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Abstract—Due to the adverse impacts of hip fractures on
patients’ lives, it is crucial to enhance the identification of
people at high risk through accessible clinical techniques.
Reconstructing the 3D geometry and BMD distribution of
the proximal femur could be beneficial in enhancing hip
fracture risk predictions; however, it is associated with a high
computational burden. It is also not clear whether it provides
a better performance than 2D model analysis. Therefore, the
purpose of this study was to compare the 2D and 3D model
reconstruction’s ability to predict hip fracture risk in a
clinical population of patients. The DXA scans and CT scans
of 16 cadaveric femurs were used to create training sets for
the 2D and 3D model reconstruction based on statistical
shape and appearance modeling. Subsequently, these meth-
ods were used to predict the risk of sustaining a hip fracture
in a clinical population of 150 subjects (50 fractured, and 100
non-fractured) that were monitored for five years in the
Canadian Multicentre Osteoporosis Study. 3D model recon-
struction was able to improve the identification of patients
who sustained a hip fracture more accurately than the
standard clinical practice (by 40%). Also, the predictions
from the 2D statistical model didn’t differ significantly from
the 3D ones (p > 0.76). These results indicated that to
enhance hip fracture risk prediction in clinical practice
implementing 2D statistical modeling has comparable per-
formance with lower associated computational load.
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INTRODUCTION

Osteoporosis is adiseasemost common inolder adults,
which results in low bone mass and micro-architectural
deterioration, and can lead to a bone fracture.31 The hip
(proximal femur) isoneof themost commonsites affected
by osteoporosis, the fracture of which can result in severe
morbidity and mortality.12,27 Patients with an early
diagnosis of osteoporosis can benefit from protective
measures (e.g., targeted exercise, hip protectors, phar-
maceutical interventions) to prevent these fractures.25,39

Currently, themost commonmethod for the diagnosis of
osteoporosis relies on the measurement of bone mineral
density (BMD) fromadual-energyX-ray absorptiometry
(DXA) scan.31 However, studies have shown that the
DXAscan alone is not sufficient in identifying all patients
at high risk of sustaining a hip fracture,20,29 and fifty
percent of hip fractures occur in patients with non-os-
teoporotic DXA scans.9,36

DXA scans mainly measure the average BMD in
certain regions of the bone, from which the mechanical
properties of the bone can be inferred; however, the
strength of a femur depends on its geometry,8,16 BMD
distribution pattern,40,42 and trabecula’s quality 17,32 as
well. Also, the probability of sustaining a fall and the
variability of the loads applied to an individual during a
fall are other factors that have been neglected by this
approach.22 Some studies have tried to incorporate these
factors in fracture risk assessments to enhance the
identification of patients at a higher risk of sustaining a
fracture.1,3,10,15 Considering the effect of a femur’s
geometry and BMD distribution can be done in 2D
usingDXA scans andX-ray radiographs, or in 3D using
Computed Tomography (CT) scans and Magnetic
Resonance Imaging (MRI).13 While 3D imaging pro-
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vides more insight into the whole geometry and density
distribution of the bone, it is not always feasible to use
3D imaging, due to the expense, time, accessibility, and
radiation levels. Therefore, it is anticipated that 2D
imaging (DXAscans) will remain as the primarymethod
of diagnosing osteoporosis and consequently fracture
risk.41

To enhance hip fracture risk prediction, researchers
have performed 2D analysis on medical images (either
DXA scan or another X-ray based radiography of hip)
and their results have shown that it has noticeable
improvements over BMD alone (up to 42% improve-
ment in identifying patients at high risk).1,6,13 Also, to
gain the benefits of 3D imaging, other studies have
tried to develop 3D structures from 2D scans, using
statistical modeling.10,35 This method allows inference
of both geometry and architecture of bones in 3D
based on a template model that is created from a
training set. Reconstruction of the 3D model of the
proximal femur based on a 2D DXA image can enable
estimation of the 3D features that otherwise cannot be
evaluated in a 2D image.11 The generated 3D model
can also be used for further numerical analysis such as
finite element analysis.7 Some studies have investigated
hip fracture risk by considering the effect of the fe-
mur’s shape and BMD distribution through 3D sta-
tistical models, and their results showed that fracture
risk estimation was substantially improved compared
to using traditional BMD evaluation (up to 45%
improvement in identifying patients at high risk).3,37

While generating 3D models might be a necessity in
further numerical analysis, it is not completely clear if
recreating the 3D model from a 2D image to only
investigate the geometry and BMD distribution pat-
tern in the femur will have an advantage over investi-
gating the geometry and BMD distribution pattern in
2D alone. Since the 2D and 3D model studies to esti-
mate hip fracture risk were performed based on dif-
ferent training sets and testing groups, the potential to
do any direct comparison between them is limited.
Therefore the aims of this study were (1) to create 3D
shape and BMD distribution models of the proximal
femur based on DXA scans, (2) investigate the accu-
racy of the proposed 3D model reconstruction in
comparison to CT scans, and (3) apply 2D and 3D
model analysis methods to a clinical population to
estimate their hip fracture risk and compare it to their
fracture history in a five-year period after the baseline.

MATERIAL AND METHODS

This study had two phases: in phase one, the 2D and
3D analyses were developed using cadaveric specimens
(which had 2D and 3D images). In phase two, the

techniques were tested and evaluated on a clinical
population who had 2D images and fracture history
over five years. Ethics approval was granted through
McGill University and the appropriate ethics review
boards for each participating center. All participants
gave written informed consent.

Sixteen isolated cadaveric femurs with no report of
any musculoskeletal disease (8 male 61.6 ± 10 years
old, 8 female 64.7 ± 6.6 years old) were used for the
training sets in this study.14 Each femur was scanned
with a DXA scanner (Hologic Discovery A, Hologic,
Inc., Marlborough, MA, USA) and a CT scan machine
(GE LightSpeed, GE Healthcare, Chicago, Illinois,
USA) with 0.625 mm slice thickness, 0.7 mm in plane
resolution, and 120 kV tube voltage, to obtain the
geometry and 2D areal and 3D spatial BMD distri-
bution within the bone.

3D Model Reconstruction from DXA Scan

Image processing was performed using MATLAB
Image Processing Toolbox (MATLAB R2019b,
MathWorks, Natick, Massachusetts, US). Recon-
struction of the model consisted of two stages: (1)
creating the BMD and geometry template models,
where the 3D template models were created and the
main modes of variation in the geometry and BMD
distribution in the training set were found, and (2)
assessing a new scan, where each new DXA scan can
be described by the template model plus some varia-
tion from it based on the calculated main modes of
variation from the first step. The values of these modes
were estimated through an optimization process to
minimize the differences between the calculated model
and the real DXA scan.

Creating the BMD and Geometry Template Models

To create the 3D statistical shape and appearance
model, the CT scans of the cadaveric femurs were used
to generate 3D models for the training set (MIMICS
22.0, Materialise NV, Leuven, Belgium). For each
scan, an STL file was generated to represent the
geometry of the proximal femur and a voxel-based
mesh was created to describe the BMD distribution in
the bones. Twenty-seven geometric landmarks were
assigned to each of the models (Fig. 1). The landmarks
were placed on the exterior surface of the bone and
were based on the identifiable anatomical features.
After aligning and removing the effect of translation,
rotation, and scaling (using General Procrustes Anal-
ysis, GPA) the average landmark coordinates were
calculated. Then all models were warped to the average
landmark coordinates. The minimum number of ver-
tices from the CT scan 3D model creation was 2255
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vertices, so these were chosen as the reference vertices
and corresponding vertices in other 3D models were
selected automatically by a closest point algorithm.
The average 3D shape was thus calculated (creating the
template geometry model), and then all 3D models as
well as the voxel-based mesh were warped to the
average model. Hounsfield Unit (HU) values were then
captured in 1 9 1 9 1 mm voxels for each warped 3D
model and normalized to the mean and standard
deviation of that model. They were then averaged for
all specimens to create the template BMD model. Fi-
nally, Principal Component Analysis (PCA) was used
on both geometry and BMD data to find the main
modes of variation in them, which were then gathered
in a matrix and PCA was used again to find the main
modes of variation for statistical shape and appearance
model combined. In describing the geometry, these
main modes could correspond to various geometry
traits (e.g., the neck-shaft angle, neck length, …), and
in describing the BMD distribution, they correspond
how much density is concentrated in various regions
(cortical thickness, density in the trochanteric area
compared to the femoral head,…). More examples
with illustration can be found in a previous study.13

Assessing a New Scan

To create the 3D model of each femur from its DXA
scan, 19 landmarks were assigned on the contour of the

femur. Next, the geometry template model was ad-
justed by changing the weight of its main modes of
variation to minimize the difference between the DXA
scan and anterior-posterior projection of the 3D model
(Fig. 2). After estimating the geometry modes, the fe-
mur’s shape from the 2D DXA scan was warped to the
anterior-posterior projection of the 3D geometry
template, and then the gray value of each pixel was
captured and normalized to the mean and standard
deviation of all pixels for that scan. To obtain the
anterior-posterior projection of the 3D template
model, the intensity of the voxels (representing the
BMD) along the sagittal axis were accumulated to find
each pixel’s intensity in the 2D image (anterior-poste-
rior projection). The intensity of each pixel was then
normalized to the mean and standard deviation of all
pixels in that image (the 2D projection).

The 3D BMD template model was changed by
altering the weight of its modes, and in each iteration,
the anterior-posterior projection of the adjusted tem-
plate was compared to the warped DXA scan to
minimize the differences (pixels’ intensity) between the
two and eventually finding the weight of the BMD
modes through an optimization process. In the end,
both the calculated geometry and BMD modes were
combined to find the statistical shape and appearance
modes.

FIGURE 1. Flowchart of creating the 3D statistical shape and appearance models. From the CT scans of isolated cadaveric femurs
an STL file to show the surface geometry and a voxel-based mesh to show the BMD distribution was generated. LM landmarks,
PCA principal component analysis, HU hounsfield unit, BMD bone mineral density.
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Evaluation of the 3D Model Reconstruction

To evaluate the accuracy of the 3D model recon-
struction, the leave-one-out cross-validation tech-
nique13,35 was used on the 16 cadaveric specimens. So,
to create the 3D model of each femur from its DXA
scan, the CT scans of the other 15 specimens were used
in the training set to create the template models and
find the main modes of variations. After reconstructing
the 3D model for each femur, the created 3D models
were compared to the CT-based 3D models. This was
evaluated based on the minimum point to surface
distance between each vertex from the 3D model
reconstruction and the 3D model from the CT scan, as
well as the BMD values of the corresponding voxels.

Clinical Data

The subjects used in this study were recruited by the
Canadian Multicentre Osteoporosis Study (CaMos). A
total of 150 patients’ data was used (Table 1), 50 of
whom sustained a hip fracture within five years of the
baseline DXA scan with a Hologic DXA scanner
(Hologic, Inc, Marlborough, MA).

Predicting the Fracture Risk Based on 3D Model
Reconstruction

In the clinical application, to create the 3D model of
each subject’s proximal femur from its DXA scan, the
training set of 3D models of 16 cadaveric specimens
was used, and the weight of each variation mode was

calculated based on the algorithm described earlier in
‘‘3D Model Reconstruction from DXA Scan’’ sec-
tion. Next, to estimate the fracture risk for each subject
(‘test group’), 25-fold cross-validation was used (to
allow maximum number of subjects in the training set
as well as having equal number of fractured and non-
fractured subjects in all groups). The 150 subjects were
randomly divided into 25 groups. Each group con-
sisted of two fractured cases and four non-fractured
subjects. To predict the fracture risk for the subjects in
each group (test group) the other 144 subjects (‘train-
ing set group’) were used to create and train a fracture
risk prediction function (based on the reported fracture
history of the subjects). This was done through a
logistic regression analysis, which uses a logistic func-
tion to model a binary dependant variable (fracture vs.
non-fracture). The variables used in the functions were
the calculated modes, areal BMD, and the mean and
standard deviation of pixels from the DXA scan.
Subjects with an estimated probability of fracture
greater than 50% (an arbitrary threshold) were con-
sidered high risk (likely to sustain a hip fracture).

Predicting the Fracture Risk based on 2D Model
Reconstruction

Details regarding the 2D (i.e., DXA-based) statis-
tical shape and appearance modeling have been de-
scribed previously.15 Briefly, landmarks were assigned
to each of the DXA scans and then aligned and aver-
aged to create the geometry template model. Next,
each image was warped to the geometry template

FIGURE 2. The flowchart of finding the modes for a new DXA scan. The modes are found through an optimization process to
minimize the difference between the anterior-posterior projection of the altered template model and the DXA scan.
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model and the gray value of each pixel (which is an
indication of the areal BMD value) was captured and
normalized to the mean and standard deviation of all
pixel values (within the same scan). All captured and
normalized pixel values within the training set were
then averaged to create the template BMD model.
Principal Component Analysis (PCA) was used on
both models (geometry and BMD) to find the main
modes of variation for each and then combined, then
PCA was again used to find the main modes of vari-
ation in describing the geometry and BMD distribu-
tion together. To reconstruct the geometry and BMD
distribution of each DXA scan based on the variations
in the training set, a series of landmarks on the contour
of the femur were assigned to each DXA scan.15 Then,
the template geometry and BMD models were adjusted
by the main modes of variation to recreate the DXA
scan.15To estimate the fracture risk based on the 2D
model reconstruction, the 25-fold cross-validation
technique was conducted on the clinical data, as was
done on the 3D model reconstructions.

Evaluation of the Fracture Risk Predictions

The two new image analysis methods (2D and 3D)
were compared to two clinical metrics: total areal
BMD and T-score. The total areal BMD from the
DXA scans were also investigated using logistic
regression analysis and 25-fold cross-validation in the
same way as 2D and 3D SSAM. A threshold of 50%
was used to assign each subject to high or low fracture
risk. A T-score of -2.5 (the standard threshold for
osteoporosis 4) was also used to divide the subjects into
low and high fracture risk groups. In the end, all pre-
dictions from 2D SSAM, 3D SSAM, BMD and T-
score were compared to the fracture history of the
subjects. To compare the 2D and 3D predictions, the
average correct predictions were compared using a
student t-test at a significance level of a = 0.05.

To check the diagnostic value of each technique, the
Receiver Operating Characteristic (ROC) curve, which
plots the true positive rate (sensitivity) versus the false
positive rate (1-specificity) based on different thresh-
olds, was plotted and the area under the curve was
calculated. To compare the geometry between the
average fractured and non-fractured subjects, the mean

location of each vertex was calculated for each group.
The same was done for the BMD and to graphically
illustrate the differences, colored heat maps were cre-
ated for both.

RESULTS

Using a computer with a Core i7 processor and 16
GB RAM, the 2D analysis took less than one minute
and 3D analysis took around 2 h to be completed for
each scan. To account for more than 95% of the
variation in describing the shape and BMD distribu-
tion of the cadaveric femurs nine and 14 modes were
needed for 2D and 3D models, respectively. The
average point to surface errors in the reconstruction of
geometry was 1.65 ± 0.58 mm (range between 0.56 and
4.22 mm, Fig. 3), and the maximum error was related
to the reconstruction of the greater trochanter. To
depict the error proportionally to the geometry of the
femur, it was normalized to the average widest ante-
rior-posterior distance of the femurs in the training set
(53 mm).

The average BMD reconstruction error for corre-
sponding voxels (1 x 1 x 1 mm) was 0.11 ± 0.09 g/cm3

(range between 0 and 0.84 g/cm3), with the maximum
error found in the cortical bone in the medial tro-
chanteric area. The average BMD value from the 3D
model reconstruction and the CT scans were illustrated
for the mid-frontal plane and mid-transverse plane
(Fig. 4).

In the clinical dataset, 2D SSAM was able to cor-
rectly classify 37 (out of 50) fractured cases and 92 (out
of 100) non-fractured cases. Using 3D SSAM, the
technique was able to correctly classify 38 (out of 50)
fractured cases and 93 (out of 100) non-fractured cases.
The T-score was able to correctly classify 18 (out of 50)
fractured cases and 99 (out of 100) non-fractured cases,
and the BMD correctly classified 34 (out of 50) frac-
tured case and 93 (out of 100) non-fractured cases.

The average correct fracture risk prediction rate
based on the 2D analysis for the fractured and non-
fractured subjects were 0.74 ± 0.30, and 0.92 ± 0.22,
respectively (Table 2). For the 3D analysis, these val-
ues were 0.76 ± 0.32, and 0.93 ± 0.26, and there were
no statistically significant differences between the pre-

TABLE 1. The summary of patients’ characteristics.

Subjects Total number Male Female Age (mean ± SD)

Fractured 50 13 37 78.3 ± 7.4

Non-fractured 100 57 43 66.2 ± 9.5
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dictions based on 2D and 3D analysis for the fractured
and non-fractured groups (p = 0.83 and p = 0.76).
Also, both 2D and 3D analyses were able to improve
hip fracture risk prediction for subjects who were at
high risk of sustaining a hip fracture (p < 0.0002 and p
< 0.0001, respectively).

The areas under the ROC curve for 2D SSAM, 3D
SSAM, BMD, and T-score were calculated as 0.92,
0.91, 0.88, and 0.89 respectively, with 2D SSAM hav-
ing the highest value and BMD having the lowest
(Fig. 5). However, the pairwise comparison between
the ROC curves didn’t show a significant difference

between the areas under the curve for any two vari-
ables (0.12 < p < 0.74).

The differences between the average 3D shape and
BMD distribution model for the fractured and non-
fractured subjects were depicted using colored heat
maps. In illustration of the differences in the geometry,
if the average coordinates of the vertices in the non-
fractured group were inside the average fractured
geometry the distance was considered positive (i.e.,
non-fractured was smaller), and vice versa (Fig. 6).
Generally, the average proximal femur’s geometry for
the fractured subjects had a greater outer diameter
than the non-fractured one by an average of 0.6 mm.

FIGURE 3. Illustration of the error in reconstruction of the geometry. The errors have been normalized to the average of the
maximum thickness of the femurs in the training set to be able to compare it to the geometry of the femur as well. The maximum
error was found at the tip of the greater trochanter.

FIGURE 4. Illustration of the volumetric BMD (vBMD) in the average model from the CT scans and the average model from the
BMD reconstruction in two views; top: mid-frontal plane, bottom: mid-transverse plane.
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However, there was no statistically significant differ-
ence between the size of the models (p = 0.07).

For the BMD distribution comparison between the
two groups (fractured and non-fractured subjects), the
difference between the volumetric BMD of the voxels
in the mid-frontal plane was calculated and depicted as
a heat map as well, with higher BMD in the non-
fractured group having a positive value. (Fig. 7). The
average volumetric BMD map in the mid-frontal plane
for the fractured subjects was lower than the non-
fractured group, especially in the inner cortex of the
trochanteric and subtrochanteric areas.

DISCUSSION

In this research, a novel approach to create a 3D
model of the proximal femur from a single 2D DXA
scan was introduced, evaluated, and its ability to

clinically predict hip fracture risk was assessed in a
dataset of patients who were followed for at least five
years. The new technique was able to significantly en-
hance hip fracture prediction in the high risk patients
compared to T-score (40% improvement), which
means that for the approximately 30,000 hip fractures
that happen each year in Canada,18 thousands of
patients at high risk could be identified and protected
from this injury by using this technique. In our previ-
ous studies, we have implemented 2D statistical mod-
eling in a cadaveric study15 and a clinical population
study,13 and the results showed that applying statistical
models can greatly enhance hip fracture risk prediction
in patients. In this study we showed that there was no
real benefit to adding the 3D reconstruction for injury

TABLE 2. A summary of the hip fracture risk prediction results for various classifiers (mean6standard deviation).

Predictor

The rate of correct predic-

tion for Fx subjects (%)

The rate of correct prediction

for non-Fx subjects (%)

The rate of fracture risk under-

prediction in all subjects (%)

The rate of fracture risk over-

prediction in all subjects (%)

2D

SSAM

74 ± 33 92 ± 12 9 ± 11 5 ± 8

3D

SSAM

76 ± 33 93 ± 11 8 ± 11 5 ± 8

BMD 68 ± 37 93 ± 11 11 ± 13 5 ± 8

T-score 36 ± 38 99 ± 5 21 ± 11 1 ± 3

Fracture risk underprediction refers to the subjects that were identified as low risk but sustained a hip fracture and fracture risk overprediction

refers to the subjects that were identified as high risk but didn’t sustain a hip fracture.

Fx fractured, non-Fx non-fractured.

