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Abstract—Finite element (FE) models of the brain are crucial
for investigating the mechanisms of traumatic brain injury
(TBI). However, FE brain models are often limited to a single
neuroanatomy because the manual development of subject-
specific models is time consuming. The objective of this study
was to develop a pipeline to automatically generate subject-
specific FE brain models using previously developed nonlinear
image registration techniques, preserving both external and
internal neuroanatomical characteristics. To verify the morph-
ing-induced mesh distortions did not influence the brain
deformation response, strain distributions predicted using the
morphed model were compared to those from manually
created voxel models of the same subject. Morphed and voxel
models were generated for 44 subjects ranging in age, and
simulated using head kinematics from a football concussion
case. For each subject, brain strain distributions predicted by
each model type were consistent, and differences in strain
prediction was less than 4% between model type. This
automated technique, taking approximately 2 h to generate a
subject-specific model, will facilitate interdisciplinary research
between the biomechanics and neuroimaging fields and could
enable future use of biomechanical models in the clinical
setting as a tool for improving diagnosis.

Keywords—Magnetic resonance imaging (MRI), Traumatic

brain injury (TBI), Personalized medicine, Computational

mechanics.

INTRODUCTION

Traumatic brain injuries (TBI) are a significant and
costly public health issue. Recent epidemiological
studies have estimated that TBI account for approxi-
mately one third of all injury-related deaths in the
United States.10 However, despite major scientific pu-
shes to reduce their societal cost, the incidence of TBI-
related injuries and deaths continues to rise.16

Scientists and clinicians have studied TBI using
modern imaging modalities to improve diagnosis and
gain understanding of the short and long term conse-
quences.36,51 Magnetic resonance imaging (MRI) is a
technique used to diagnose macrostructural changes
associated with severe TBI (e.g., hematoma, contusion,
axonal injury), but the microstructural injuries asso-
ciated with mild TBI (mTBI or concussion) present
without visible change to the brain parenchyma,28,44

Consequently, mTBI imaging research has shifted to-
wards examining patients with other quantitative MRI
techniques, such as functional MRI (fMRI)26,36,49 and
diffusion tensor imaging (DTI).9,37,59 Much of this
neuroimaging research is based on statistical models
that do not consider the spatial heterogeneity of
mTBI,46 which is necessary to advance quantitative
brain imaging research toward utility in individual
patients.

In the biomechanics field, finite element (FE) mod-
els of the brain have been the gold standard tool for
investigating TBI injury mechanisms.8,35,47,58 They
have also been used to develop and evaluate injury
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criteria and exposure thresholds,19,48,53 which relate
measured head kinematics to risk of brain injury.
Furthermore, FE brain models have been used to as-
sess the efficacy of safety gear and injury mitigation
systems.12,13,50 Today’s state-of-the-art FE brain
models generally include a detailed representation of
the neuroanatomy obtained from medical imaging and
sophisticated constitutive models derived from experi-
mental material testing of the brain parenchyma.33

One of the major limitations of current brain FE
models is that these models have generally been created
to match the anthropometry of a single, representative
person within the population, and historically this has
been a 50th percentile male adult.29,34,53,60 This pre-
sents a significant limitation as structural differences
between two brains under similar impact conditions
may lead to different mechanical responses of the
brain. As a result, little is known about the effects of
anatomical changes to the brain that occur naturally
with development and aging on brain biomechanics.
Limited morphing methods have been developed and
utilized to create subject-specific brain models that are
derived by inner cranial skull shape,57,58 but these
methods do not capture internal neuroanatomical
differences. Alternatively, brain models could be
developed on a subject-by-subject basis, but creating
new models is very time-consuming, making this
approach infeasible for studies using many subjects.

