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Abstract—This study presents a novel statistical volume
element (SVE) for micromechanical modeling of the white matter
structures, with histology-informed randomized distribution of
axonal tracts within the extracellular matrix. The model was
constructed based on the probability distribution functions
obtained from the results of diffusion tensor imaging as well as
the histological observations of scanning electron micrograph, at
two structures of white matter susceptible to traumatic brain
injury, i.e. corpus callosum and corona radiata. A simplistic
representative volume element (RVE) with symmetrical arrange-
ment of fully alligned axonal fibers was also created as a
reference for comparison. A parametric study was conducted to
find the optimum grid and edge size which ensured the
periodicity and ergodicity of the SVE and RVE models. A
multi-objective evolutionary optimization procedure was used to
find the hyperelastic and viscoelastic material constants of the
constituents, based on the experimentally reported responses of
corpus callosum to axonal and transverse loadings. The optimal
material properties were then used to predict the homogenized
and localized responses of corpus callosum and corona radiata.
The results indicated similar homogenized responses of the SVE
and RVE under quasi-static extension, which were in good
agreement with the experimental data. Under shear strain,
however, the models exhibited different behaviors, with the SVE
model showing much closer response to the experimental
observations. Moreover, the SVE model displayed a significantly
better agreement with the reports of the experiments at high
strain rates. The results suggest that the randomized fiber
architecture has a great influence on the validity of the
micromechanical models of white matter, with a distinguished
impact on the model’s response to shear deformation and high
strain rates. Moreover, it can provide a more detailed presen-
tation of the localized responses of the tissue substructures,
including the stress concentrations around the low caliber axonal
tracts, which is critical for studying the axonal injury mecha-
nisms.

Keywords—Statistical volume element, Representative vol-

ume element, Diffusion tensor imaging, