemed not true centers of lamina. Radiographs of the same
visit are to the left of each labelled ultrasonograph. The examples have Cobb angles of: (a) 34° MT, 35° TL/L; (b) 15° MT, 25° TL/L;

(c) 15° MT.

pixels, meaning that some lumbar laminae were not
detected. On the other hand, the thoracic laminae were
placed very accurately, with roughly 92% of their
distance metrics within 3 pixels. This was reflected in
the Cobb angle measurement results as well, as the
accuracy and reliability of SU-Cobb was higher on the
MT than the TL/L curves. The limits of agreement for
TL/L curves (20.2°) also spanned a wider range than
MT (15.1°).

There was less of a performance discrepancy in the
different curve severity groups. Both ICCs were lower
than the other categories of measurements. However,
this is expected since grouping by curve severity re-
duces the variance of the data points. Therefore, the
focus should instead be on the difference between the
mild and moderate ICCs, which is essentially negligi-
ble. It should be noted that out of the 11 undetected
curves in SU-Cobb, 10 were mild (6 MT, 4 TL/L) and
1 was moderate (I TL/L). The mild curves with Cobb
angle less than 16° are harder to detect because Cobb
angles are defined for pairs of angles with opposing
tilts. Therefore, if a manually measured curve involves
a pair of laminae with a very shallow opposing tilt, the
network may detect that same pair with no opposing
tilt. Pairs of laminae without opposite tilt would not
meet the required definition to warrant a Cobb angle
measurement. There were 4/11 undetected mild curves
under this situation. The other primary reason for non-
detection was poor image quality. Two scans had
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regions with a lack of brightness information and an-
other scan was oversaturated with brightness, both of
which made it more difficult to identify the COL
automatically. This contributed to 6/11 curves being
undetected and included in this group was the mod-
erate curve that was also the only major curve that was
missed. Finally, the last undetected curve (1/11) can be
attributed to poor network performance.

The main challenge for developing a fully auto-
mated CNN-based method to measure the Cobb angle
was the false positive laminae that made an automatic
pairing algorithm nontrivial. Therefore, further post-
processing of the lamina predictions is required to
realize complete automation. This post-processing
should combine using lamina pairs with the spinous
process column to validate that the tilt angle of each
lamina pair follows a smooth curve. Implementing
these constraints may improve the accuracy of the
measurement method. Another method of improving
the accuracy is optimizing the CNN performance. This
would consist of labelling more data for training and/
or optimizing the training parameters of the CNN.

The comparison between SU-Cobb and MU-Cobb
with AOR resulted in a MAD of 3.6° with 76% of
measurements within clinical acceptance. The MAD
between SU-Cobb and MX-Cobb was close to clinical
acceptance (5.1°) with 60% of measurements within
clinical acceptance. The gold standard for Cobb angle
measurement is using a posteroanterior radiograph,
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and so accurate and reliable results with radiographic
measurements are needed for full clinical validation.
Nevertheless, the work in this paper lays promising
groundwork for a fully automated method that will
meet those requirements. The main strength of the
CNN-based algorithm is its ability to display the
lamina segmentations. This means that it gives raters a
strong starting point for measuring the Cobb angle.
Manually adjusting the positions of the lamina pre-
dictions were not explored in this study, but this could
easily be implemented in the program workflow,
meaning that a quicker measurement time could be
achieved while still providing raters a means to mea-
sure the Cobb angle accurately.

A possible reason for the higher inaccuracy in SU-
Cobb vs. MX-Cobb is that these measurements were
done without AOR. Having a radiograph from a pre-
vious visit to overlay with the current ultrasonograph
helps in determining where the laminae should be lo-
cated, particularly for the lumbar region. Zheng et al.
found that using AOR significantly reduced measure-
ment difference from 4.6° to 2.7° when comparing with
radiographic measurements*. Similarly, the MAD for
blinded SU-Cobb vs. MX-Cobb was 5.1°, which was
close to the 4.6° from the blinded MU-Cobb vs. MX-
Cobb of Zheng et al. Consequently, implementing a
method of using AOR in the algorithm may improve
accuracy. This would still reduce radiation exposure as
only one radiograph at initial visit would be needed for
follow-up visits to obtain only ultrasonographs for
accurate Cobb angle measurement.

One limitation of this study is that severe curves
above 45° Cobb angle were not investigated. The scan
quality for severe curves is typically worse since these
cases often have higher vertebral rotation, which more
frequently results in only one lamina for a vertebra being
visible. While these severe cases are rarer, a separate
analysis should be conducted to investigate any poten-
tial systematic errors for this group. Another limitation
is that the hyperparameters for the CNN were not
optimized using a robust strategy. Different combina-
tions were explored to improve the validation loss, but a
structured strategy could not be conducted because of
the significant computational costs it requires.

In conclusion, a novel 3D CNN-based algorithm for
automatically detecting laminae on spinal ultrasono-
graphs of children with AIS was developed for Cobb
angle measurement. The measurements achieved good
reliability when compared with manual ultrasono-
graph measurements and achieved excellent reliability
in MT curves. Further improvements would consist of
post-processing the network predictions by using other
features of the spine to correct lamina placement and
adding more labelled data for network training. Fi-
nally, complete automation and further validation with

manual radiographic measurements is planned to truly
make ultrasound a more accessible imaging method for
diagnosing and monitoring AIS, thereby reducing the
risk of cancer in these children.
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