FIGURE 5. Receiver Operating Characteristic (ROC) curves
for various hip fracture risk predictors. The area under the
curve for 3D and 2D SSAM was slightly higher than BMD and
T-score.

FIGURE 6. Surface geometry variation between the mean
fractured and non-fractured subjects. The yellow color
represents the points where the mean vertices of the non-
fracture subjects were inside the mean fractured geometry
(i.e., fractured group was larger than non-fractured) and the
blue points indicate that the mean vertices of the non-fracture
subjects were outside the mean fractured geometry (i.e., the
mean fractured geometry was smaller than the non-fractured).
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risk prediction applications, making this easier and
faster for clinical implementation. Also, this is the first
known study to directly compare 2D vs 3D statistical
shape and appearance modeling to predict the hip
fracture risk in older adults. This has great importance
since implementing 2D geometry and BMD distribu-
tion model reconstruction is associated with less com-
putational burden and can be more achievable in
clinical practice. These results can shape the future of
applying statistical models in clinical practice to pre-
dict hip fracture risk.

Two previous studies have reported reconstruction
errors in geometry and BMD distribution of similar
magnitudes to those in the present study35,38 (average
geometry error of 1.07–1.1 mm, and an average BMD
distribution error of 0.07–0.21 g/cm3). However, the
maximum geometry errors in this study were smaller
than those previously reported (5.4–9.2 mm previous,
vs. 4.2 mm herein).

Comparing the geometry of the proximal femur in
the fractured and non-fractured subjects revealed that
fractured cases tended to have a bigger outer diameter
than non-fractured ones (Fig. 6), although this differ-
ence was not significant (p = 0.07). Other studies that
have investigated the effect of the proximal femur’s
geometry on hip fracture risk5,16,19,24,26 have found
that there was an increase in the outer diameter of the
femur in the fractured group. This effect could be at-
tributed to the body’s response to a decreased BMD
and an effort to resist bending failure by increasing the
diameter to increase the second moment of area.2 It is

worth noting that that the range of the differences
between the fractured and non-fractured geometries
was between 2 1.5 and + 2 mm, and considering that
the average error in the geometry reconstruction was
1.6 mm, some of the difference between the two
geometries might have been affected by the inherent
error in the reconstruction. Therefore, the error in the
geometry reconstruction in addition to the high coef-
ficient of variation (CoV = 0.52) in the distance
between the vertices in the two geometries (fractured
and non-fractured) might have contributed to the lack
of a statistically significant difference in the size of the
femurs in the two groups in this study.

The average voxels’ BMD in the mid-frontal plane
in the fractured cases were lower than the non-frac-
tured ones (Fig. 6). This could be specifically observed
in the inner contour of the cortical bone in the medial
region of the trochanteric area, which can be attributed
to the thinning of the cortical bone in patients with
osteoporosis.23

The area under the ROC curve for both 2D and 3D
analyses were slightly better than T-score and BMD,
although not statistically significant. When looking at
the ROC curve, it can be observed that in the area of
high specificity between 50 and 95% (close to the left
side of the graph, 5–50% false positive rate) the sta-
tistical models were noticeably able to identify more
true positive cases (people actually at risk of fracture)
than the standard clinical method, which would be
more desirable. It also showed that, only in the area of
more than 50% false positive rate (close to the right
side of the graph), the performance of all the methods
were similar, and even in that case the T-score
threshold should be modified from the 2 2.5 that is
currently used. In practice, choosing the right thresh-
old should be a trade-off between sensitivity and
specificity and considering the cost of missing indi-
viduals at high risk or over treatment of people at low
risk.

The area under the ROC curve in another similar
3D study3was reported as 0.83 for aBMD plus age, and
0.93 for 3D reconstruction (considering both geometry
and BMD distribution) plus aBMD and age. However,
two other studies that investigated the 2D analysis
have reported 0.16,1 and 0.036 improvement in area
under the ROC curve while considering only the
geometry, and geometry plus BMD distribution,
respectively. These results suggest that comparing the
improvement made by each method should be assessed
based on various aspects of its performance, and for
evaluation of different techniques a direct comparison
based on the same training set and test set is preferred.