While the fields of neuroimaging and biomechanics
have made significant contributions toward the
understanding of TBI, both disciplines suffer from
limitations the other could potentially address.
Biomechanical analyses may improve the power of
advanced neuroimaging techniques by predicting
regions of interest (ROI) based on the impact condi-
tions sustained by the patient. For instance, Wilde
et al. defined the corpus callosum as a ROI in their
investigation of microstructural changes to adolescent
brains following mild TBI. This was largely informed
by a prior study that utilized a FE brain model to
investigate brain deformation patterns sustained dur-
ing concussive impacts.55,56 Conversely, neuroimaging
techniques may improve the accuracy of biomechani-
cal models by providing the tools necessary to rapidly
create patient-specific models for individual risk
assessment.

Image registration is an industry-standard in neu-
roimaging research. Image registration is the process
by which two anatomical images (typically T1-weigh-
ted MRI) are geometrically aligned through a combi-
nation of linear and nonlinear transformations.3 These
registration pipelines are commonly used to map sub-
ject-specific results to a common brain anatomy (usu-

ally a representative template brain), which normalizes
for individual anatomical differences and facilitates
statistical analyses within a group. As such, image
registration has become a fundamental step in most
image processing pipelines.54 We hypothesize that
these image registration transformations can be uti-
lized to generate subject-specific brain models.

The objective of this study was to develop an
automated process that leverages image registration
algorithms to rapidly and accurately generate subject-
specific FE models of the brain using the subject’s
structural MRI data. The ability to generate subject-
specific FE brain models with high throughput will
enable direct comparisons between subject-specific
biomechanical and imaging analyses and will lend in-
sight into how individual neuroanatomical character-
istics affect subject-specific brain deformation patterns.

METHODS

Image Registration and Transformations

The foundation of the registration-based morphing
(RBM) pipeline is image registration (or geometric
normalization; Fig. 1). In short, image registration is
the process by which a ‘‘moving’’ image I is geomet-
rically aligned with a ‘‘fixed’’ image J.54 This is per-
formed by determining the optimal transformation
that transforms each voxel, x, in the moving image,
I xð Þ, to the corresponding voxel, y, in the fixed image,
J yð Þ, by minimizing some cost function that describes
the differences between I xð Þ and J yð Þ.5 Registration is
crucial for creating brain templates and is also utilized
to perform automated segmentation of brain tissues
and quantify anatomical differences within and across
subjects.3,6 This process is fundamental to many neu-
roimaging studies, with a common application being
mapping subject imaging results to a common space,
usually a brain template, to facilitate inter-subject
comparisons.

Generally, image registration is a two-stage process.
The first stage consists of an affine transformation, U,
that operates to globally align the moving image I xð Þ
with the fixed image J yð Þ. This affine transformation
operates to translate, rotate, scale, and shear the
moving image.5 These global transformation opera-
tions are illustrated in Fig. 1.

I0 xð Þ ¼ U I xð Þð Þ

where I0 xð Þ is the affine transformed image. Following
initial alignment, the second stage is a non-linear
transformation, W, that deforms each voxel x in image
I0 xð Þ to the corresponding voxel y in J yð Þ.
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I00 xð Þ ¼ W I0 xð Þð Þ ¼ J yð Þ þ d yð Þ

where I00 xð Þ is the registered image and d yð Þ is the
registration error. For this study, the Advanced Nor-
malization Tools (ANTs) software package was used
to compute all registrations.3,5 Specifically, the diffeo-
morphic SyN algorithm, which preserves image
topology, was used to ensure that the transformations
were symmetric.4,5

Registration-Based Morphing

Consider a FE model Î x̂ð Þ, composed of nodes x̂,
that corresponds directly to image I xð Þ. In this case,

the objective is to morph the model Î x̂ð Þ to the
geometry depicted in the fixed image, J yð Þ, by applying
the registration transformations required to align
images I xð Þ and J yð Þ. The ANTs registration algorithm
outputs 15 affine transformation parameters. The first
9 parameters, a–i, form a 3 9 3 matrix, UM that defines
the rotation, scaling, and shearing components of the
affine transformation. The remaining 6 parameters, m–
r, relate to the 3 9 1 translation vector Ut. Matrices UM

and Ut can be combined into a 4 x 4 affine transfor-
mation matrix, U, that operates to rotate, scale, shear,
and translate the set of nodes x̂, resulting in an affine

transformed model Î x̂0ð Þ.

