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Abstract—Three-dimensional cardiovascular fluid dynamics
simulations typically require computation of several cardiac
cycles before they reach a periodic solution, rendering them
computationally expensive. Furthermore, there is currently
no standardized method to determine whether a simulation
has yet reached that periodic state. In this work, we propose
the use of an asymptotic error measurement to quantify the
difference between simulation results and their ideal periodic
state using open-loop lumped-parameter modeling. We
further show that initial conditions are crucial in reducing
computational time and develop an automated framework to
generate appropriate initial conditions from a one-dimen-
sional model of blood flow. We demonstrate the performance
of our initialization method using six patient-specific models
from the Vascular Model Repository. In our examples, our
initialization protocol achieves periodic convergence within
one or two cardiac cycles, leading to a significant reduction in
computational cost compared to standard methods. All
computational tools used in this work are implemented in the
open-source software platform SimVascular. Automatically
generated initial conditions have the potential to significantly
reduce computation time in cardiovascular fluid dynamics
simulations.

Keywords—Cardiovascular fluid dynamics, Reduced-order

modeling, 0D modeling, 1D modeling, Boundary conditions,
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INTRODUCTION

Three-dimensional (3D) blood flow simulations are
commonly coupled with zero-dimensional (0D) open-
loop lumped parameter models, representing the
downstream vasculature at the model’s bound-
ary.7,15,25,33 These lumped parameter models are
analogous to an electric circuit, with resistors and
capacitors modeling the viscosity of the blood and the
elasticity of the vessel wall, respectively. A popular
choice is the three-element Windkessel model, also
known as the RCR model.39 The Windkessel consists
of a proximal resistance in series with a parallel distal
resistance and capacitance (Fig. 1).

The RCR boundary condition is coupled to 3D
models, as well as one-dimensional (1D) models, at
their terminal outlet points. Like many other outflow
boundary conditions, the RCR model contains a
capacitor that stores blood volume. While these
capacitors are ‘‘charging’’, it typically takes several
cardiac cycles with a periodic pulsatile inflow to reach
a periodic state. Here, a periodic state is defined as two
consecutive cardiac cycles yielding results for pressure
and flow rate that agree within a given tolerance.
Mathematically, this corresponds to the limit cycle of
the model. Note that we assume that the model is
subjected to a periodic forcing, such as a periodic
pulsatile inflow. However, in contrast to impedance
and periodic RCR boundary conditions,5 the transient
RCR boundary conditions used in this work can also
handle non-periodic solutions.39 It is essential to ex-
tract simulation results only when they have reached
this periodic state, e.g., when comparing them to
in vivo measurements. However, there is currently no
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suitable error norm for determining whether this
periodic state has been achieved.

Unfortunately, running several cardiac cycles of a
3D simulation is computationally expensive, typically
requiring a high-performance computer. The compu-
tation time scales linearly with the number of cardiac
cycles since they cannot be run in parallel. A common
practice is initializing a simulation with results from a
steady-state solution.39 Here, a computationally inex-
pensive simulation with constant inflow is computed
first. Its solution is then used as an initial condition for
the simulation with a periodic pulsatile inflow condi-
tion. However, as we will show in this work, a simu-
lation initialized with a steady-state solution often still

requires several cardiac cycles to reach a reasonably
periodic state.

Our goal is twofold. First, we introduce metrics and
tools to quantify whether a simulation has yet reached
a periodic state within a given tolerance. Second, we
shorten the computation time of the computationally
expensive 3D simulation by leveraging reduced-order
modeling. It was previously shown that 1D models of
cardiovascular fluid dynamics could accurately
approximate integral quantities of 3D solutions such as
velocity and pressure at the outlets.8,17,26,28,30,40,43 In
this work, we propose a novel method to initialize a 3D
simulation using the results from an inexpensive 1D

FIGURE 1. Flowchart of method to check periodic state of 3D simulation results.
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simulation. This framework is fully automated and
requires no user interaction.

METHODS

We begin by revisiting the governing equations of
3D, 1D, and 0D fluid dynamics in Sects. 2.1,2.2, and
2.3. Following theoretical considerations of the con-
vergence of lumped parameter models, we define suit-
able error metrics to determine the difference between
a 3D simulation and its periodic state in Sect. 2.4. In
Sect. 2.5, we introduce a tool to determine whether a
simulation has yet reached its periodic state. Finally,
we develop a method to initialize a 3D simulation from
a 1D simulation in Sect. 2.6 in order to jumpstart
initialization and reduce computational cost.

3D Flow Physics

The dynamics of blood flow in the cardiovascular
system is mathematically governed by the incom-
pressible 3D Navier-Stokes equations,

q
@v

@t
þ v � rv

� �
¼ �rPþ lr2vþ f; ð1Þ

r � v ¼ 0; ð2Þ

where � is the dot-product. The first equation in this
system represents conservation of momentum for a
Newtonain, incompressible fluid, where v is the veloc-
ity of the blood flow, P is pressure, f is a body force, q
is the density of the blood, and l is the dynamic vis-
cosity. The second equation in this system represents
conservation of mass. In the computational cardio-
vascular modeling and simulation context, we typically
numerically solve the 3D Navier-Stokes equations in
patient-specific models of vascular anatomies to sim-
ulate hemodynamics. Simulation results are used to
elucidate the relationship between cardiovascular dis-
eases and fluid mechanics, for personalized treatment
planning, and to aid the development of novel
biomedical technologies. The initial conditions for
velocity and pressure are

vðx; t ¼ 0Þ ¼ v0ðxÞ; Pðx; t ¼ 0Þ ¼ P0ðxÞ: ð3Þ

Boundary conditions that model the portion of the
cardiovascular system not captured by the anatomical
model must be provided as well. A flow rate, Q, is
commonly prescribed at the inlet surfaces of the 3D
vascular model, where the flow rate is computed via
integration of the normal velocity over each inlet sur-
face,

QðtÞ ¼
Z
C
v � n dC ¼ QinðtÞ; ð4Þ

On the other hand, lumped parameter models, also
known as 0D models, are commonly used as boundary
conditions at the outlets of the model. These lumped
parameter models usually relate the pressure to the
flow rate via parametric differential-algebraic equa-
tions,

Pðx; tÞ ¼ fðx; t;QoutðtÞ; _QoutðtÞ;/Þ; ð5Þ

where / represents the set of variables parametrizing
the differential equation. A discussion of 0D models
and some commonly used outlet boundary conditions
is provided in Sect. 2.3.

