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Abstract—One of the most important signals to assess
respiratory function, especially in patients with sleep apnea,
is airflow. A convenient method to estimate airflow is based
on analyzing tracheal sounds and movements. However, this
method requires accurate identification of respiratory phases.
Our goal is to develop an automatic algorithm to analyze
tracheal sounds and movements to identify respiratory
phases during sleep. Data from adults with suspected sleep
apnea who were referred for in-laboratory sleep studies were
included. Simultaneously with polysomnography, tracheal
sounds and movements were recorded with a small wearable
device attached to the suprasternal notch. First, an adaptive
detection algorithm was developed to localize the respiratory
phases in tracheal sounds. Then, for each phase, a set of
morphological features from sound energy and tracheal
movement were extracted to classify the localized phases into
inspirations or expirations. The average error and time delay
of detecting respiratory phases were 7.62% and 181 ms
during normal breathing, 8.95% and 194 ms during snoring,
and 13.19% and 220 ms during respiratory events, respec-
tively. The average classification accuracy was 83.7% for
inspirations and 75.0% for expirations. Respiratory phases
were accurately identified from tracheal sounds and move-
ments during sleep.

Keywords—Airflow estimation, Respiratory phases, Sleep

apnea, Tracheal sounds, Tracheal movements.

INTRODUCTION

Airflow is one of the main physiological signals used
to assess the respiratory system and diagnose sleep
apnea.25 Sleep apnea occurs due to full or partial ces-
sation of airflow during sleep.11 Airflow is commonly
measured using nasal cannula or penumotachometer.
However, the mask connected to the penumota-
chometer is uncomfortable, can change the normal
pattern of breathing, and make sleeping difficult for
the individuals.8 With growing interest in developing
portable devices to monitor sleep apnea at home, ease
of use in non-laboratory settings is an important con-
sideration. Nasal cannulae are inconvenient for users
and sensitive to leakage of airflow and movement,
which is particularly difficult to control in home use,
potentially affecting accuracy. Moreover, nasal can-
nulae and penumotachometer can be costly as they
contain several parts that are disposable or need to be
sterilized after each use. Hence, it is important to ex-
plore other modalities for accurate and convenient
estimation of airflow, especially during sleep and in
patients with sleep apnea.

An alternative way of estimating respiratory airflow
is through analyzing respiratory sounds such as tra-
cheal sounds or lung sounds, which can be recorded
over suprasternal notch or chest, respectively. Lung
sounds are usually quiet during expiration, which
make it easy to identify respiratory phases. However,
recording lung sounds could be uncomfortable during
sleep and have lower amplitude during shallow
breathing compared to tracheal sounds.38 In contrast,
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tracheal sound is more convenient for recording and
has higher amplitude during both inspiration and
expiration.27

Previous studies have shown that the energy of
tracheal sounds is strongly related to the respiratory
airflow.10,13,28,31,39,34,36 Such a relationship between
flow and sound energy is different during inspirations
compared to expirations in terms of amplitude and
also in polarity.15,1,33 While airflow is positive/negative
during inspirations/expirations, this polarity does not
exist in tracheal sound energy, which is always positive.
Hence, accurate estimation of airflow from tracheal
sound requires respiratory phase detection,2 which in-
cludes detecting the onset of respiratory phases (lo-
calization) and labeling each phase as inspiration or
expiration (identification).

There have been a few studies on respiratory phase
detection from tracheal sounds. In some studies,
breath localization in sound signals was manually
performed,15,34,33 which can be tedious for an over-
night sleep screening. Also, during overnight record-
ing, tracheal sound features can change due to sleeping
posture, sleep stages, presence of snoring sounds, and
partial or complete collapse of pharyngeal airways.
Presence of various noises such as swallowing, back-
ground noise, and body movement will make it more
challenging to detect respiratory phases during sleep
compared to controlled conditions during wakefulness.
Along with tracheal sounds, respiratory related
movements can be recorded over the trachea using an
accelerometer that can reflect respiratory related
movements.23 During inspiration and expiration,
pharyngeal wall under the suprasternal notch moves
up and down. Such movements, referred to as tracheal
movements in this paper, can be recorded over the skin
by attaching an accelerometer. However, the
accelerometer signal is very sensitive to body and neck
motions, and severe snoring can distort its shape.
Thus, tracheal movements alone may not be accurate
to detect the respiratory phases and require additional
information from tracheal sounds. The aim of this
study is to identify respiratory phases during overnight
sleep screening using tracheal sounds and movements.