U ¼ UM Ut
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However, when applying an arbitrary transforma-
tion K that registers image I xð Þ to J yð Þ, the inverse
transformation, K21, must be used to transform nodes

x̂ in FE model Î x̂ð Þ.4

x̂0 ¼ U�1 � x̂
1

� �

where, x̂0 are the affine transformed nodes in model

Î x̂0ð Þ.
To complete the RBM algorithm, the nonlinear

transformation W is applied to the affine transformed

model, Î x̂0ð Þ. The nonlinear transformation is a 4-di-
mensional matrix that is composed of 3D x-, y-, and z-
deformation fields, where in each 3D image, the
intensity of each voxel represents the applied x, y, or z
deformation at the centroid of the voxel (Fig. 2). Since
the transformation is being applied to nodes (i.e.,
points), the inverse nonlinear transformation must be
applied to the affine transformed nodes.

FIGURE 1. Image registration operations. The affine transformation step globally translates, rotates, and shears the moving
image. The elastic transformation step applies voxel-level deformations to geometrically align the moving image with the fixed
image. The fixed image is usually a population template image.
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W�1 ¼ u xð Þ

where, u is the applied 3D deformation for each voxel
x. To apply the 3D deformation field, defined at the
centroid of each voxel, a linear interpolation function
was used to determine the corresponding deformation

at each affine transformed node x̂0.

x̂00 ¼ x̂0 þ u x̂0ð Þ

where, x̂00 is the fully morphed model that corresponds
to image J yð Þ.

Template Image and Brain Model

A template brain image was constructed from T1-
weighted anatomical scans (MPRAGE; 1.0 mm iso-
tropic voxels, TR= 2300 ms, TE = 2.98 ms, TI = 900
ms, flip angle = 9�, GRAPPA factor = 2) obtained
from 20 young, healthy male participants (age = 22 ±

3.0 years; height = 177.4 ± 3.5 cm; mass = 78.2 ± 9.5
kg) in a separate study.45 A total of 40 images were
used to construct a symmetric template. A symmetric
template was chosen to reduce, on average, the
anatomical discrepancy between the template image
and any subject it is morphed to.17 To force the tem-
plate to be symmetric, the 40 images consisted of the 20

MRIs from each subject and the same 20 MRIs that
were flipped along the left-right (i.e., ear-to-ear) axis.
Since the center plane of the subject images was
roughly located on the mid-sagittal plane, this flip was
approximately a reflection about the mid-sagittal
plane.17 The ANTs multivariate template construction
tool was used in this study.7 This script uses an itera-
tive nonlinear registration algorithm to determine the
average brain anatomy from the 40 included T1
images. During this process, any misalignments in-
duced by the left-to-right flip (i.e., not perfectly
reflecting about the mid-sagittal plane) were automat-
ically corrected, resulting in an accurate and symmetric
template.17 Henceforth, this template will be referred
to as the ‘‘CAB-20MSym’’ template (Center for Ap-
plied Biomechanics, N = 20, male, symmetric tem-
plate). From the CAB-20MSym template, an
intracranial volume (ICV) segmentation mask was
created and used to extract the ICV from the whole-
head MRI template. The ICV segmentation mask was
obtained using a combination of automated brain
extraction (‘‘antsBrainExtraction.sh’’ in ANTs5) and
manual correction. Finally, the ICV image was seg-
mented to identify cerebrospinal fluid (CSF), grey
matter, and white matter using a combination of
automated (‘‘antsAtroposN4.sh’’ in ANTs6) and
manual segmentation.22 The resulting template main-

FIGURE 2. (a) Depiction of the 3D deformation fields used in the non-linear transformation step. For the highlighted voxel, the
non-linear deformation applied during registration is u xð Þ = [5.7, 0.1, 4.4] mm. (b) The nonlinear deformation field can be depicted
as a 3D deformation vector field. (c) From the deformation vector field, the Jacobian determinant image can be computed. Dark
values indicate contraction and bright values indicate expansion, relative to the fixed image. This nonlinear deformation field
corresponds to the moving image depicted in Fig. 1. This subject was chosen for depiction purposes only and was not included in
the analyses performed in this study.
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tained subject image resolution, with 1 mm3 isotropic
voxels.