Furthermore, in this work, we are focused on
computational fluid dynamics simulations, not fluid-
structure interaction (FSI) problems. As such, we ap-
ply rigid wall assumptions for our 3D simulations.
However, the methods presented in this work can be
easily generalized to FSI problems.

We generate 3D patient-specific models using
SimVascular, an open-source, comprehensivemodeling,
and simulation software for vascular anatomies (http://
simvascular.org).37 The models are simulated in our
open-source solver svSolver using the Finite Element
Method (FEM) (https://github.com/SimVascular/
svSolver). It uses liner P1-P1 elements with a stream-
line upwind Petrov-Galerkin and pressure-stabilizing
Petrov-Galerkin formulation (SUPG/PSPG).16 The
pressure and momentum stabilization is detailed in
References [36,41]. Furthermore, it uses a linear solver
with specialized pre-conditioners tailored to handle
large vascular resistances coupled at outflow bound-
aries.13 All 3D simulations in this work were run on
Stanford’s Sherlock supercomputing cluster using four
12-core Intel Xeon Gold 5118 CPUs.

1D Flow Physics

In contrast to 3D models, one-dimensional (1D)
models have only a single spatial dimension, the axial
dimension along the centerline of the vessel.40,18,35 As
such, 1D models are capable of simulating only bulk
flow rate and cross-sectionally averaged pressure at
each centerline node of the 1D finite element model.
We integrate the incompressible 3D Navier-Stokes
equations (1) over the cross-section while assuming an
axisymmetric parabolic flow profile to obtain the
governing equations for the 1D model. This process
yields

@S

@t
þ @Q

@z
¼ 0; ð6Þ
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with flow rate Q, cross-sectional area S, pressure P,
density q, body force f, and kinematic viscosity m. The
coordinate z represents the axial dimension of 1D
model. To solve these equations, we also require a
constitutive law to relate the pressure to the cross-
sectional area. In this work, we use the constitutive
relationship proposed by Olufsen,27,

Pðz; tÞ ¼ P0ðzÞ þ 4

3

Eh

r0ðzÞ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
S0ðzÞ
Sðz; tÞ

s !
;

Eh

r0ðzÞ ¼ k1e
k2r

0ðzÞ þ k3;

ð8Þ

where E is the Young’s modulus of the blood vessel, h
is the wall thickness, P0 is the reference pressure, r0 is
the reference radius, and k1, k2, and k3 are empirically
derived constants. We set k1 to be zero and k3 to be an
arbitrarily high value to represent rigid wall behavior,
as captured in our 3D model.

Furthermore, for models with multiple vascular
branches, mass conservation is enforced at the junction
regions, and the pressure is assumed to be constant
between the inlet and outlets of the junctions.40 As
with 3D models, we need initial conditions to initialize
the simulation,

Qðz; t ¼ 0Þ ¼ Q0ðzÞ; Sðz; t ¼ 0Þ ¼ S0ðzÞ; ð9Þ

as well as inlet and outlet boundary conditions, dis-
cussed in Sect. 2.3, to represent the portion of the
cardiovascular not reflected in our 1D model,

Qðz; tÞ ¼ QinðtÞ; ð10Þ

Pðz; tÞ ¼ fðz; t;QoutðtÞ; _QoutðtÞ;/Þ; ð11Þ

We generate and simulate the 1D centerline and finite
element models using SimVascular and VMTK.6 We
solve the set of differential equations using our open-
source solver svOneDSolver (https://github.com/Sim
Vascular/svOneDSolver). We employ a stabilized
space-time finite element method based on the dis-
continuous Galerkin method in time.40 The spatial
discretization employs continuous piecewise linear
polynomials whereas we use a piecewise constant
temporal discretization. For more background infor-
mation, see References [11,19,20].

0D Flow Physics

The third model fidelity we consider in this work is
the zero-dimensional (0D) model. Unlike 3D and 1D
models, 0D models lack spatial information. However,
0D models are capable of accurately simulating bulk

flow rate and bulk pressure quantities in the cardio-
vascular system.1,2 These 0D models are composed of
individual lumped-parameter elements that connect to
form an entire complex lumped parameter network.
There are many lumped parameter elements commonly
used in the context of cardiovascular modeling and
simulation. Some of these elements include resistors,
capacitors, and inductors.2 Resistors model the viscous
dissipation of the blood fluid, capacitors represent the
elastic nature of blood vessels, while inductors capture
the inertia of the blood flow. In lumped parameter
networks that model the heart, diode elements are also
employed. These diodes mimic the behavior of heart
valves, where they allow flow to pass only when the
valves are open.22,32 The flow rates and pressures in
each of these elements are respectively governed by the
following linear differential and algebraic equations,

DP ¼ RQ; Q ¼ CD _P; DP ¼ L _Q; Q ¼ jQj þQ

2
;

ð12Þ

where R is the resistance, C is the capacitance, L is the
inductance, and DP is the pressure drop across the
element. Lumped parameter 0D models are also
analogous to electrical circuits, where the flow rate and
pressure are representative of current and voltage,
respectively. In this work, we will focus our attention
to just resistors and capacitors.

Lumped parameter networks are commonly used in
two contexts. First, 0D models can be used as surrogate
models of entire vascular anatomies.1 In this case, each
blood vessel in the vascular system is represented by one
or more lumped-parameter elements in the 0D model,
where the value of each element is determined by the
geometric and material properties of the blood and
blood vessel. Second, 0D models can be used to repre-
sent boundary conditions in 3D and 1D models.
3,5,13,22,38,31 In this context, each 0D element reflects a
different downstream (or upstream) anatomical feature
of the cardiovascular system. To employ 0D models as
boundary conditions, they must be numerically coupled
to the 3D or 1D finite element models.13 The governing
equations for these 0D models then can be numerically
solved using traditional time-stepping schemes, such as
an explicit fourth-order Runge-Kutta method.