MATERIALS AND METHODS

Study Participants and Protocol

Adult individuals aged 18 years and above with
suspected sleep breathing disorder who were referred
to the sleep laboratory of Toronto Rehabilitation
Institute were recruited for this study. The protocol
was approved by the Research Ethics Board of the
University Health Network (IRB #: 15-8967). All

participants gave written consent prior to participation
in the study. Sixty-eight individuals agreed to partici-
pate in the study. Data recorded from 6 out of 68
participants were excluded due to the misplacement of
the sensors resulting in poor quality of sound signal.

Data Collection

Participants underwent overnight in-laboratory
polysomnography (PSG) using Embla� N7000/S4500
(Natus Medical Incorporated). Electroencephalograms
were recorded using standard surface electrodes. Air-
flow was monitored by nasal cannula, thoracoab-
dominal movements using respiratory inductance
plethysmography, and arterial oxyhemoglobin satura-
tion (SaO2) by pulse oximetry. Sleep stages, arousals,
apneas and hypopneas were annotated according to
the American Academy of Sleep Medicine standard.3

Apneas and hypopneas were defined as more than 90%
and 30% drops in airflow or respiratory effort for a
duration of more than 10 seconds, respectively.3

Additionally, hypopneas had to be associated with
arousals or a decrease in SaO2 of more than 3%.

Simultaneously with PSG, respiratory sounds and
respiratory related movements over the trachea were
recorded with a small wearable device, called the
Patch.30 The Patch is developed by our team and in-
cludes a small microphone and a three-dimensional
accelerometer. The Patch was attached over
suprasternal notch with double-sided tape. The Patch
records respiratory sound and respiratory related
movement with the sampling rates of 15 kHz and
60 Hz, respectively.

Data Analysis

The recorded signals were processed and analyzed
using Matlab (2016b, MathWorks, Natick, MA) soft-
ware.

Preprocessing: The recorded signal by microphone
attached over the trachea includes different sounds
with overlapping frequency responses, such as low
frequency muscle movement (about 25 Hz26), breath-
ing sounds (50–4000 Hz5), heart sounds (20–500 Hz29),
snoring sounds (20–1500 Hz18) and high frequency
ambient noises (> 2000 Hz29). To extract the breath-
ing sounds and remove the low and high frequency
noises, the recorded tracheal sound was filtered using a
zero-phase fifth-order bandpass Butterworth filter with
bandwidth of 70–2000 Hz,37 which includes the main
frequency components of tracheal respiratory
sounds.35 Tracheal sound energy (TSEng) was calcu-
lated as the logarithm of the variance of the bandpass
filtered signal calculated within a moving window of
20 ms length and 75% overlap.13,28,33
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Heart sounds removal involves two steps of
localizing heart sounds and removing the effects of
heart sounds from the TSEng. The spectral content of
heart sounds is typically below 150 Hz.29 Thus, to
localize heart sounds, the breathing components of the
recorded tracheal sounds were attenuated using a
band-pass filter with a frequency range of 20–150 Hz.
Then, the peaks in the envelope of the filtered signal
were detected. To remove the effects of heart sounds
from TSEng, localized heart sounds segments were re-
placed by cubic interpolation of TSEng in the adjacent
segments.35

Snoring sounds are another common noise super-
imposed with breathing sounds during sleep. Snoring
sounds usually occur during respiratory phases and
not during transitions between respiratory phases.
Therefore, the presence of snoring sounds is not ex-
pected to affect our proposed algorithm to detect res-
piratory phases. As a result, snoring sounds were not
removed from the recorded tracheal sounds. However,
we investigated the performance of our proposed
method during periods with snoring sounds to ensure
its validity.

Our proposed method for respiratory phase identi-
fication has two main steps: to localize the respiratory
phase; and to classify each phase into inspiration or
expiration (Fig. 1).