A custom Matlab (Mathworks, Natick, MA) script
was used to generate a voxel model of the segmented
ICV template image.21 In this process, each CSF, grey
matter, and white matter voxel in the segmented image
was converted to a corresponding hexahedral element
and categorized using its segmented tissue type
(Fig. 3). For example, a voxel identified as CSF is
converted into a hexahedral element classified as CSF.
This process was performed at the resolution of the
template image, yielding 1 9 1 9 1 mm voxel elements.
Quadrilateral shell elements were created on the
external surface of the CSF layer to represent the dura/
skull boundary and was made rigid.18,38 Material
properties, adapted from Miller et al., were assigned to
the corresponding parts. In this study, grey and white
matter were modeled with the same linear viscoelastic
constitutive model.38

Subject Images and Assessment

To verify the RBM algorithm, the CAB-20MSym
template model was morphed to represent the anatomy
of 44 subjects. These included the 20 subjects used to
construct the template, as well as 24 obtained from the
Enhanced Nathan Kline Institute—Rockland Sample
(NKI-RS) database.40 The 24 NKI-RS subjects were
randomly sampled from 391 scans obtained from male
and female subjects between the ages of 21-80 years.
All scans were grouped by sex and age (by decade) and
two subjects were randomly selected from each group.
For each subject, a voxel model, with 1 x 1 x 1 mm
elements, was also generated using the same process
used for the CAB-20MSym template model (Fig. 3).
Subject segmentations were obtained by applying
image registration transformations to the CAB-
20MSym template segmentation image using a nearest
neighbor interpolation. In this study, a total of 88
models were created.

All models were simulated under identical loading
conditions using head kinematics from a reconstructed
football impact (Case 71, Player 2; Sanchez et al.47).
This case had peak linear acceleration and peak
angular velocity of 123 g and 37.7 rad/s, respectively,
and resulted in a concussion. Head kinematics were
prescribed to the rigid shell element dura part that
encased the brain model.18 All simulations were per-
formed using the LS-Dyna explicit solver (mp-
p971R9.1.0 with double precision, LSTC, Livermore,
CA, USA). Simulations were run with 20 CPUs.

For each subject, the difference between the mor-
phed and voxel model was quantified. Model results
included maximum resultant nodal displacements
(MRD), sampled from 1000 nodes located in equiva-

lent locations between the two models for each subject,
and maximum principal strain (MPS) measured at
voxel and global resolution. As metrics of global
deformation, the 95th percentile MRD (across 1000
sampled nodes) and MPS (across all brain elements)
were calculated.41 These metrics were chosen as nodal
displacements are commonly used for model validation
and element strains are used for investigating injury
mechanisms.34,39,53,57

Analysis of Model Results

An advantage of the RBM technique is that the
nonlinear deformation is applied at the voxel-level. In
other words, each voxel is individually deformed to
match the corresponding voxel in the fixed image.
When applying these voxel-level deformations to a
voxel mesh, the previously isotropic voxel elements are
distorted. As characteristics of a brain model mesh
have been shown to affect model results,21 it is possible
that the strain response in a morphed model could
deviate from the corresponding voxel model. This
could be exacerbated in brains with anatomies that
significantly differ from the CAB-20MSym template
and require larger deformations during image regis-
tration (e.g., if the relative volume of the ventricles in
the subject is much larger than the relative volume of
the ventricles in the template model).