Some of the 0D models most commonly employed
as boundary conditions are the resistance model and
the 3-element Windkessel model.39,5 The resistance
model is composed of a single linear resistor element
that captures the downstream resistance of the vascu-
lar network not portrayed in the 3D or 1D model. On
the other hand, the 3-element Windkessel model, also
known as the RCR model, as shown in Fig. 1, models
the proximal resistance, distal resistance, and compli-
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ance of the downstream vasculature using two resistor
elements and a capacitor. The RCR boundary condi-
tion is discussed further in the next section.

To simulate our 0D surrogate models, which repre-
sent the vessels using linear resistors, we solve the gov-
erning system of equations using an in-house, modular
numerical solver svZeroDSolver (https://github.com/S
imVascular/svZeroDSolver) that employs the implicit
generalized-a scheme for time advancement.21

The RCR Boundary Condition

Thus far, we have introduced three different meth-
ods to computationally model and simulate vascular
hemodynamics in anatomic models. Before any of the
models and simulation results can be used in scientific
investigations or clinical applications, the quantities of
interest, primarily the flow rates and pressures, must be
simulated until they converge to a periodic state. Here,
a simulated quantity of interest is considered to be
periodic if its values between 2 adjacent periods are the
same, within some defined tolerance. A period in the
cardiovascular context is typically defined as a single
cardiac cycle. We expound on the concept of a periodic
state in this section, using the RCR model to illustrate
the primary concepts.

The three parameters of the RCR boundary condi-
tion are commonly tuned to clinical measurements,
e.g., phase-contrast magnetic resonance imaging and
pressure measurements, by solving an optimization
problem to match minimal and maximal pressure over
a cardiac cycle, measured flows, and flow distribution
among different outlets.34 A common strategy is to
tune the total resistance and capacitance in the model
to produce a physiologic pressure waveform, then
distributed proportional to the vessel outlet areas.4

We begin by reviewing the response of a single RCR
model to pulsatile inflow. The governing differential
equation for the inlet pressure, P, of the 3-element
Windkessel model, as a function of the inlet flow rate,
Q, is

_Pþ P

s
¼ Rp

_Qþ 1

s
ðRp þ RdÞQ; s ¼ RdC; ð13Þ

where Rp is the proximal resistance, C is the capaci-
tance, and Rd is the distal resistance. We obtain the
semi-analytical solution38 for this ordinary differential
equation as

PðtÞ ¼ ½Pð0Þ � RpQð0Þ� e�t=s|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

þRpQðtÞ|fflfflffl{zfflfflffl}
II

þ
Z t

0

e�ðt�~tÞ=s

C
Qð~tÞd~t

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
III

; s ¼ RdC>0;
ð14Þ

which depends on the inflow Q and the time constant s.
We can identify three different terms in this equation:
(I) exponential decay of the initial solution, (II) pres-
sure drop at proximal resistance, (III) pressure drop at

sub-circuit RdC. Assuming a constant inflow �Q>0 for
t>0, we obtain the pressure step response for the RCR
boundary condition as

PðtÞ ¼ P1 þ e�t=s ½P0 � P1�; P0 ¼ Pð0Þ;
lim
t!1

PðtÞ ¼ P1 ¼ �QðRp þ RdÞ;
ð15Þ

starting at the initial pressure P0 and exponentially
approaching the asymptotic pressure P1 for the limit
t ! 1. We now define the periodic inflow Q(t) as

Qðtþ TÞ ¼ QðtÞ; �Q ¼ 1

T

Z T

0

QðtÞdt; ð16Þ

where the period T is the length of a cardiac cycle and
�Q the time-averaged mean flow. The mean pressure in
the n-th cardiac cycle is denoted by

�Pn ¼
1

T

Z ðnþ1ÞT

nT

PðtÞdt; n 2 Nþ
0 : ð17Þ

With this notation, Equation (15) can be reformulated
for a non-constant, periodic pulsatile inflow as

�Pn ¼ �P1 þ e�nT=s ½ �P0 � �P1�; �P1 ¼ lim
n!1

�Pn; ð18Þ

starting at the initial mean pressure �P0 and

approaching the asymptotic mean pressure �P1. Note
that for a single RCR boundary condition the

asymptotic pressure �P1 with pulsatile inflow Q(t) is
identical to the asymptotic pressure limt!1 PðtÞ with

steady mean inflow �Q. However, this is not true in the
case of a vascular model with several RCR boundary
conditions at the outlets. Here, the asymptotic mean

pressure �P1 at each outlet can in general not be
determined analytically and relies on the time-depen-
dent flow split of the model inflow Q(t) to the outlets.

In the remainder of this section, we will define an
error metric to quantify the difference between the

pressure �Pn in the n-th cardiac cycle and the asymptotic

pressure �P1. For simplicity of notation, we show the

following derivations for �Pn< �P1, i.e. the pressure
approaches the asymptotic pressure ‘‘from below’’,
which is the case when starting from zero initial con-
ditions. However, the conclusions hold for any choice

of initial pressure. Starting from �Pn> �P1 would
change the signs of all pressure terms. We define the
asymptotic error �1 as

0<�1¼
�P1 � �Pn

�P1
¼ e�nT=s � 1�

�P0

�P1

� �
: ð19Þ
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Thus, we can calculate the number of cardiac cycles n1
required for the RCR boundary condition to reach a
periodic state within the tolerance �1 as

n1 � � s
T
� ln �1

1� �P0= �P1
; n1 2 Nþ: ð20Þ

The inequality arises from the fact that n1 is an integer
and the right-hand side is a real number. Several
observations can be made from Equation (20). First,
the number of cycles scales linearly with s=T, the ratio
of the length of the time constant s to the length of one
cardiac cycle. A two-fold increase in the time constant
doubles the number of cardiac cycles required to reach
the same tolerance �1. Second, the closer the initial

pressure �P0 to the asymptotic pressure �P1 the fewer
cardiac cycles n1 are required to achieve periodic
convergence with an error �1. The error �1 and the
number of cardiac cycles n1 can in general not be

determined a priori since the constant �P1 cannot be
evaluated analytically. Only in the special case of
starting from zero initial conditions, i.e. P0 ¼ 0, the
number of cardiac cycles to periodic convergence can
be directly given as

n1 � � s
T
� ln �1: ð21Þ

We can easily compute the difference �Pn � �Pn�1

between two cardiac cycles numerically without the
solution having reached a periodic state. Using this
difference, we define the cyclic error �n between two
consecutive cardiac cycles as