Respiratory phase localization: Energy of tracheal
sound is directly related to the amount of airflow.28,36

During inspiration or expiration, the surge of airflow
through the trachea leads to higher levels of energy in
tracheal sound. In contrast, during the breathing
pauses between respiratory phases, there is no flow of
air. Thus, the microphone attached over the trachea
records only the background noise with lower level of
energy. Therefore, breathing pauses before the onset of
respiratory phases appear as local minima in sound
energy (Fig. 2a and b). On the other hand, similar to
the chest movements during breathing, tracheal
movements can be sensed by an accelerometer placed
over the trachea. During inspiration and expiration,
the tracheal movement signal fluctuates with upward
and downward movements of the trachea. Accord-
ingly, a local minimum or maximum appears at the
onset of these movements (Fig. 2c). An automatic
algorithm was used to detect the onset of respiratory
phases through analyzing tracheal sound and move-
ment.

To detect the onsets, the tracheal sound energy
(TSEng) was first smoothed using a zero-phase fifth-
order Butterworth low-pass filter with 2 Hz cut-off
frequency. A K-means algorithm12 was employed to
cluster the samples of TSEng into 4 different groups.
The group with the lowest mean value was chosen.
This group creates a neighborhood around each local

minimum. Within each neighborhood, the point with
the lowest power represents the respiratory phase on-
set. However it is not precise due to baseline changes in
tracheal sound during sleep, likely caused by snoring
sounds or respiratory events. Thus, the detected set of
local minima (SLV) obtained using clustering was fur-
ther revised by considering other complementary
information from tracheal movement.

To revise SLV, the tracheal movement in axial
direction was low-pass filtered with 0.7 Hz cut-off
frequency and the local minima and maxima of
movement signal were extracted. These points (STM)
ideally represent the onset of inspirations and expira-
tions and were used for estimating the duration of
breath-phases. A local minimum was added to SLV if
the elapsing time between the two consecutive local
minima was more than one and half of the phase
duration estimated from set STM. Conversely, a local
minimum was removed from SLV if the elapsing time
between the two consecutive local minima was less
than half of the estimated phase duration using set
STM. Additionally, the area under the curve (AUC)
and the height of the energy segment between two
consecutive local minima were compared to those of
preceding segment. If the AUC ratio was less than a
threshold (TAUC) and the height ratio was less than Th,
the phase was merged with its previous one. To
determine the optimal values of TAUC and Th, the
phase localization algorithm was applied to 10-min
segments of data with stable breathing in NREM stage
of sleep that were selected from three subjects ran-
domly chosen from groups with normal, moderate and
severe AHI. Then, we changed the thresholds between
10 and 90%. The best phase localization performance
reported as training accuracy was achieved for TAUC of
40% and Th of 25%. Using these data-driven values,
validation accuracy was calculated using the data-dri-
ven values over the remaining 59 subjects. The final
version of SLV includes the location of power drops
which segment energy signal into a sequence of respi-
ratory phases and silence parts.

Silent segments were associated to the segments for
which TSEng is close to the energy of background
noise.38 Since the energy of the background noise can
change over time, the average value of TSEng at the
preceding 5 local minima was used as the noise energy.
If the difference between the average energy of a seg-
ment and that of the background noise was less than
2 dB, it was considered as silence; otherwise, its mor-
phology was further processed to classify the segment
as inspiration or expiration.

Respiratory phase classification: To classify each
respiratory phase as inspiration or expiration, three
criteria were extracted and used in a voting strategy.
The first logic, termed as movement logic, was extracted
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from the tracheal movement signal as recorded by the
accelerometer. During each respiratory phase, inspi-
rations and expirations were marked based on the
rising and falling slopes of the movement signal,
respectively (Fig. 2c). Second logic was called previous-
phase logic, assuming that each inspiration was fol-
lowed by expiration. The third logic is shape logic, and
is based on the fact that the pattern of TSEng is dif-
ferent during inspiration and expiration.15 Therefore,
five morphological features related to the shape of each
phase were extracted as follows (Fig. 3):

– Skewness: Negative of skewness of TSEng which
shows the asymmetry in the shape of a curve.
Skewness is zero for a bell-shaped signal such as
normal inspiration and is positive for left skewed
shapes such as expiration.

