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Abstract—This paper focuses on an important issue of
disease progression of COVID-19 (coronavirus disease 2019)
through processing COVID-19 cough sounds by proposing a
fully-automated method. The new method is based on time-
domain exploiting only phase 1 data which is always
available for any cough events. The proposed approach
generates plausible click sequences consist of clicks for
various cough samples from covid-19 patients. The click
sequence, which is extracted from the phase slope function of
an input signal, is used to calculate inter-click intervals
(ICIs), and thereby a scoring index (SI) is derived based on
coefficient of variation(CV) of the extracted ICIs. Moreover,
probability density function (pdf) of the output click
sequence is obtained. The method does not need to adjust
any parameters. The experimental results achieved from
real-recorded COVID-19 cough data using the medically
annotated Novel Coronavirus Cough Database (NoCoCo-
Da) reveal that the proposed time-domain method can be a
very useful tool for automatic cough sound processing to
determine the disease progression of coronavirus patients.

Keywords—COVID-19, Coronavirus disease progression,

Cough sounds/samples, Click sequence, Inter-click intervals,

Automatic cough sound processing, NoCoCoDa database.

INTRODUCTION

The 2019 novel coronavirus, COVID-19 is one of
the challenging global health crisis in this twenty-first
century.14 The virus is a strain of severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2),9 which
affects the respiratory system and therefore causes
symptoms such as coughing and breathing difficulties,
fever, as well as ageusia and anosmia.16 The cough is

the second most common symptom for COVID-19
patients after the fever symptom.1 During the investi-
gation, it is found that the COVID-19 cough is initially
dry or non-productive, similar to a cough which causes
a tickle in our throat, but in more severe cases it can
become more wet or productive, such as the type of
cough one can get in case of cold or flu.7

On the acoustic viewpoint, cough can be described
as a forced expulsive maneuver against a closed glottis
that is associated with a characteristic sound.17 Cough
sounds can comprise up to three phases: explosive,
intermediate and voiced (phases 1, 2 and 3, respec-
tively).19 They correspond to glottal opening, steady-
state flow and interruption of airflow due to closure of
the glottis, respectively. Phase 3 is not always present
and in its absence the identification of the termination
of phase 2 becomes difficult due to the gradual signal
dissipation. Therefore, phase 1 (explosive phase) can
be selected for primary analysis since it is always pre-
sent and is most easily identifiable.

Various research efforts are going on to develop
acoustic analysis and diagnostic tools for COVID-19
cough data and they are mainly based on frequency
domain as well as machine learning and deep learning.
In Ref. 8, the input recorded cough sounds possibly
from smart phones/home devices are processed to
classify them into binary classes to know whether they
are COVID-19 or not by using MFCC images and
CNNs (convolutional neural networks) and achieved
high classification accuracy (97.5%). In Ref. 6, a
COVID-19 cough type detection method is proposed
based on frequency-domain features including power
ratio between phases 1 & 2 and number of spectral
peaks in the energy spectrum using NoCoCoDa
database.6 It is found in Ref. 6 that 77% of the
recorded COVID-19 coughs are detected as more wet
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(productive) in nature, whereas the rest of the COVID-
19 coughs are detected as more dry (non-productive) in
nature. The work in Ref. 20 proposes a low-cost
COVID-19 preliminary diagnosis approach utilizing
covid cough data using deep learning in Mel frequency
domain. Log-based Melspectrograms as well as filter
banks are used to extract information for classification
of four types of raw cough sounds including COVID,
Pertussis, Pneumonia, and others by using deep
learning LSTM (Long Short-Term Memory) multi-
class classifier providing classification accuracies of
100%, 93.75%, 93.75% and 100%, respectively. Ref-
erence 11, proposes an AI-based preliminary diagnosis
tool for COVID-19 (AI4COVID-19), using cough
sound via a mobile app. This two-stage scheme has
data collection and cough detection block followed by
COVID-19 diagnosis block, which contains deep
transfer learning-based multi-class classifier (DTL-
MC), classical machine learning based multi-class
classifier (CML-MC), and deep transfer learning-based
binary-class classifier (DTL-BC). The cough detection
is based on a deep CNNs classifier using MFCC (Mel
Frequency Cepstral Coefficients) features. The results
show that AI4COVID-19 app is able to diagnose
COVID-19 with negligible misdiagnosis probability;
for instance, the accuracies for the DTL-BC classifier
as reported in Ref. 11, are 94.57% and 91.14% for
binary classes, i.e. COVID-19 and No COVID-19. In
Ref. 13 the proposed AI-based framework uses
acoustics to pre-screen for COVID-19 from cough
recordings. MFCC features are calculated from the
recorded cough sounds and use as input to a Convo-
lutional Neural Network(CNN) based scheme consist
of one Poisson biomarker layer and 3 pre-trained Re-
sNet50’s in parallel, giving a binary pre-screening
output of COVID-19 or No COVID-19. The detection
results with high accuracy are obtained since the AI-
model accurately identified 98.5% of coughs from
people with confirmed COVID-19, and 100% of
coughs from asymptomatic people who tested positive
for the virus.

Moreover, the COVID-19 crisis initiates different
new studies addressing various important issues. For
instance, in Ref. 15, the study proposes a new design
for a device called the patient particle containment
chamber (PPCC) for COVID-19 airways management,
together with a pragmatic evaluation of its efficiency.
The following critical design criteria for the PPCC
device are considered: reduction of aerosol transmis-
sion by at least 90% as measured by pragmatic testing;
construction from readily available, inexpensive
materials; easy to clean; and compatibility with com-
mon EMS stretcher. Thereby, the new device removes
all limitations which make it effective and practical in
out-of-hospital environments. The study in Ref. 4

introduces a computational model of pulmonary air-
way opening for acute COVID-19 patients and then
investigates the effects of physical properties of lower
airway secretions on airway reopening pressures and
suction pressures. The experimental results show that
the airway reopening pressure is dependent on surface
tension of the air–liquid interface, consistency and
yield stress of secretions, the volume of secretions,
airway radius as well as airway opening velocity. On
the other hand, the suction pressure varies with the
surface tension of air–liquid interface and the viscosity
of secretion. In Ref. 2, the authors, the two faculty
members from one of the U.S. universities, examine
the impact of coronavirus on higher education, or on
education in general and talk of how social distancing
brought the faculty members and others closer to-
gether as a disciplinary community through transi-
tioning to online delivery during the COVID-19
outbreak. As a result of the challenges introduced due
to the COVID-19 pandemic, a number of institutions
within the Biomedical Engineering (BME) community
compile an online repository to share knowledge and
guidance to implement online learning curricula, as
reported and recommended by the authors in Ref. 2
providing the perspectives of further new collabora-
tions within and outside the BME community. In our
study, we address the important issue of COVID-19
disease progression. To identify/quantify the disease
progression is vital since it can assist in target treat-
ment and resource allocation for the COVID-19
patients at different stages. For instance, the health
care teams can find it an essential tool to assess the
severity of each case so that outpatients/inpatients
requiring oxygen/ICU patients treatments are pro-
vided as well as resources such as ICU beds and ven-
tilators are correctly allocated and care priorities can
be established for the high-risk patients based on the
results of the disease progression.

In this paper, we report on the exploration of an
automated time-domain method for cough sounds to
evaluate the disease progression of COVID-19
patients. The proposed method is based on the time-
domain and extraction of click sequence for phase 1
data in a cough sample utilizing phase slope function.
Inter-click intervals (ICIs) are thereby obtained to
derive a scoring index (SI) in terms of their coefficient
of variation (CV). In addition, probability density
function (pdf) of the output click sequence is found to
quantify and qualify the COVID-19 cough data in
order to determine the progress of the disease in
COVID-19 patients.

The main contributions of this paper can be stated
as follows: (1) The paper is addressing the challenging
COVID-19 related problem. (2) We propose a new
time-domain method for monitoring the progress of
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COVID-19 disease with coronavirus patient’s cough
sounds using phase information. (3) Both the inter-
click intervals (ICIs) and the distribution of the clicks
for an output click sequence are exploited. (4) The
method solely uses the information of phase 1 data,
which is always available in any cough event and is
easy to annotate being an initial phase. (5) There is no
preprocessing involved for the raw input data. (6) The
method is capable to process cough samples from
various completing sources and is fully automated,
since there is no need to adjust any parameters, as well
as insensitive to the intensity of the input signal.

MATERIALS AND METHODS

The proposed scheme is based on extraction of a
click sequence followed by retrieving ICIs (inter-click
intervals) of the clicks. The phase 1 data of a COVID-
19 cough sample is used as input to a click detector
based on phase slope function. The extracted output
click sequence is then analyzed to characterize the raw
cough data in terms of an scoring index(SI) derived
from ICIs. The probability density function (pdf) of
the extracted click sequence is further obtained to
evaluate (quantify and qualify) the disease progression
of COVID-19.

Database Used

We have used the Novel Coronavirus Cough Da-
tabase (NoCoCoDa),6 which is one of the first avail-
able databases of COVID-19 cough sounds and
medically annotated with time stamps unlike other
available COVID-19 cough sounds databases, which
are not annotated. The NoCoCoDa database currently
contains 73 individual COVID-19 positive reflex cough
sounds obtained from online interviews with COVID-
19 positive individuals conducted from April to June
2020. As mentioned in Ref. 6, a total of 13 interviews
have been conducted involving 10 individuals. For
each interview, cough events have been manually seg-
mented to assign a label (C19_subjectNumber_-
coughNumber). Each file are then saved as a WAV file
with a sampling rate of 44.1 kHz. This resulted in 73
individual cough events. Since these cough events are
extracted from media interviews, some of them contain
speech or music as background noise. In addition,
several cough events are found as a mix between a
throat clear and a cough event, which are labeled in the
supplementary file ‘coughDescriptions.txt’ that has
nine columns (Name; Duration (s); Number of Phases;
Phase Notes; Competing Sources; Sex; Age; Live vs.
Home; Notes (including any self reported underlying
conditions)), please see section IV in Ref. 6 for more

details. For a more detail description of the database
used, see the cited paper.

Proposed Scheme for Cough Sound Processing

The proposed automated cough sound processing
scheme consists of the following click extraction with
adaptive window-length selection.

Click Extraction

The clicks are extracted from the audio data (wav
files) as positive zero-crossings of the phase slope
function.12 The phase slope function is generated from
group delay, given by

sðxÞ ¼ � dð/ðxÞÞ
dðxÞ ð1Þ

where x ¼ 2pf, f denotes the frequency and /ðxÞ refers
the phase spectrum of the signal. Suppose a signal is
delayed by no samples. Then the average over x of sðxÞ
provides n0, which corresponds to the negative of the
slope of the phase spectrum for this corresponding
signal. Here Fourier Transform has been computed
considering the center of analysis window to be at
n ¼ 0. When the window center is moved to the right
(closer to the instant n ¼ n0), the slope of the phase
spectrum increases (the average of the group delay
function decreases) reflecting the distance between the
center of the analysis window and the position of the
impulse. When the center of the analysis window is at
n ¼ n0 then the slope is zero. Continuing moving the
analysis window to the right the slope will continue to
increase (while the average of the group delay will
decrease). In this way, the slope of the phase spectrum
is a function of n.

The steps for computing phase slope function as
well as extracting clicks are as follows:

Step 1 Define an analysis window of length propor-
tional to the period of the sequence (it can be
referred to as long window), to perform a
frame-by frame (short-term) analysis.

Step 2 In each frame, the slope of the phase spec-
trum of the windowed signal is calculated as
the average of the group delay function and it
is associated with the center of analysis
window.

Step 3 By setting the analysis step size at one sample
(moving the analysis window by one sample
at a time), the phase slope function (se-
quence) is obtained which has the same time
resolution as the original recording. The
window length may have a duration shorter
than the period of the signal (it can be
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referred to as short window). Frame (step)
size defines the resolution capability of the
algorithm.

Step 4 Finally, clicks are detected by locating the
positive zero crossings of the slope of the
phase spectrum (referred to as phase slope
function) computed as average of the group
delay function. This makes the click extrac-
tion process insensitive to the variations of
the sound source level.

To find the group delay of a signal or the average slope
of the phase spectrum, we need to calculate the
unwrapped phase spectrum. Usually phase unwrap-
ping is performed by adding appropriate integer
multiples of 2p to the principal phase values, as to
remove discontinuity (jumps of 2p radians) in the
phase function. For all simulations, a Hann analysis
window with duration (length) determined by a pitch
detection method described in ‘‘Pitch Detection and
Window Length Selection,’’ section is applied. To
speed up the computation of the phase slope function,
a step size of 2 samples is used. Undetermined values of
the slope function are then computed by linear
interpolation.