To assess the effect of RBM-induced mesh distor-
tions, the difference in model response between the
morphed and voxel models for each subject were
investigated. For global metrics of brain deformation
(e.g., 95th percentile MRD and MPS), a linear
regression between the morphed and voxel results was
performed. To assess differences in the spatial strain
distributions between the voxel and morphed models
for each subject, a strain difference map was computed.
The MPS for each element was mapped back to the
template image space and the difference map was
generated by taking the absolute value of the difference
in MPS between the voxel and morphed model

(abs MPSvox �MPSmorphed

� �
). These difference maps

were used to quantify the mean difference in MPS
between the voxel and morphed models and identify
regions where differences were greatest. Finally, to
assess the effect of mesh distortion on MPS, the dif-
ference in MPS between the voxel and morphed model
for each element was compared to its log Jacobian.
The Jacobian of a voxel represents the volumetric
expansion or contraction of that voxel in subject space
relative to the corresponding voxel in the template
space. For example, a Jacobian value of 2 signifies that
during image registration, that voxel expanded by a
factor of 2. In the imaging community, the log Jaco-
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bian is used to normalize the Jacobian distribution,
and is commonly used to quantify brain growth and
atrophy in various healthy and disease
states.14,15,23,24,27,30,32

Differences in MPS between the voxel and morphed
models were also compared to various mesh, imaging,
and geometric metrics. Mesh metrics included assess-
ments of mesh quality and characteristics (character-
istic element length, scaled Jacobian, aspect ratio). The
scaled Jacobian of an element indicates its deviation
from the ideal shape (i.e., a hexahedron with 90� cor-
ners) and is not to be confused with the Jacobian (or
log Jacobian) assessed in medical image analysis. The
characteristic length is calculated as the ratio of the
volume to the maximum area of an element and the
aspect ratio is the ratio of maximum to minimum edge
length of an element. For an ideal element, both scaled
Jacobian and aspect ratio will be 1. Imaging metrics
included assessments of image similarity between the
subject and CAB-20MSym template and included
cross-correlation (CC), mutual information (MI),
mean squares (MS), and global correlations (GC).
Details on these similarity metrics can be found in
Avants et al.5

RESULTS

Registration-Based Morphing

The CAB-20MSym template had 1,493,500 nodes
and 1,543,976 elements. For all 44 subjects, the RBM
algorithm was successful in generating a subject-
specific model with no user intervention. On average,
the time required to morph an individual model was

approximately 2 h, of which 90% was consumed by the
image registration algorithm. Across all subjects,
intracranial volumes ranged from 1120 to 1750 cm3,
with a mean volume of 1470 ± 160 cm3, which was
similar to the CAB-20MSym template (1440 cm3).
Element quality was preserved with average element
Jacobian ratio of 0.96 ± 0.01 (range: 0.94–0.97), aspect
ratio of 1.25 ± 0.05 (range: 1.14–1.34), and charac-
teristic length of 0.89 ± 0.05 (range: 0.80–0.98) across
all morphed models. As a demonstration, exemplary
voxel and morphed models for two subjects are com-
pared in Fig. 4. Subject HB-008 was a 20-year old male
and subject sub-A00038519 was a 78-year old female.
For both subjects, the morphed models accurately
captured external and internal anatomical features
while preserving mesh quality (Fig. 4).

Global Deformation Analysis

Using the head kinematics from the football con-
cussion case, the 95th percentile values were calculated
from the MPS and MRD distributions. Overall, 95th
percentile MPS and MRD values ranged from
approximately 0.3–0.4 and 9–16 mm. MPS and MRD
exhibited a strong linear relationship across the voxel
and morphed models, with R2 values of 0.98 and 0.95,
respectively (Fig. 5). However, deformation in the
morphed models was consistently lower than in the
voxel models, with mean differences of 0.01 ± 0.005
strain and 0.36 ± 0.25 mm, respectively. These differ-
ences were not related to any measure of mesh quality
or image similarity (Fig. 5).