0<�n¼
�Pn � �Pn�1

�P1

¼ e�nT=�s � 1�
�P0

�P1

� �
� ½eT=s � 1�; n � 2:

ð22Þ

We then define the ratio a between asymptotic error �1
and cyclic error �n as

a ¼ �1
�n

¼
�P1 � �Pn

�Pn � �Pn�1

¼ 1

eT=s � 1
; �1>�n , for

s
T
>

1

ln 2
� 1:44

ð23Þ

Equation (23) shows that in general �n 6¼ �1. While
error metrics like �n are commonly used in practice to
determine whether a simulation as reached a periodic
state within a given tolerance, it is not an adequate
metric to do so. For time constants s larger than 1.44
times the length of the cardiac cycle T, the cyclic error
�n will underestimate the asymptotic error �1. In sim-
ulations with a large time constant s � T the error �n
will appear small despite the solution being far from a
periodic state due to their slow convergence. As a
remedy, we propose a method in Sect. 2.5 to estimate

the asymptotic error �1 as the simulation is being
computed.

Checking the Periodicity of 3D Simulations

The previous section introduced analytical and
theoretical methods to check the periodicity of a single
RCR model subjected to a prescribed inflow condition.
This section extends this discussion to consider com-
putational vascular models and present a method to
check the periodicity of patient-specific, multi-outlet
3D models, where each outlet is coupled to a different
RCR boundary condition. The steps for this method
are summarized in the flowchart shown in Fig. 1.

As mentioned in the previous section, �P1 generally
cannot be predicted analytically. However, a value of
�P1 is needed to check if the simulated flow rate and
pressure at each outlet of the 3D model have con-
verged to a periodic state. To remedy this issue, we

estimate �P1 for each outlet by simulating a separate
0D model of the attached RCR boundary condition.
The inflow to each 0D RCR model is the simulated 3D
flow rate, Q3D, corresponding to that outlet. We then
simulate these simple 0D RCR models for many car-
diac cycles, to guarantee periodic convergence of the
0D RCR model, and use the final simulated pressure

values, P0D, as our estimates of �P1.
Furthermore, as previously discussed, �1 represents

the asymptotic error of the pressure solution. We
therefore specify a desired value for �1 and use this as
our criteria for periodic convergence. Our 3D pressure
solution, P3D, is considered to be periodically con-
verged, as per Equation (19), if it matches P0D within
this error threshold. Mathematically, this condition is
expressed as,

P3D � P0DðQ3DÞ
P0DðQ3DÞ

� �1: ð24Þ

Note that Q3D should be reasonably close to a periodic
state before we can use it as the inflow to our RCR
model. Typically, Q3D converges much faster, i.e.,

within one or two cardiac cycles, than �P3D does. This
note will be further discussed in Sect. 3.1.3.

Lastly, each outlet of our 3D models has in general
a unique time constant s. Although, in practice,
parameter tuning yields time constants that are similar.
It can be shown that the convergence of each outlet is
determined by a single model time constant �s that can
be approximated by the mean of all individual time
constants. As such, we can use this average time con-
stant to estimate the number of cardiac cycles for
which our 3D models must be simulated to achieve
periodic convergence.
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Generating Initial Conditions

As previously discussed, 3D models must be simu-
lated until the flow rates and pressures converge to a
periodic state before they can be applied in scientific or
clinical investigations, which currently requires run-
ning the simulation for several cardiac cycles. This
limits the utility of computational 3D models and
simulations in real-world clinical applications. To
alleviate this bottleneck, we introduce a novel method
to jumpstart the initialization of 3D simulations. In
particular, we generate initial conditions to minimize
the number of cardiac cycles required to reach periodic
convergence within a chosen tolerance. This process is
fully automated in SimVascular37 and requires no user
input. Starting from a periodic 1D solution
(Sect. 2.6.1) we create a map from the centerline, the
1D representation of the model, to the 3D volume
mesh (Sect. 2.6.2), and generate an artificial initial
velocity vector field (Sect. 2.6.3) for simulation ini-
tialization.

Generating a Periodic 1D Solution

We automatically generate a 1D flow model of the
high-fidelity 3D flow model using the SimVascular 1D-
plugin. We then run the model until it achieves peri-
odic convergence with �1 � 1%, using the method in
Sect. 2.5, and extract the solution of the last cardiac
cycle.

Mapping Centerline to Volume Mesh

To map the 1D solution to the 3D Finite Element
mesh, we create a map I from nodes P1D on the 1D

centerline to nodes P3D in the 3D volume mesh. This

allows us to map quantities defined on the centerline to
the volume mesh, such as 1D flow and pressure, cross-
sectional area, and normal vectors. The iterative pro-
cess is outlined in Algorithm 1 and visualized in Fig. 2.
In Line 3, we first create a set of seed points Pseed
consisting of volume mesh nodes P3D that are closest

to the centerline nodes P1D and store the corre-

sponding indices in I. To do this, we find the shortest
Euclidean distances between centerline coordinates

x1Dp and 3D mesh coordinates x3Dj . We then employ a

region growing algorithm (Line 14) to grow the 1D-3D
map outwards, starting from the centerline seed points
Pseed. The algorithm in Line 17 selects nodes Pnew in

the new layer from the previous layer Pold using cell-

connectivity. Finally, the map is expanded in Line 30
by assigning nodes in the new layer Pnew to the same
1D node as the closest 3D node in the previous layer
Pold. This results in centerline nodes being roughly

assigned to 3D mesh nodes within the same cross-

section. For 3D meshes with Oð106Þ nodes Algo-
rithm 1 only takes a few seconds to complete on a
single CPU. We generate this map only once and use it
repeatedly to map various centerline quantities to the
volume mesh, see Fig. 3.