– Widthphase: The width of the TSEng envelope during
each respiratory phase at the points where TSEng is
equal to the average of TSEng.

– SlopeFall: The slope of fitted line to the falling edge
of the phase.

– AUC2/1: The ratio of AUC of TSEng in the second
half of respiratory phase over the first half of
respiratory phase.

– AUC3/1: The ratio of the last third of AUC over the
first third of AUC.

To localize the falling edge, firstly the breath-phase
was partitioned into two segments; one segment with
the breathing pattern and the other segment with lower
power including background noise. This was per-
formed using a thresholding technique based on Lloyd
quantization20 for sequestering the points of a breath-
phase into two different groups. The Lloyd algorithm

FIGURE 1. The block diagram of the proposed algorithm to identify each phase as silent, inspiration or expiration.
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clusters the points of a segment into different partitions
by considering their closeness to the center of each
partition (their average value) while preserving their
continuous geometrical shape. The group with lower
mean value was considered as a short pause in
breathing and used for calculating the background
noise power. The other group was known to include
breathing information. Then, the falling edge of a
breath-phase was extracted within the breathing part
by considering the samples from the peak to the end.

Based on the morphology of inspirations and expi-
rations, we expect that all the extracted features would

have smaller values during expiration than inspiration.
The morphological features were extracted for each
respiratory phase and compared with those of the
preceding phase. If more than three of the features
were higher for the respiratory phase compared to
those extracted from the preceding phase, the shape
logic was set as inspiration; otherwise it was marked as
expiration. Finally, voting was applied to the three
logics to determine the type of the respiratory phase.
The performance of the phase identification algorithm
was further analyzed using different combinations of
morphological features (see the Appendix).

FIGURE 2. Example traces of data recorded during sleep, demonstrating (a): apnea marked with complete cessation of airflow, (b)
hypopnea with reduction in the airflow rate, (c): severe continous snoring and (d): milder snoring. The panels include airflow signal
recorded by nasal pressure, recorded tracheal sound signal by the Patch, filtered movement data in anteroposterior direction by
the Patch, extracted tracheal sound energy with the corresponding segments during inspiration, expiration and silent periods. In
(c) and (d), unfiltered movement signal has been shown for better demonstration of snoring impacts. In (c), snoring has appeared
in every inspirations and can be recognized from the (unfiltered) movement signal. Also, snoring has distorted the filtered
movement as it becomes out of phase compared to airflow. In (d), First inspiration has snoring pattern apparently not that intense
to affect the filtered movement. The silent segments were detected by comparing energy of each segment with energy of the
background noise. Note that the sound energy is similarly positive for inspiration and expiration phases.
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Validation and Statistical Analysis

Statistical analyses were performed using R (i386
3.4.1) software. After examining the normality of data
by the Shapiro-Wilk test, we used paired t-test in case
of normal distributions to compare the morphological
features extracted from inspiration and expiration.
Otherwise, the paired Wilcoxon signed-rank test was
used for the comparison. Moreover, for each respira-
tory-phase, repeated measures analysis of variance
(ANOVA) was performed to compare the morpho-
logical features at different airflow levels and sleep
stages. Airflow levels were categorized relative to the
average of airflow signal during the first 5 minutes of
data that subject was awake before falling sleep.
Accordingly, four groups were defined as normal
breathing (flow rates of >70% of the awake airflow),
mild flow reduction (50–70%), moderate flow reduc-
tion (10–50%), and shallow breathing (<10%). To
compare the effects of sleep stages, data during wake-
fulness, rapid eye movement (REM), and Non-REM
stages 1, 2, and 3 (N1, N2, N3, respectively) of sleep
were considered. Tuckey’s post hoc test was used to
detect variables that were significantly different. All the
annotations related to sleep stages and body postures
were extracted from PSG. Nasal pressure was used for
determining different airflow rates. p value of less than
0.05 was considered as statistically significant.