There could be several reasons for the lack of dif-
ference between 2D and 3D predictions. The most
important one is that it might be possible that there is a

FIGURE 7. Volumetric BMD variation in the mid-frontal plane
between the mean fractured and non-fractured subjects. The
red color indicates the voxels that have a higher BMD value in
the non-fractured subjects than the fractured subjects, and
the blue color demonstrates the voxels that have a higher
BMD value in the fractured subjects than the fractured ones.
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correlation between 2D and 3D geometry and BMD
distribution features of the proximal femur. In some
studies to reconstruct the 3D geometry of the proximal
femur,28,33 the main assumption was based on the
dependency of 3D features on the 2D ones observed in
a 2D image (either DXA scan or other radiographs of
the hip), and their results showed that the 3D shape
reconstruction of the proximal femur with this
assumption had an acceptable average error range.
Also, in this study some of the geometry traits were
measured in 2D as well as 3D, and correlations of R2

= 0.79, R2 = 0.75, R2 = 0.47, R2 = 0.45 were found
between the measurements in two directions of medial-
lateral and anterior-posterior for the regions of (a)
femoral head diameter, (b) neck diameter, (c) tro-
chanter diameter 2 mm above lesser trochanter, and (d)
trochanter diameter at the level of the lesser trochan-
ter. So it could be concluded that the most of the 3D
features of the proximal femur correspond with its 2D
features, and although to describe a shape in 3D more
variables are needed, most of these variables are cor-
related to ones observed in the 2D image.

One of the limitations of this study was that in the
training set, the DXA scans and CT scans of isolated
cadaveric femurs were used to make 2D and 3D tem-
plate models, while for the evaluation of these tech-
niques clinical DXA scans were used. The main
difference between the clinical DXA scans and the ones
from the isolated femurs was the effect of the over-
lapping pelvis over the proximal part of the femoral
head, which led to artificially increasing the BMD
measure in this area. Also, due to the presence of soft
tissues in the clinical DXA scans, they were associated
with more noise artifacts. Therefore, since these vari-
abilities weren’t captured in the training set, extra error
might have been induced in the BMD distribution
reconstruction model. However, the effect of these er-
rors was minimized by using the clinical scans in cre-
ating the fracture risk estimation function through
cross-validation.

Another limitation of this study was the limited
number of femurs in the training set. This could limit
the inclusion of all the geometric and BMD distribu-
tion traits of the proximal femur in the training set.
Moreover, the predictions based on the statistical
methods are heavily dependant on features and
behaviors observed in the training set. It is therefore
important that the training set include many of the
characteristics that are present in a population with
respect to sex, ethnicity, and age. However, in this
study with the limited number of the scans in the
training set, the fracture risk prediction was improved,
and one can expect that with a more comprehensive

training set the fracture risk estimation could be even
enhanced more.

Also, in order to be able to implement any com-
plementary technique in clinical practice to enhance
the estimation of the hip fracture risk, first it should be
validated in various studies, and next, it should be
offered in a user-friendly platform with minimum user-
interference (to minimize the user-induced variability).
Therefore, further studies based on comprehensive
training sets are still required to support implementing
statistical models in clinical practice. These methods
should also be presented in platforms that are com-
patible with the current techniques used in practice.

In addition to the mechanical properties of the
proximal femur, many other factors affect a patients’
hip fracture risk. These factors either relate to the
patients’ characteristics34 (e.g., medication use, frac-
ture history, tobacco use, alcohol consumption), fall
mechanics21 (e.g., patients’ height, weight, and re-
flexes), or fall probability30 (e.g., physical activity level,
comorbidities, balance and stability, and age). How-
ever, in this research, only features related to the
proximal femurs’ structural strength were investigated.
Therefore, a more robust prediction would consider
many of these other factors.

This study showed that, while proximal femurs 3D
model reconstruction might be necessary for further
numerical analysis (e.g., finite element analysis and
direct measurement of specific 3D traits), it doesn’t add
significant value to the hip fracture risk estimation
when compared to 2D model reconstruction. This will
have a significant impact on how statistical models are
adopted by clinical practice. Since implementing 2D
techniques is less intensive technically and computa-
tionally, and uses more accessible and safer imaging
modalities (compared to using CT scans) to expand the
training set, it has great potential to be implemented in
clinical practice as part of standard hip fracture risk
estimation in older adults.
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