It is found that the method is capable of detecting
clicks in raw data. The approach is insensitive to the
intensity of the click source. By visual inspection, it is
found that positive zero-crossings of the phase slope
function correspond to clicks in most cases, whereas
few erroneous clicks may appear from the occasional
oscillations about zero of the phase slope function. As
most of these erroneous clicks can be eliminated by
subtracting a constant (dc component) from the phase
slope function.

Pitch Detection and Window Length Selection

A time-domain algorithm, named as YIN algo-
rithm,5 is used to find pitch, i.e. the fundamental fre-
quency (f0), for the input cough data. YIN algorithm is
based on the difference function, which while similar to
autocorrelation, attempts to minimize the difference
between the waveform and its delayed duplicate in-
stead of maximizing the product (for autocorrelation).
The difference function is given as

dtðsÞ ¼
XW

j¼1

xj � xjþs
� �2 ð2Þ

where W is the length of the frame xj since the algo-
rithm is based on frame-by-frame calculation. In order
to reduce the occurrence of subharmonic errors, YIN
algorithm employs a cumulative mean function which
de-emphasizes higher-period dips in the difference
function:

d0tðsÞ ¼
1; s ¼ 0
dtðsÞ

1
s

Ps

j¼1
dtðjÞ

otherwise

(
ð3Þ

Other improvement in the YIN pitch detection
scheme include a parabolic interpolation of the local
minima, which has the effect of reducing the errors
when the period estimation is not a factor of the win-
dow length used (in this case, 25 ms). For a more detail
description, see the cited paper. Lastly, the analysis
window length (in s) for the phase slope function cal-
culation in ‘‘Click Extraction,’’ section is automatically
set from the value of the detected pitch/estimated f0
(Hz) as equal to or less than the pitch duration, 1=f0.

RESULTS AND DISCUSSION

We derive a scoring index(SI) based on inter-click
interval (ICI) of the extracted click sequence for an
input cough data. Similar to ISI (Inter-spike inter-
val),18 the variation in the ICI pattern can be quanti-
fied by using the coefficient of variation (CV), which is
the standard deviation (SD) of ICIs divided by the
mean of ICIs, given as

CV ¼ s

l
ð4Þ

where s and l are the SD and mean of ICIs. Small CV
values close to 0 indicate regular clicks pattern,
whereas large CV values close to or >1 indicate
irregular clicks pattern of a click sequence.

The illustrative plots of some COVID-19 cough
samples having different SI values, are shown in Fig. 1.
The input raw cough data are presented in Fig. 1a,
whereas the corresponding spectrograms of the 44.1
kHz data, are depicted in Fig. 1b which are calculated
using a Hamming window of 256 samples (5.805 ms)
with 86.3281% overlapping and 512-point FFT (fre-
quency resolution 86.1328 Hz). Only phase 1 data of
each cough samples are used as their time stamps are
marked by vertical dotted lines in Fig. 1a, where the
samples with data indices #63, #57, #45 #4 have 3
phases and the sample with data index #72 has 2
phases giving increasing SI (CV) values of 0.18029,
0.53246, 1.0045, 1.2581, 1.9423, respectively. By visual
inspection of the spectrograms and their energy dis-
tributions at high frequencies in phase 1 and phase 2, it
seems that the first two samples with lower SI values,
are appeared more like dry cough, while the next three
samples with higher SI values look more like wet
cough.3

The phase 1 data for the cough samples in Fig. 1a
are shown in Figs. 2a and 2e. The corresponding phase
slope functions and the unit responses of the clicks
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detected as positive zero-crossings of the phase slope
function, are presented in Figs. 2b, 2f, 2c and 2g,
respectively. The extracted output click sequences are
displayed in Figs. 2d and 2h. As we can see, the click
responses and click outputs are found rare for the first
two samples and irregular (random/clumped) for the
last three samples.