The performance of the respiratory phase
localization algorithm was assessed by calculating the
normalized mean error (NME) between the number of
detected phases overnight using The Patch and those
detected from PSG-based thoracoabdominal move-

ments as the reference signal. Furthermore, the average
detection time delay between respiratory phases de-
tected by The Patch and the reference respiratory
phase was calculated. NME and detection time delay
were reported during periods of normal breathing,
snoring segments, and respiratory events (apneas and
hypopneas). Since, thoracoabdominal movements can
be sensitive to motion artifacts, nasal airflow was used
as the gold standard for validating the classification
algorithm. Nasal airflow has been validated against
face mask in sleep assessment.32 Moreover, in our
study protocol, we used a large size nasal cannula and
taped the cannula to the face to minimize the leakage.
The classification algorithm was evaluated in different
airflow levels, wakefulness and sleep stages, and body
postures. The performance of the algorithm was ana-
lyzed in terms of classification accuracy.

RESULTS

Data Demographics

Sixty-two subjects (age: 51 ± 15 years, 30 females)
with a body mass index of 29.0 ± 5.5 kg/m2 were
considered for this study. Demographics and sleep
structure of the subjects are presented in Table 1.

Respiratory Phase Identification

Figure 2 demonstrates an example of the identified
respiratory phases based on the proposed algorithms.
NME respiratory phase localization algorithm was

FIGURE 3. Derivation of different morphological features from tracheal sound energy during, (a) inspiration (average energy =
2.0), and (b) expiration (average energy = 1.85). AUC: Area under the curve; D: Duration of each phase.
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7.62% (3.72–14.53) during normal breathing, 8.95%
(4.96–15.32) during periods of snoring and 13.19%
(5.33–18.83) during respiratory events (Fig. 4). The
delay of the algorithm to detect the onset of each res-
piratory phase was 181 ms (131–251) during normal
breathing, 194 ms (124–292) during snoring segments,
and 220 ms (179–268) during respiratory events. To
validate the value of the TAUC and Th, training accu-
racy for detecting inspirations (79.46 ± 20.56%) and
expirations (75.81 ± 14.97%) were compared to test
accuracy for inspirations (84.69 ± 8.84%) and expi-
rations (76.93 ± 10.11%). Over 62 subjects, we ana-
lyzed 715,334 breaths; we successfully detected 666,002
(93%) and missed 49,332 (7%). On average, there were
11,727± 2,064 breaths for each subject; we detected
10,918 ± 2,059 of them and missed 809 ± 881. The
results related to validating the performance of the
phase identification algorithm using different subsets
of morphological features were reported in the Ap-
pendix.

Statistical Analyses

All morphological features were significantly larger
during inspiration compared to the expiration (Fig. 5):
Skewness (0.42 ± 0.23 vs. 0.05 ± 0.27, p< 0.001),
Widthphase (1.30 ± 0.20 vs. 1.20 ± 0.22, p< 0.01),
Slopefall (0.012 ± 0.004 vs. 0.011 ± 0.003, p< 0.05),
AUC2/1 (1.67±0.34 vs. 0.68 ± 0.13, p< 0.001), and
AUC3/1 (2.31 ± 0.70 vs. 0.63 ± 0.16, p< 0.001).

During both inspiration and expiration phases, the
values of all morphological features were similar dur-
ing normal breathing and mild flow reduction. The
features in these two flow levels were larger than those
during moderate reduction in airflow and very shallow
breathing. Moreover, during inspiration, the values of
all morphological features were larger during moderate
reduction in airflow than those during shallow
breathing. During expiration, the values of all mor-
phological features, except for AUC3/1, were larger
during moderate airflow reduction than those during
shallow breathing (Fig. 6a).