FIGURE 2. Mapping centerline nodes to nodes in the 3D volume mesh. Colors correspond to the node order of the centerline. The
centerline within 3D volume mesh is shown on the left. The figures from left to right show the current set of all points Pall for
iterations i 2 f2; 3;5;24g until Algorithm 1 converges.
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Extrapolating Pressure and Velocity

We directly map the pressure from the centerline to
the volume mesh using the map generated in Sect. 2.6.2,
resulting in a pressure that’s approximately constant

over the cross-section of the vessels. However, as the 1D
solution only provides a scalar flow along the centerline,
we must generate a velocity vector field from scratch.
The ingredients for the velocity vector field are visual-
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ized in Fig. 3. From the mapped 1D flow rate and the
cross-sectional areawe calculate the velocitymagnitude.
Assuming a Poiseuille flow, we apply a parabolic flow
profile to the velocity magnitude. With the help of a
normalized radial coordinate, we prescribe the flow
profile to be maximal on the centerline and zero on the
boundary. Finally, we multiply the scalar velocity
magnitudewith the centerline tangent vector to generate
a vector field. We aim to preserve the amount of flow
through a cross-section of the vessel as obtained from
the 1D solution while approximating a somewhat
physiological velocity field. This velocity vector field can
then be used for simulation initialization.

RESULTS

Throughout this section, we consider a simulation
periodically converged if the asymptotic error is
�1 � 1%, as defined in Equation (20). We utilize in this

work a subset of 52 models from the Vascular Model
Repository (http://vascularmodel.org).42 All models
have rigid walls and RCR boundary conditions. Six
out of these models are shown in Table 1.

Convergence

In this section, we detail the convergence behavior
of cardiovascular fluid dynamics simulations with
three-element Windkessel, or RCR, boundary condi-
tions. The models used in this section have different
numbers of outlets, ranging from 4 in the aortic models
to 33 in the pulmonary artery models. For each model,
we automatically generate a reduced-order 0D model
as outlined in Sect. 2.3. Using a computationally
inexpensive 0D model allows us to run a large number
of simulations for many cardiac cycles and analyze
their convergence behavior in detail. These 0D results
are directly applicable to 1D and 3D simulation

FIGURE 3. Ingredients to generate the velocity field from a 1D solution. From left to right: Flow mapped from 1D, cross-sectional
area, radial coordinate, and normal vectors.

TABLE 1. Subset of models from the Cardiovascular Model Repository.

ID 0003_0001 0097_0001 0107_0001 0111_0001 0130_0000 0156_0001

Type Aorta-femoral Pulmonary Aorta Aorta Aorta Aorta-femoral

State Normal Glenn End-to-end anastomosis Coarctation Aneurysm Aneurysm

BIOMEDICAL
ENGINEERING 
SOCIETY

PFALLER ET AL3582

http://vascularmodel.org


models and form the foundation for generating initial
conditions in Sect. 3.2.2.

Time Constants

The time constant s is the metric of a boundary
condition that determines the rate of periodic conver-
gence. It is thus essential for all numerical experiments
in this work. Throughout the remainder of this work,
we normalize s by the length of the cardiac cycle T,
with all values reported in Fig. 4. All normalized time
constants fall within the range [0, 10], with time con-
stants in pulmonary models being the lowest. In gen-
eral, time constants in our models differ by outlet but
fall within a narrow range. In addition to the outlet
time constants, we also show the model time constants
�s=T as crosses. We extract the model time constants
from the slope of the exponential curves of the
asymptotic error �1 (see Equation (20)) when running
the models for several cardiac cycles. Each model has
one unique model time constant �s=T that is approxi-
mately the mean value of the outlet time constants.

Initial Conditions

We estimated the number of cardiac cycles n1
required to reach a periodic pressure in Equation (20).
In the special case of zero initial conditions, this rela-
tionship simplified to the inequality in Equation (21),
scaling linearly with the time constant s=T and the
logarithm of the asymptotic error �1. This relationship
holds regardless of model fidelity, i.e. for 0D, 1D, and
3D. In Fig. 5a, we record the number of cardiac cycles
required to reach an asymptotic error of �1 � 1%
when starting a simulation from zero initial conditions,

and report the number of cardiac cycles required for
periodic pressure (left) and flow (right) over the model
time constant �s=T. For pressure (left), the results
confirm the linear relationship between the single
model time constant �s=T and the number of cardiac
cycles n1 from Equation (21) (black line). For a range
of model time constants �s=T 2 ½0:3; 9:6� we find the
range of cardiac cycles n1 2 ½2; 44�. The number of
cardiac cycles to reach a periodic flow solution (right)
is not correlated to the model time constant and is, in
general, much lower than the number of cycles n1 to
reach a periodic pressure. Flow rate commonly con-
verges within one cardiac cycle, with a maximum of
eight cardiac cycles in our cohort of models.

The same study is repeated in Fig. 5b for starting
from steady state initial conditions. Here, the values of
the steady state initial conditions were obtained from
the solutions of simulations run under steady state
conditions, where the constant inflow boundary con-
ditions are the mean values of the periodic inflows.
Compared to zero initial conditions, the number of
cardiac cycles required to each an asymptotic pressure
with an error of �1 � 1% are much lower: n1 2 ½2; 12�.
Flow is converged within a maximum of 5 cardiac
cycles. When starting from steady state initial condi-
tions, the number of cardiac cycles n1 cannot be given
analytically, it depends on the prescribed inflow pro-
file. However, the number of cardiac cycles commonly
still increases with the model time constant. A variant
of the initialization with a steady state solution is
shown in Fig. 5c. Here, the simulations start at the
time step where the inflow is closest to the mean flow
(see Reference [39]). The number of cardiac cycles
required to reach the tolerance �1 � 1% is comparable

FIGURE 4. Time constants for models from the Vascular Model Repository. Bars indicate the range of time constants s=T for all
outlets in a model, crosses indicate the model time constant �s=T . The colors indicate the model category: aorta (blue), aorta-
femoral (purple), and pulmonary (yellow).
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to the number when starting from the beginning of the
cardiac cycle (i.e. end-diastole) in Fig. 5b. Note that
n1 is here not an integer, but a real number since we
include the first, incomplete cardiac cycle.

Comparison of Error Metrics

We visualize the convergence of pressure and flow
for n ¼ 30 cardiac cycles in Fig. 6 for model 0107_0001
(normal aorta). The pressure curve (top left) builds up
slowly in each cardiac cycle, starting from zero,

whereas the flow curve (bottom) is close to periodic
starting from the first cycle. Taking the mean value
over each cardiac cycle, both solutions exponentially
approach their periodic state, as shown in Equa-
tion (18). The logarithmic plots in the two rightmost
columns show the exponential decay of the cyclic error
�n and the asymptotic error �1, as defined in Equa-
tions (20) and (22), respectively. Note that the flow
(bottom) exhibits smaller errors than the pressure (top)
and converges faster during the first few cardiac cycles.