FIGURE 3. Depiction of the voxel-model generation process. The slices highlighted in the yellow box correspond to the depicted
voxel model slices. CSF is highlighted in red, grey matter in green, and white matter in blue.
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Spatial Distribution of Deformation

For each model, MPS measured at each voxel was
mapped to the template image space. This facilitated a
direct spatial comparison between the voxel and mor-
phed model for each subject, by computing a spatial

difference map (abs MPSvox �MPSmorphed

� �
). For each

voxel, the MPS difference and log Jacobian value were
assessed, and no relationship was observed between
these metrics. For all subjects, the mean median MPS
difference was 0.006 ± 0.004 strain and 95% of all
voxels had an MPS difference of less than 0.04 ± 0.01
strain. The largest discrepancies were observed at the
brain-CSF boundaries. These included the periven-
tricular surface, sulci, and the regions where the falx
and tentorium would be located (Fig. 6). The strains in
these areas were consistently larger in the voxel models

FIGURE 4. Voxel and morphed model comparison for
subjects HB-00845 and sub-A0003851940. Note, slices from
the 3D voxel and morphed meshes were overlaid on the
corresponding slices from the subject MRI images.

FIGURE 5. Relationships between 95th percentile MPS (a) and 95th percentile MRD (b) in the voxel and morphed models.
Differences in MPS (c) and MRD (d) were not related to the image similarity between the template and subject images, assessed
using the mutual information image similarity metric. Similar results were found for the cross-correlation, mean squares, and
global correlation image similarity metrics.
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than in the morphed models, which were all derived
from a common template mesh.

DISCUSSION

In this study, a technique for developing subject-
specific finite element models using image registration
transformations was developed. Unlike traditional
biomechanical morphing methods which are driven by
external surface differences,42 registration-based mor-
phing is a nonlinear technique that captures both
external and internal anatomical features. Subject-
specific model results can be mapped to either template
or subject space, and these results can be correlated to
neuroimaging diagnostics and/or be used to identify
regions of interest for investigating neurological func-
tion following injury. In the biomechanics field, these
models can be utilized to investigate the relationships
between neuroanatomy and injury risk and facilitate
research across a spectrum of populations.

An important concern when morphing FE models is
that the mesh can potentially be heavily distorted,
which can result in inaccurate mechanical calculation
or model instability. This is especially a concern with

RBM as the nonlinear deformations are applied at the
voxel-level, which could induce large mesh distortions
in regions of significant anatomical variation between
the subject and template images. Given the sensitivity
of a brain model’s response to the underlying mesh
characteristics (element type, resolution, and quality),
it was imperative to assess the effect of RBM on the
simulated brain deformations.52,61 For the 44 subject
images used in this study, which covered a spectrum of
neuroanatomies, the morphed and voxel models
resulted in similar deformations. Globally, the 95th
percentile MPS and MRD demonstrated a strong lin-
ear relationship between the voxel and morphed
models, with R2 values of 0.98 and 0.95, respectively.
Despite this strong trend, the 95th percentile MPS and
MRD were marginally lower in the morphed models
compared to the voxel models, with mean differences
of 0.01 strain and 0.36 mm, respectively. Compared to
the magnitude of strain observed in these simulations,
which varied between 0.3–0.4, this difference in strain
is inconsequential. For the boundary conditions
investigated in this study, which represented a con-
cussive American football impact,43,47 the average 95th
percentile MPS and MRD in the voxel models were
0.36 ± 0.03 strain and 12.7 ± 1.8 mm, respectively.