The probability density functions (pdfs) of the ex-
tracted output click sequences in Figs. 2d and 2h, are
depicted in Fig. 3. The skewness of the respective pdfs
are obtained as increasing values of 0.1523, 0.8037,
1.1772, 2.7373, and 4.3170, respectively. The more
detailed analysis on the types of pdfs and their features
will be followed in ‘‘Probability Density Function (pdf)
of the Extracted Click Sequence,’’ section.

In Table 1, both the SI and the skewness values are
listed for all COVID-19 cough samples from the No-
CoCoDa database together with the corresponding
data indices and file names. It can be noted that the
cough samples with indices #18 and #66 are not in-
cluded in the list since their annotations are not
available because they are overpowered by other
sounds(speech/music). As we see in Table 1, the values
of both parameters of CV and skewness show consis-
tent results.

In Fig. 4, the scatter plot of the SI and skewness
data is presented. All data points, listed in Table 1, are
clustered into three groups shown by red, green, and
blue colors. The group of data points having SI values
within 0.9 � SI �1.1 interval as labeled in green, are
highly dense around SI = 1. Next the data points with
SI<0.9 as labeled in blue, are grouped based on their
moderate density. The third group containing the data
points having SI>1.1 which are marked in red, are
highly sparse.

Table 2 shows the disease progression of COVID-19
as evaluated in three COVID-19 states: early state,
moderate state, and severe state, based on the SI values
and their intervals. In Table 3, the progress of COV-
ID-19 disease is determined as early state, moderate
state, and severe state with respect to their obtained
probability density functions (pdfs).

It can be noted that the covid cough samples in the
early COVID-19 state are more like dry coughs,
whereas it is uncertain for the moderate COVID-19
state as it can be either more like dry cough or more
like wet cough. For the severe COVID-19 state, the
covid cough samples are more like wet coughs.

Figure 5 shows the stem plots of SI correspond to
different COVID-19 states. As it can be seen in Fig. 5,
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FIGURE 1. Illustrative plots are displayed for the COVID-19 cough samples having different values of SI within various SI
intervals; (a) Raw COVID-19 cough data, (b) Spectrograms.
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majority of the coughs are evaluated being more like
wet (productive) coughs since there are some cough
samples in the database as reported in Ref. 6, which
have been recoded for serious covid patients who were
admitted to hospital and/or to ICU. On the other

hand, there are a small number of COVID-19 coughs
which have been evaluated being more like dry (non-
productive) coughs belong to early COVID-19 state
(see Fig. 5a).
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FIGURE 2. Illustrative results are shown for the phase 1 data of the COVID-19 cough samples, in Fig. 1a, at different SI values
within various SI intervals; (a) and (e) Input raw cough data for phase 1, (b) and (f) Phase slope functions, (c) and (g) Unit responses
of the clicks detected as positive zero-crossings of the phase slope functions, (d) and (h) Extracted output click sequences.
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Discussion

Probability Density Function (pdf) of the Extracted
Click Sequence

Regarding pdf of the extracted click sequence, we
have considered the following three cases with the
value of CV:

Case 1 When CV1 (or the standard deviation (SD)
and the mean of ICIs are proportional and close to
1), then pdf of the corresponding extracted click
sequence can be obtained as Poisson distribution.10

The Poisson distribution can be expressed as
PðrÞ ¼ e�mmr

r! , where P is the fraction of samples that
will occur r objects each, if an average of m objects
per sample, i.e. the mean, is distributed at random
over the collection of samples.
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FIGURE 3. Illustrative probability density functions (pdfs)
are depicted for the extracted click sequences in Figs. 2d and
2h of the COVID-19 cough samples for phase 1 data at
different values of SI and its various intervals.

TABLE 1. The values of the scoring index (SI) (CV) and the
skewness for the COVID-19 cough samples in the NoCoCoDa

database.