FIGURE 5. Number of cardiac cycles n1 required to reach an asymptotic error e1 ¼ 1% for 0D models from the Vascular Model
Repository. The colors indicate the model category: aorta (blue), aorta-femoral (purple), and pulmonary (yellow). The black line
(left) indicates the number of cardiac cycles predicted by Equation (21).
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After that, both flow and pressure at all outlets con-
verge with the model time constant �s=T � 4:4. This
model time constant yields a factor between cyclic and
asymptotic error of a ¼ �1=�n � 3:9. The threshold is
indicated by horizontal lines in the error plots. Here,
the solution is converged after n1 ¼ 21 cardiac cycles,
reaching errors of �1 ¼ 1% and �n ¼ �1=a � 0:26%.
This example demonstrates that for simulations with
�s=T>1= ln 2 � 1:44 the cyclic error �n underestimates
the asymptotic error �1.

Prediction of the Periodic State

As explained in Sect. 2.4, the periodic error �1,
comparing the current cardiac cycle to a perfectly
periodic cycle, can in general not be computed ana-
lytically. It requires the periodic solution of the model
which is not known a priori. We thus outlined a
method in Sect. 2.5 to use the 0D lumped-parameter
boundary condition to estimate the periodic cycle
numerically. Figure 7 shows the pressure at all outlets
of model 0107_0001 from cycle one to cycle n1 ¼ 21
(from blue to red), starting from zero initial conditions
as in Fig. 6. The top row shows the pressure at the
outlets of the 3D model in each cardiac cycle. The
bottom row shows the prediction of the periodic state
using the flow at the outlets of the 3D model in each
cardiac cycle. Since flow converges much faster than
pressure in this model, see Fig. 6, the cycle-to-cycle
variation is minimal. The periodic state can be accu-

rately predicted even from early cardiac cycles, where
the actual pressure of the model has not yet converged.

Initialization

To demonstrate the performance of our 3D initial-
ization method, we compare results for the 6 models
shown in Table 1. The chosen models contain a wide
range of anatomies and physiological conditions and
are specified by an eight-digit ID. They include aorta
and femoral arteries (0003_0001), pulmonary arteries
after a Glenn procedure (0097_0001), aortic coarcta-
tion post end-to-end anastomosis (0107_0001), un-
treated aortic coarctation (0111_0001), aortic
aneurysm in a patient with Marfan Syndrome
(0130_0000), and abdominal aortic aneurysm
(0156_0001).

Generating Initial Conditions

In this section, we demonstrate the performance of
our pipeline to generate 3D initial conditions that
greatly reduce the number of cardiac cycles, as pro-
posed in Sect. 2.6. As a ground truth, i.e. the ideal
initial condition, we use an asymptotic 3D solution
extracted after reaching periodic convergence. Using
this initial condition, the 3D simulation would reach
periodic converge within one cardiac cycle. We com-
pare this solution to initial conditions we generated
from a periodic 1D solution, using the mapping tech-
nique from Sect. 2.6.2. By using initial conditions

FIGURE 6. Convergence of 0D pressure (top) and flow (bottom) solution in geometry 0107_0001 (normal aorta) for n ¼ 30 cardiac
cycles. From left to right: Solution, mean solution over one cardiac cycle (normalized by asymptotic solution), cyclic error �n , and
asymptotic error �1. Each color refers to one of the outlets.
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mapped from 1D to 3D, we introduce two kinds of
errors. First, the 1D solution is computed on a highly
simplified geometrical representation of the 3D geom-
etry assuming a constant flow profile, see Sect. 2.2.
Second, the mapping process tries to but cannot
guarantee local preservation of the 1D solution char-
acteristics, such as incompressibility.

Figure 8a shows these errors by comparing different
initial conditions: 3D ground truth (blue), 1D solution
(green), and 3D mapped from 1D (orange). We inte-
grate the 3D ground truth and the mapped 3D initial
conditions over the cross-section of the 3D geometry
continuously along the centerline. This allows us to
plot pressure (top) and flow (bottom) continuously
over the vessel path. For a perfect 1D approximation
of the 3D simulation, the blue and green lines would
overlap. For a perfect mapping from 1D to 3D, the
blue and orange lines would overlap. In general,
pressure is approximated well by the 1D model and
mapped well to the 3D domain. The differences
between the models (<1 mmHg) are small compared
to the overall pressure level (	 75 mmHg). Flow is
approximated well by the 1D model whereas the
mapping results in oscillations and overestimates the
actual flow. Since all three models should represent a
model with rigid walls and incompressible flow, flow
should be constant along the vessel path. However, the
3D mapped from 1D solution still roughly represents
the correct flow splits to the different vessel branches.

We show in Fig. 8b how the flow oscillations along
the vessel paths decay in the 3D simulations over time.
The simulations initialized with the mapped 1D solu-
tions (orange) reach a flow that’s approximately con-
stant over the vessel branch within the first couple of
time steps, similar to the simulations initialized with

zero initial conditions (black). The performance of the
non-linear solver is identical for both initial conditions.

The differences between 3D ground truth and 3D
mapped from 1D initial conditions are visualized in
Fig. 9a and are evident, especially within the aneur-
ysm. The mapping from 1D to 3D results in a pressure
that is approximately constant over the cross-sections
of the vasculature. However, the overall variation, 74-
75 mmHg in the ground truth and 73–76 mmHg in the
extrapolated solution, is negligibly small compared to
the overall pressure level. Similarly, the velocity field in
Fig. 9b is visibly different for the ground truth (left)
and mapped solution (right).

Initial Conditions

Finally, we demonstrate that 3D initial conditions
mapped from periodic 1D solutions can greatly reduce
the 3D simulation time. We compare three kinds of
initial conditions: Zero, Steady, and 1D. For zero
initial conditions, we prescribe uniformly P0ðxÞ ¼ 0

and v0 ¼ 10�4 � ½1; 1; 1�. To generate steady initial
conditions, we first run a steady state simulation with

constant mean inflow �Q. We compared starting the
pulsatile flow simulation at different time steps for
model 0003_0001. Common choices are either the first
time step t ¼ 0 or the time step where the inflow closely
matches the mean flow.39 We found that the number of
cardiac cycles required to reach periodic convergence
was not affected by the choice of starting time step, so
for simplicity we chose t ¼ 0 for all comparisons in this
section. For 1D initial conditions, we use the frame-
work proposed in Sect. 2.6. The 3D simulations were
run using an incompressible Newtonian fluid, a rigid
wall, and a no-slip condition at the wall. All 1D sim-

FIGURE 7. Pressure for model 0107_0001 for n1 ¼ 21 cardiac cycles (blue to red) starting from zero initial conditions until
reaching periodic convergence. Pressure at the 3D outlets (top) and peridioc state predicted from 0D (bottom).
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ulations and the mapping from 1D to 3D were run on a
single CPU on a workstation computer.