Respiratory Phase Classification

Table 2 shows the accuracy of the respiratory phase
classification during inspiration and expiration for
different flow levels, sleep stages and body position.
Furthermore, for these variables in each respiratory
phase, the changes in the accuracy across groups were
compared to normal breathing, wakefulness and su-
pine body position, respectively. Significant lower
accuracies occurred in shallow breathing (p< 0.001) in
inspiration. For expiration, lower accuracies were
obtained in moderate flow reduction (p< 0.001) and
shallow breathing (p< 0.001) compared to normal
breathing. Also, during inspiration significant higher
accuracies obtained during N2 (p = 0.011) and N3
(p< 0.001) over wakefulness. For expiration, the

FIGURE 4. (a) Error of breath-phase detection algorithm, and (b) delay of the algorithms in detection of respiratory phase onsets
during normal respiration, snoring and respiratory events (hypopnea/apnea); NME: normalized mean error (%).

TABLE 1. Demographics and sleep structure of participants.

Characteristics Quantity

N (Female) 62 (30)

Body Mass Index (kg/m2) 29.0 ± 5.5

Age (years) 51 ± 15

Apnea/Hypopnea Index (events/h) 18.3 ± 19.8

Sleep efficiency (%) 76.4 ± 15.8

TST (min) 313 ± 57

N1 (%TST) 12.9 ± 8.8

N2 (%TST) 64.9 ± 8.7

N3 (%TST) 7.1 ± 7.6

REM (%TST) 15.4 ± 6.2

TST: total sleep time, N1, N2, N3: Non-REM1, Non-REM2, and

Non-REM3 sleep stages. Values are report as mean ± standard

deviation.
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accuracy in all sleep stages except N1 was significantly
higher than wakefulness. For lateral postures, in
comparison to supine, significant higher accuracy was
obtained. The overall classification accuracy of the
proposed algorithm based on both tracheal sounds and
movements were 83.63% (80.42–88.77) during inspi-
ration and 74.90% (69.44–80.87) during expiration. On
the other hand, we found that the classification accu-
racy based on analyzing only tracheal sound was
63.10% (56.93–67.25) during inspiration and 53.52%
(51.08–54.56) during expiration. Similarly, the classi-
fication accuracy using only tracheal movements was
77.20% (71.69–88.91) during inspiration and 71.21%
(65.60–79.11) during expiration. Note that the pre-
sented classification results were based on the phase
identification algorithm, which was mostly based on
analyzing the sound signal.

DISCUSSION

The main finding of our study is to develop the first
automatic algorithm to detect inspiratory and expira-
tory phases during sleep in patients with sleep apnea
using respiratory related sounds and movements. We
have demonstrated that our proposed algorithm was
able: 1) to detect the onset of respiratory phases with
delay of less than 300 ms; 2) to integrate the mor-
phological features extracted from tracheal sounds and
the direction of tracheal movement to classify respi-
ratory phases into inspirations and expirations, and 3)
to achieve high classification accuracy in the presence
of respiratory events and snoring segments. In our
recent study, we have shown reliable estimation of
airflow shape using tracheal signals during sleep tests,
which was based on identification of respiratory
phases.2 In this study, we extensively presented our
approach for identification of respiratory phases.

Previous studies successfully differentiated inspira-
tions from expirations during wakefulness in tracheal
sound1,36,33 seismocardiogram signals42,41 lung
sounds22,24 and their combination with tracheal
sounds.19 However, analysis of tracheal sound
recorded during a clinical sleep test is more challeng-
ing, especially in patients with sleep apnea who present
a lot of variability in their airflow level due to the
presence of respiratory event.

To address this challenge, we have analyzed tracheal
sounds combined with tracheal movements. Associated
with inhalation and exhalation, the accelerometer over
the trachea records the upward and downward move-
ments of the trachea; herein the recorded signal is
called the ‘‘movement signal’’. However, the move-
ment signal does not provide an accurate measure of
the onset of each breathing phase and can be easily
distorted by snoring and body movements (Fig. 2c).
Thus, in this study, the movement signal has been used
only for a rough estimation of the breathing phase as
part of the phase localization algorithm. On the other
hand, tracheal sounds, as shown before,27 provides a
much more accurate measure of the onset of each
breathing phase. Thus, in this study, the analysis of
tracheal sounds played a major role in the phase
localization algorithm (Fig. 2). However, in voting
algorithm for phase identification, the shape logic ex-
tracted from tracheal sounds had the same weight as
movement logic and previous-phase logic. Therefore,
respiratory phase localization and identification were
improved through analyzing both tracheal sounds and
tracheal movements.