Data Index(#) File Name SI(CV) Skewness

1 C19-1-1.wav 0.9156 1.4026

2 C19-1-2.wav 1.4800 2.7777

3 C19-10-1.wav 1.2618 1.8015

4 C19-10-2.wav 1.9423 4.3170

5 C19-10-3.wav 0.9352 1.0516

6 C19-10-4.wav 1.1867 1.4436

7 C19-10-5.wav 1.7451 3.5572

8 C19-10-6.wav 1.1508 1.4416

9 C19-10-7.wav 1.4113 2.5521

10 C19-11-1.wav 1.0373 1.0010

11 C19-11-2.wav 1.1576 1.6584

12 C19-11-3.wav 1.1063 1.1321

13 C19-11-4.wav 0.7439 0.5667

14 C19-11-5.wav 0.9097 1.039

15 C19-11-6.wav 1.3989 2.5975

16 C19-12-1.wav 1.6169 2.7261

17 C19-12-10.wav 1.3737 1.7154

19 C19-12-13.wav 1.0282 1.2681

20 C19-12-14.wav 1.8604 3.8696

21 C19-12-15.wav 0.9471 0.9596

22 C19-12-2.wav 1.5539 3.9391

23 C19-12-3.wav 1.5179 2.9003

24 C19-12-4.wav 0.8122 0.7458

25 C19-12-5.wav 1.4669 2.4775

26 C19-12-6.wav 1.5417 2.7038

27 C19-12-7.wav 1.3655 2.6757

28 C19-12-8.wav 0.8111 1.0178

29 C19-13-1.wav 0.6293 1.0001

30 C19-13-2.wav 1.8185 3.2932

31 C19-13-3.wav 1.5232 2.2186

32 C19-2-1.wav 1.1343 1.1512

33 C19-2-10.wav 0.8391 1.0529

34 C19-2-11.wav 0.7251 1.1443

35 C19-2-12.wav 0.8195 1.0315

36 C19-2-13.wav 0.6375 1.1763

37 C19-2-14.wav 1.6993 3.7338

38 C19-2-15.wav 0.7622 3.2510

39 C19-2-2.wav 1.0085 1.0448

40 C19-2-3.wav 0.8884 1.1055

41 C19-2-4.wav 0.8363 1.0015

42 C19-2-5.wav 0.8932 1.6479

43 C19-2-6.wav 1.4446 2.6813

44 C19-2-7.wav 1.2187 2.2672

45 C19-2-8.wav 1.2581 2.7373

46 C19-2-9.wav 0.7753 1.6373

47 C19-3-1.wav 1.1246 1.7878

48 C19-3-10.wav 1.0405 1.0312

49 C19-3-11.wav 1.1897 1.7107

50 C19-3-12.wav 1.7592 2.6289

51 C19-3-13.wav 1.1415 1.7842

52 C19-3-14.wav 1.0435 1.0077

53 C19-3-2.wav 0.7717 0.5431

54 C19-3-3.wav 0.9668 1.0013

55 C19-3-4.wav 1.0370 1.0513

56 C19-3-6.wav 0.6610 0.7824

57 C19-3-7.wav 0.5325 0.8037

58 C19-3-8.wav 1.7518 3.0434

59 C19-3-9.wav 1.5390 2.8821

60 C19-4-1.wav 1.4482 2.2545
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Case 2 When CV< 1, i.e. the SD decreases and less
than the mean, the pdf of the corresponding output
click sequence can have the Binomial distribution,
expressed as PðrÞ ¼ ð n!

r!ðn�rÞ!Þprqðn�rÞ, where P is the
fraction of samples that will occur r objects each, for
the probability of success of p, the probability of
failure of q and the number of samples of n when the
mean is given by m ¼ np and SD =

ffiffiffiffiffiffiffiffi
npq

p
.10 The

limiting value of the SD, as the Binomial distribu-
tion approaches the Poisson distribution, is the
square root of the mean.
Case 3 When CV> 1, i.e. the SD increases and
higher than the mean, the pdf of the output click
sequence can be found as Negative Binomial distri-
bution PðrÞ ¼ ððrþk�1Þ!

r!ðk�1Þ! Þpkqr, with the mean m ¼ kq=p

and SD=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþm2=k

p
.21 The expression 1=

ffiffiffi
k

p
is a

measure of the excess SD. As 1=
ffiffiffi
k

p
approaches zero,

the distribution converges to the Poisson. As 1=
ffiffiffi
k

p

approaches infinity, the distribution approaches the
logarithmic. The Negative Binomial distribution has
a more important use for an overdispersed distribu-
tion, one with clumps of objects rather than a
random distribution.

In Fig. 3, the results of pdfs are shown for the output
click sequences in Figs. 2d and 2h which have different
ICIs patterns (rare/random/clumped) providing Bino-
mial distribution (SD <m) (rare or regular), Poisson
distribution (SD m) (random), and Negative Binomial
distribution (SD >m) (clumped/grouped), respec-
tively.