Figure 10 shows the convergence of the asymptotic
error �1 for pressure (top) and flow (bottom) at all
outlets (colors) for all three initial conditions: zero
(left), steady (middle), 1D (right). The threshold �1 �
1% is indicated by a horizontal line, the number of
cardiac cycles n1 required to reach that threshold is
indicated in each simulation by a vertical line. All
simulations are shown for a total of n ¼ 12 cardiac
cycles. Note that the scale of the flow error is one
magnitude lower than the scale of the pressure error.
From left to right, the flow and pressure solutions start
with a successively lower error in the first cardiac cycle.
In the case of 1D initial conditions (right), the pressure
errors of all outlets already fulfil the convergence cri-
terion after only one cardiac cycle. Both pressure and

flow errors stagnate below 10�3 as other numerical
errors in the simulations outweigh the asymptotic er-

ror. As previously observed, pressure converges faster
than flow when using zero or steady initial conditions.
However, pressure and flow are converged in one and
two cardiac cycles, respectively, when using 1D initial
conditions. Due to the drastic reduction in the number
of cardiac cycles required for the pressure solution,
flow is now slightly slower to converge.

Convergence results for all selected 3D geometries
and are reported in Table 2. While initializing with a
steady state solution considerably reduces the number
of cardiac cycles to reach convergence, most of the
models still require at least five cardiac cycles for
convergence. In all models, the simulations initialized
with the 1D solution converge in one or two cardiac
cycles. This leads to speedup factors between one and
nine compared to the steady state initialization, saving
between 0 and 53 h of computation time on 48 CPU
cores each per 3D model. Only in model 0097_0001
which has a very low model time constant and the

FIGURE 8. Performance of mapping initial conditions from 1D to 3D.
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FIGURE 9. Initial conditions mapped from 1D compared to the 3D asymptotic solution in aortic aneurysm model 0130_0000.

FIGURE 10. Convergence of the 3D pressure in geometry 0003_0001 (aorta-femoral) for different initial conditions: zero (left),
steady (middle), 1D (right). The figure shows pressure (top) and flow (bottom) over multiple cardiac cycles, for a single test case.
Each color refers to one of the outlets. The horizontal black line indicates the asymptotic error of �1 � 1%. The vertical black line
indicates after how many cardiac cycles the simulation results have reached that asymptotic error.
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simulation even with zero initial conditions converges
in two iterations does the 1D initialization not yield a
speedup.

DISCUSSION

We gave a detailed review of properties of lumped-
parameter boundary conditions in cardiovascular fluid
dynamics simulations. The speed of convergence to a
periodic state solution is determined by a single model
time constant, that can be approximated as the mean
of all individual time constants of multiple outlet
boundary conditions. We found that for 53 models of
the Vascular Model Repository, the model time con-
stant �s=T spanned from 0.3 in pulmonary models to
9.6 in aorta models. That means that in the most ex-
treme case, the time constant of the model is almost ten
times as large as the length of the cardiac cycle. Using
zero initial conditions, the number of cardiac cycles
required to reach a periodic state scales linearly with
the model time constant, reaching a median of eight
cardiac cycles for our subset of models. Even when
using initial conditions other than zero, e.g., from a
steady state solution, the number of cardiac cycles
required still scales with model time constant.

We introduced the asymptotic error to determine
whether a simulation has reached a periodic state,
calculating the relative difference of the results in the
current cardiac cycle to a perfectly periodic solution.
As the periodic solution is not known a priori, we
proposed to use a 0D model of the boundary condi-
tion. Taking the flow at a 3D outlet as input, we esti-
mate the periodic pressure and compare it to the
pressure at the 3D outlet. This method is a quick and
easy validation tool for any 3D vascular fluid dynamics
simulation with lumped-parameter boundary condi-
tions. This method relies on the fact that flow con-
verges quickly, which we observed in all our models
(see Fig. 5). Alternatively, the asymptotic error can be
estimated from the cycle-to-cycle difference and the
factor a in (23). In models with time constants larger

than 1= ln 2 � 1:44, the cycle-to-cycle difference is
lower than the asymptotic error. A low cycle-to-cycle
difference can erroneously lead the user to believe that
the simulation has already reached a periodic state
when comparing two consecutive cardiac cycles. This is
visualized in Fig. 11. Using the same error tolerance of
1% but different error norms, cyclic error (red) and
asymptotic error (blue), yields a pressure difference of
10 mmHg. Thus, only the asymptotic error is a suit-
able metric to determine the distance of a simulation to
its periodic state.

To reduce 3D computation times, we proposed a
method to generate good initial conditions in an
automated and computationally inexpensive way. We
used SimVascular to automatically generate a 1D
replication of the 3D model, which we ran until we
achieved a periodic state. We than mapped the 1D
solution onto the 3D Finite Element mesh. Note that
the mapping does in general not result in a fluid field
that is divergence free. However, we are not interested
in generating a physical or physiological meaningful
solution. Instead, the initial conditions are ‘‘washed
out’’ by the first iteration of our numerical solver of the
Navier Stokes equations. Similarly, the pressure field
does not capture local variations. Here, it should be
noted that it is much more important to match the
overall pressure level of the model, which is in general
much higher than any local variations. In a conver-
gence analysis with six different vascular models, we
demonstrated that models with our 1D initialization
method converge in one or two cardiac cycles. This
greatly reduces the computation time for the 3D model
over the standard method of initializing pulsatile sim-
ulations with a steady-state solution, typically dozens
of hours in simulation time and hundreds of hours in
CPU time. The code for the 1D initialization is freely
available on GitHub (https://github.com/SimVascular/
SimVascular).