Our proposed localization algorithm is based on a
novel approach to detect the onset of respiratory
phases in overnight recordings through detecting
breathing pauses from tracheal sound energy and
revising them based on phase transitions in tracheal
movement. Most previous studies on respiratory phase
localization using tracheal sound were validated on a

FIGURE 5. Comparison between average values of (a) Skewness, (b) Width of the phase at the level of the LV mean value, (c)
Slopefall, (d) AUC2/1, and (e) AUC3/1, in terms of inspirations (Ins.) and expirations (Exp.). Data is presented as mean 6 STD.
AUC: Area under the curve; STD: Standard deviation.
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few subjects and only during wakefulness with con-
trolled airflow rates or during simulated apnea.14,16 In
a study during sleep,17 respiratory phases were de-
tected in selected 10-minute segments of sound signals
from normal breathing of 10 participants. In another
study, respiratory phase localization was investigated
using chest sound signals in 2 subjects during a seated
position.40 In this paper, the phase localization algo-

rithm was validated for the whole sleep data. Addi-
tionally, the algorithm performs adaptive assessment
of the background noise level to differentiate respira-
tory phases from silent segments. The error of phase
localization was higher during respiratory events due
to: i) reduction in tracheal sound amplitude and the
consequent reduction in signal to noise ratio; and ii)
the increased noise levels in thoracoabdominal bands

FIGURE 6. Separate comparison of the average values of different morphological features in inspirations and expirations in terms
of (a) different airflow levels defined as normal breathing (>70%), mild flow reduction (50–70%), moderate flow reduction (10–50%)
and shallow breathing (<10%), and (b) wakefulness and different sleep stages. Data is presented as mean 6 STD. All the values
were normalized by supine wakefulness data for each subject. *p< 0.05, ** p< 0.01, *** p< 0.001.
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due to respiratory related movements. Nevertheless,
the localization algorithm was able to determine the
onset of each phase with delay <300 ms, which is
small compared to duration of a respiratory phase
(1.2–2.5 s).

To classify the detected respiratory phases into
inspiration or expiration, the patterns of tracheal
sound and movement were analyzed. Due to the dis-
tinct airflow patterns during different respiratory
phases19,4,43 and the relationships between airflow and
tracheal sound energy,5,35 it was expected that the
sound energy pattern would be different during inspi-
ration compared to expiration.33 This was statistically
investigated by showing significant changes of mor-
phological features between different respiratory pha-
ses in this study.

All the morphological features except Skewness
were used as defined previously in Ref. 15. However,
there are other differences between the detection
algorithm presented in Ref. 15 and our algorithm. In
this study, in order to extract the width of a respiratory
phase (Widthmean), first the average value of the sound
energy was calculated. Then, the duration of the phase
was calculated at the level of average energy. This was
due to the ambiguity in detecting the onset and ter-
mination of the phase especially during respiratory
events. Also, in contrast to Ref. 15, where the features
of a phase were compared to those of preceding and

following phases, we performed the comparison only
between the phase and its preceding. Additionally in
this study, the direction of tracheal movement, which
changes in relation to respiratory phases, was ex-
tracted. Using the logics extracted from tracheal
movements and the sounds, the classification algo-
rithm was able to demonstrate high performance
without the need of any model training with additional
complexity in the algorithm.

The performance of classification algorithm was
affected by airflow level. Although our algorithm
showed high performance, the lowest accuracy was
obtained during shallow breathing possibly due to
lower signal to noise ratio. Additionally, based on the
changes in the value of AUC2/1 and AUC3/1 during
shallow breathing, inspirations and expirations
resembled each other and were hard to differentiate.

Sleep stages also impacted the performance of the
algorithm. Compared to wakefulness, the pattern of
breathing and the activity level of pharyngeal dilator
muscles are different during sleep as well as different
sleep stages.7 For those with sleep apnea, very shallow
breathing and respiratory events hardly occur in N3.6

Since the accuracy of the classification algorithm was
lower during shallow breathing, its performance was
further studied during wakefulness and across sleep
stages. Higher accuracy was obtained in NREM sleep,
especially in N3. Moreover, the changes of morpho-

TABLE 2. Performance of the breath-phase identification algorithm at different airflow levels (top), during wakefulness and sleep
stages (middle) and different body postures (bottom).