FIGURE 6. (a) MPS distributions for the voxel and morphed models for subjects HB-008 and sub-A00038519. (b) Absolute
differences between voxel and morphed model MPS distributions. All results are in template space.
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Spatially, the largest differences in MPS distribu-
tions between the voxel and morphed models were at
the CSF-brain boundaries such as the periventricular
surface, sulci, and regions proximal to the falx and
tentorium (Fig. 6). Strains in these regions were gen-
erally larger in the voxel models. During the develop-
ment of the CAB-20MSym template image set, the
brain was segmented using an automated segmentation
algorithm.6 However, to ensure that the CSF-brain
boundaries were accurately defined, each slice was
manually edited to correct for any segmentation inac-
curacies and to ensure that the CSF-brain boundaries
were accurately represented. Since the CAB-20MSym
template was the baseline model, these carefully seg-
mented CSF-brain boundaries were preserved in the
RBM-morphed models. To generate the segmentation
images that defined the structure of the voxel models,
the registration transformations were similarly applied
to the CAB-20MSym template segmentation image
using a nearest neighbor interpolation, which differed
slightly from the linear interpolation used to generate
the morphed models. In doing so, the definition of
various CSF-brain boundaries was lost, especially in
the sulci and areas proximal to the tentorium. Since the
CSF was modeled as an elastic fluid material,38 CSF
elements served as shear-decoupling structures, result-
ing in slightly higher deformations in these regions for
the voxel models, which resulted in slightly larger MPS
in the voxel models. However, since the MPS differ-
ences between the morphed and voxel models were
small relative to the overall magnitude of deformation
in these simulations, these slight discrepancies are
negligible. While this could have also contributed to
the differences in MRD between models, it is more
likely that the differences in MRD were attributed to
slight discrepancies between the nodes sampled in the
voxel and morphed models.

The most significant advantage of the RBM tech-
nique is that the morphing operations are nonlinear
and applied at the voxel level, unlike traditional mor-
phing techniques in which all elements are morphed
using transformations that are defined by external
surface differences alone.42 As such, in RBM both

external and internal anatomical features are preserved
in the morphed model. As a comparison to traditional
surface-based morphing (SBM), the CAB-20MSym
template was morphed to sub-A00038519 using SBM.
As expected, the external shape of the brain was
accurately represented, however, neuroanatomical
structures, such as the cortex and ventricles, were not
preserved (Fig. 7). Nonetheless, SBM has been used in
the literature57,58 and is appropriate in many cases. For
instance, SBM is effective in minimizing shape and size
discrepancies between a model and post-mortem
human surrogate specimen used to obtain experimen-
tal data in the model validation process.1,2 This re-
duces the effect of geometrical error in the model
response, providing a more accurate assessment of
model biofidelity. Nonetheless, if subject-specific strain
distributions are required, or if ROI assessment is
needed, SBM is insufficient and a nonlinear morphing
technique is required.

Another advantage is that RBM preserves the mesh
topology of the template model. In fact, the RBM
method is completely model- and mesh-independent.
Although the baseline model used in this study was
simplified (e.g., did not include falx or tentorium),
complex features included in a template model that
would be difficult to implement on a per-subject basis
using voxel models, can be morphed. These complex
features could include anatomical interfaces, such as
the falx and tentorium, meso-scale anatomical struc-
tures, such as axonal bundles or cerebrovasculature, or
non-anatomical features required for contacts defined
in the brain model (e.g., null shells or segment sets
needed for implementing the brain-skull boundary
condition using contacts). Furthermore, the develop-
ment of a voxel model is dependent on the availability
of a segmented brain image and the anatomical biofi-
delity of the model is dependent on the accuracy of the
segmentation image. While there is ongoing work to
automatically segment the falx, tentorium, meninges,
and other brain structures, user intervention can often
be required to some extent.22 The RBM pipeline
streamlines the generation of subject-specific models as
image segmentation (automated, manual, or a combi-

FIGURE 7. Comparison between RBM and traditional surface-based morphing for subject sub-A00038519.42 The largest
differences are observed in the ventricles and cortex.
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nation of both) is only required for the baseline tem-
plate image. Morphing a singular template model also
simplifies the model validation process as only a sin-
gular template model would require validation. Fur-
thermore, although voxel models were utilized in this
study, the RBM pipeline can be used to morph models
constructed with other 3D and 2D element types (e.g.,
hexahedral, tetrahedral, quadrilaterals, and triangles),
provided the FE mesh corresponds to the template
image. Finally, the entire RBM process, including
image registration, took approximately 2 h. This is a
vast improvement over the weeks or months required
to manually develop, assess, validate, and possibly
calibrate a subject-specific brain FE model.