We close with a discussion of the limitations and
future perspectives of our work. We did only consider
RCR boundary conditions in this work. However,
there are many more examples of lumped parameter

TABLE 2. Simulation time t3D for one cardiac cycle of the 3D simulation, model time constant �s=T , and number of cardiac cycles
(pressure/flow) for different initial conditions (zero, steady, 1D) with �1 � 1%. The maximum number of cardiac cycles in a
simulation is highlighted in bold. The last row shows the time savings on 48 CPU cores for each simulation when using the 1D

initialization compared to the steady state initialization.

ID 0003_0001 0097_0001 0107_0001 0111_0001 0130_0000 0156_0001

t3D 2.2 h 1.7 h 1.9 h 6.3 h 6.6 h 6.4 h

�s=T 2.5 0.2 4.4 1.3 3.8 2.1

Zero 12/6 2/2 20/1 7/1 16/1 10/3

Steady 7/3 2/2 6/1 5/2 9/3 5/2

1D 1/2 1/2 1/1 1/1 1/1 1/2

tsaved 11 h 0 9.5 h 25 h 53 h 19 h

BIOMEDICAL
ENGINEERING 
SOCIETY

On the Periodicity of Cardiovascular Fluid Dynamics Simulations 3589

https://github.com/SimVascular/SimVascular
https://github.com/SimVascular/SimVascular


0D networks that are coupled to 3D models, such as
coronary boundary conditions23,24 and 0D closed loop
models used, e.g., in simulations for single ventricle9,10

and coronary artery bypass graft (CABG) patients.29

In the general case of lumped parameter boundary
conditions, the model time constant cannot be deter-
mined analytically. However, it can still be calculated
numerically from the time it takes the boundary con-
dition to respond to a step in the inflow condition. We
plan to include these boundary conditions in future
work. It should be noted that those boundary condi-
tions not only require initialization of the velocity and
pressure field in the 3D model but also in unknowns
that are internal to the 0D model. Since we use cycle-
average quantities as a convergence criterion, we can-
not guarantee that highly transient phenomena such as
transition to turbulence converge as well. All models
compared in this work produced a periodic solution. In
rare cases when solutions are non-periodic, we antici-
pate that our method will still perform well since the
generated initial conditions could still be applicable.
Furthermore, we only considered rigid-wall simulation
in this work. We plan to test our 1D initialization
method for deformable wall simulations as well, using
the coupled momentum method14 or an arbitrary La-
grangian–Eulerian formulation.12 To further improve
our method and guarantee periodic convergence within
one cardiac cycle, it will be necessary to improve the
mapping of the velocity field to the 3D model. This
could be accomplished for example by solving a Stokes
flow problem, using the 1D results as boundary con-
ditions.

ACKNOWLEDGMENTS

We thank Dr. Luca Pegolotti and Dr. Irene Vignon-
Clementel for insightful discussions. This work was
supported by NIH Grants R01LM013120 and
R01EB029362. The authors gratefully acknowledge

the Stanford Research Computing Center for provid-
ing the computational resources necessary to the
numerical simulations presented in this work.

REFERENCES

1Mirramezani, M., and S. C. Shadden. A distributed
lumped parameter model of blood flow. Ann. Biomed. Eng.
48:2870–2886, 2020.
2Formaggia, L., A. Quarteroni, and A. Veneziani, editors.
Cardiovascular Mathematics. In Modeling and simulation
of the circulatory system Series: MS&A, Vol. 1. Springer,
2009.
3Mirramezani, M., S. L. Diamond, H. I. Litt, and S. C.
Shadden. Reduced order models for transstenotic pressure
drop in the coronary arteries. J. Biomech. Eng.
141(3):031005, 2019.
4Zhou, Y., G. S. Kassab, and S. Molloi. On the design of
the coronary arterial tree: a generalization of murray’s law.
Phys. Med. Biol, 44(12):2929–2945, 1999.
5Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and
C. A. Taylor. Outflow boundary conditions for three-di-
mensional finite element modeling of blood flow and
pressure in arteries. Comput. Methods Appl. Mech. Eng.
195(29-32):3776–3796, 2006.
6Antiga, L., M. Piccinelli, L. Botti, B. Ene-Iordache, A.
Remuzzi, and D. A. Steinman. An image-based modeling
framework for patient-specific computational hemody-
namics. Med. Biol. Eng. Comput. 46(11):1097–1112, 2008.
7Arthurs, C. J., N. Xiao, P. Moireau, T. Schaeffter, and C.
A. Figueroa. A flexible framework for sequential estima-
tion of model parameters in computational hemodynamics.
Adv. Model. Simul. Eng. Sci. 7:48, 2020.
8Bertaglia, G., A. Navas-Montilla, A. Valiani, M. I. M.
Garcı́a, J. Murillo, and V. Caleffi. Computational hemo-
dynamics in arteries with the one-dimensional augmented
fluid-structure interaction system: viscoelastic parameters
estimation and comparison with in-vivo data. J. Biomech.
100:109595, 2020.
9Bove, E. L., M. R. de Leval, F. Migliavacca, R. Balossino,
and G. Dubini. Toward optimal hemodynamics: computer
modeling of the fontan circuit. Pediatr. Cardiol. 28(6):477–
481, 2007.

FIGURE 11. Pressure convergence of an outlet in model 0076_1001 with time constant �s=T ¼ 9:6, starting from zero initial
conditions. The red cardiac cycle was selected at �n ¼ 1%, the blue one at �1 ¼ 1%.

BIOMEDICAL
ENGINEERING 
SOCIETY

PFALLER ET AL3590



10Bove, E. L., F. Migliavacca, M. R. de Leval, R. Balossino,
G. Pennati, T. R. Lloyd, S. Khambadkone, T.-Y. Hsia, and
G. Dubini. Use of mathematic modeling to compare and
predict hemodynamic effects of the modified blalock-taus-
sig and right ventricle-pulmonary artery shunts for
hypoplastic left heart syndrome. J. Thorac. Cardiovasc.
Surg. 136(2):312–320.e2, 2008.

11Brooks, A. N., and T. J. R. Hughes. Streamline upwind/
petrov-galerkin formulations for convection dominated
flows with particular emphasis on the incompressible na-
vier-stokes equations. Comput. Methods Appl. Mech. Eng.,
32(1-3):199–259, 1982.
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