Inspiration Expiration

Airflow levels Accuracy (%)*

vs. Normal breathingp-va-

lue Accuracy (%)

vs. Normal breathingp-va-

lue

Normal breathing (>70%) 85.34 (72.82–

90.94)

– 84.46 (76.38–

90.77)

–

Mild flow reduction (50–70%) 89.57 (82.60–

94.29)

0.261 79.42 (67.09–

90.48)

0.271

Moderate flow reduction (10–

50%)

89.49 (81.08–

94.57)

0.913 70.46 (54.69–

79.30)

<0.001

Shallow breathing (<10%) 63.18 (50.0–78.85) <0.001 49.93 (41.84–

59.63)

<0.001

Sleep stages Accuracy (%) vs. wakefulnessp-value Accuracy (%) vs. wakefulnessp-value

Wakefulness 79.97 (71.73–87.34) – 67.78 (63.28–75.72) –

N1 86.80 (79.47–90.32) 0.115 73.74 (65.95–83.41) 0.083

N2 87.58 (80.46–95.09) 0.011 81.83 (71.65–87.45) <0.001

N3 96.72 (88.61–100) <0.001 94.10 (86.53–99.33) <0.001

REM 85.05 (76.33–91.81) 0.385 77.35 (67.16–88.13) <0.001

Body position Accuracy (%) vs. supinep-value Accuracy (%) vs. supinep-value

Supine 85.23 (72.41–91.88) – 71.71 (61.01–84.05) –

Lateral 86.07 (79.48–92.18) 0.426 79.81 (71.44–83.74) 0.008

*Accuracies are reported in median (25th quartile–75th quartile).
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logical features, particularly AUC2/1 and AUC3/1 were
higher in N3 that shows inspirations and expirations
are more separable in this stage. In terms of body
posture, the accuracy was higher in lateral position in-
line with a lower chance of shallow breathing due to a
lower susceptibility of upper airway to collapse.9

This work has several limitations; first, we did not
exclude any low quality sound or movement segments
that may have been caused by motion artifacts or loose
attachment of the device. This could further add to
some of the discrepancies in our results. For those
phases during noisy segments in which the algorithm
generated outlier values for morphological features or
was not able to detect steadily falling or rising patterns,
the respiratory phase was assumed as inspiration;
however, the algorithm automatically was able to
correct the labels after a few phases. Second, the pro-
posed algorithm was validated on a population with
suspected sleep apnea; hence further studies with a
wider range of individuals are required. Another limi-
tation was related to the hardware that hindered us
from adding another microphone for lung sounds
along with tracheal sounds. This requires more com-
plex hardware and maintaining synchronization
between the two microphones, which was out of scope
of this work. Another limitation of this study was that
we used nasal cannula as the gold standard for vali-
dation, which could be less accurate during shallow
breathing or mouth breathing. However, a previous
study has shown comparable results of nasal cannula
compared to face mask in assessing airflow during
sleep.32 We have not controlled for mouth breathing in
our population. While mouth breathing occurs in less
than 12–15% of individuals during sleep,21 future
studies may control for mouth breathing to increase
validation accuracy. Finally, we have not developed
algorithms to detect swallowing. However, some short
swallowing sounds were merged with the previous
respiratory phase.

In conclusion, the current study shows the feasibility
of automatic localization and identification of respi-
ratory phases during sleep using tracheal sounds and
movements. The proposed algorithm can be employed
in development of wearable devices for robust detec-
tion of respiratory phases in tracheal sound, which is
the first step for accurate and convenient estimation of
airflow during sleep, especially in patients with sleep
apnea.

APPENDIX

The classification performance was validated using
different subsets of features over the training data
(including 3 subjects randomly selected from groups
with normal, moderate and severe sleep apnea). Each
subset needed to have odd numbers of features due to
the voting process for extracting shape logic. Table 3
compares the performance of the classification using
subsets with three features compared to the set
including all the features.
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