Given these results, RBM is applicable for the
variation in brain anatomies across the subjects used in
this study. Although several of the registration-induced
mesh distortions were moderate, these did not drasti-
cally influence the RBM model results as 95% of all
voxels had a mean discrepancy less than 0.04 strain,
compared to the equivalent voxel model under the
loading condition simulated in this study. This impact
case was selected as it represented an omnidirectional,
real-world, concussive impact with substantial brain
deformation. Although magnitude, direction, and
duration of head kinematics are important aspects of
brain biomechanics, the mesh configuration that arises
from morphing the model to a specific subject is not
dependent on these factors.

The differences in strain between the voxel and
morphed models used in this study were substantially
less than those commonly observed between brain
models used in the literature. Model discrepancy can
arise due to differences in numerical implementation
(e.g., mesh size), material properties, and boundary
conditions within the brain (e.g., brain-skull bound-
ary).21 For instance, Ji et al. observed MPS values
between approximately 0.3–1.5 using three similarly
validated models under identical loading conditions,
similar in rotational acceleration magnitude to those
used in this study.25 Similarly, reducing voxel mesh size
from 4 mm isotropic voxels to 1 mm isotropic voxels
has been reported to increase the 95th percentile MPS
from 0.33 to 0.77.21

It is important to note that applicability of this
method from an anatomical perspective was not con-
sidered in this study. For instance, the anatomical fi-
delity between the RBM-morphed model and original
MRI was not assessed. These discrepancies are related
to image registration error, which has been discussed at
length in the literature.11,20,31 Since RBM morphs a
baseline template model to the anatomy of a subject,
the mesh topology of the template model will be pre-
served in the morphed model. This may result in an
inaccurate morphed model if the subject anatomy

differs substantially from the original template model.
For instance, the template model developed in this
study cannot be used to investigate patients with
structural lesions, such as tumors, atrophy, or injury.
However, the anatomical applicability of RBM can be
expanded by developing additional template images
and models that include alternative neuroanatomical
representations. Although RBM was originally devel-
oped for modeling the human brain, this technique can
be easily applied to other body regions, image
modalities, and image resolutions, provided image
registration transformations can be obtained.

In this study, simplified models were utilized to
demonstrate and investigate the applicability of RBM.
Across all 44 subjects, 95th percentile MPS and MRD
varied from approximately 0.3–0.4 and 9–16 mm,
respectively, and were generally correlated to overall
brain volume. More importantly, strain distributions
varied across subjects, which suggests that strain dis-
tribution may be dependent on internal neu-
roanatomical characteristics. These results suggest that
when investigating an individual’s tolerance to brain
injury, or comparing biomechanical and imaging re-
sults, subject-specific models are necessary. Nonethe-
less, it must be noted that the deformation results
obtained in this study should not be interpreted for
injury as the models were simplified and not validated
to experimental brain deformation data. Although the
material properties were obtained from a previously
validated FE brain model,38 this does not ensure model
validation.21

Subject-specific brain models have several impor-
tant applications in the research and clinical spaces. In
the research sector, subject-specific brain deformation
patterns are easily mapped to either subject or template
image space and can be assessed in conjunction with
other brain imaging diagnostics for injury. They could
also be used to identify regions of high deformation
that could be of interest for investigating the neuro-
logical effects of TBI. In the biomechanics field, sub-
ject-specific models are being used to investigate the
relationships between neuroanatomy and brain injury
risk and allow for previously underrepresented popu-
lations (e.g., pediatric or elderly) to be included in
studies. Furthermore, RBM is not limited to human
brains. This pipeline can be easily extended to animal
models for TBI, which would allow the integration of
biomechanics, imaging, and physiology in the pursuit
of characterizing TBI using multidisciplinary research
tools. Finally, the automated and rapid nature of this
technique could enable future use in the clinical setting
as a tool for improving diagnosis, especially when
paired with wearable sensor data, and determining
optimal surgical interventions.
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