TABLE 1. continued

Data Index(#) File Name SI(CV) Skewness

61 C19-4-2.wav 1.0809 1.0590

62 C19-4-3.wav 1.0197 2.2464

63 C19-5-1.wav 0.1803 0.1523

64 C19-5-2.wav 1.5131 2.5784

65 C19-6-1.wav 1.4649 2.3792

67 C19-7-2.wav 1.5070 2.1680

68 C19-7-3.wav 0.6868 0.5983

69 C19-7-4.wav 1.2210 2.2044

70 C19-7-5.wav 1.7782 3.8578

71 C19-8-1.wav 0.9406 1.9247

72 C19-8-2.wav 1.0045 1.1772

73 C19-9-1.wav 1.5114 2.5569
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FIGURE 4. Scatter plot of SI vs skewness for the COVID-19
cough samples showing the disease progression of COVID-19
by grouping the respective cough data into three COVID-19
states as early state (blue), moderate state (green), severe
state (red).

TABLE 2. Coronavirus disease progression with the COVID-
19 cough samples based on SI values and their intervals.

Covid-19 progression state Scoring Index (SI) (CV)

Early COVID-19 state 0 < SI < 0.9

Moderate COVID-19 state 0.9 �SI �1.1

Severe COVID-19 state SI > 1.1

TABLE 3. Coronavirus disease progression with the COVID-
19 cough samples based on pdfs of the extracted output click

sequences.

Covid-19 progression state Probability density function (pdf)

Early COVID-19 state Binomial distribution

Moderate COVID-19 state Poisson distribution

Severe COVID-19 state Negative binomial distribution
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FIGURE 5. The values of scoring index (SI) (CV) are shown
using the COVID-19 cough samples for different intervals of SI
corresponding to different COVID-19 states; (a) 0<SI<0.9, (b)
0.9�SI�1.1, and (c) SI > 1.1.
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Finally, we calculate the skewness of the distribu-
tions22 as listed in Table 1.

Comparison with Another Method Using the Same
Database

The results with the COVID-19 cough samples
regarding their types (more like dry/wet cough) are
found quite consistent with the results obtained in Ref.
6 using the same NoCoCoDa database. As reported in
Ref. 6, 77% of the COVID-19 coughs in the database
are found as wet (productive) type cough and 23% of
the data samples are more like dry (non-productive)
cough. We found 25.35%(i.e. (18/71)� 100) of the
COVID-19 coughs are more like dry (non-productive)
cough, while the rest of them (i.e. 74.35%( = (53/71) �
100)) are mainly more like wet (productive) type cough
(see Fig. 5). It seems that our results are quite consis-
tent with the results obtained in Ref. 6.

Statistical Analysis

The two-sample, two-tailed t-tests are performed on
the SI (CV) and the skewness data whereas the corre-
sponding results are presented below:

Early COVID-19 state ! t(34) = 2.18, p<0.05, CI
[0.0236–0.6718], SD = 0.4776
Moderate COVID-19 state ! t(28) = 2.27, p<0.05,
CI [0.0225–0.4242], SD = 0.2685
Severe COVID-19 state ! t(74) = 8.09, p<0.05, CI
[0.8136–1.3454], SD = 0.5816

where CI: confidence interval.

Summary

Our fully-automated cough sound processing
method as well as quantification and qualification
strategy can assist physicians in evaluating the risk of
disease progression of COVID-19 patients on-site or
remotely. The preliminary results in terms of both the
SI(CV) and the probability distribution of the ex-
tracted click sequence from phase 1 cough data are
shown promising to use this method as an effective
grading tool for COVID-19 patients. The benefits for
using the proposed cough sound based method in
evaluating the COVID-19 disease progression are as
follows: It can be considered a simple method for
quantifying/characterizing the COVID-19 disease
progression as well as easy to perform with
portable equipment, and inexpensive. As our future
work, more detailed evaluation will be conducted with
larger annotated COVID-19 cough dataset depending
on its availability. In addition, we will investigate to
derive other useful features, such as attention
entropy23 for the extracted click sequence and compare

the results with the healthy persons as well as non
COVID-19 patients data.
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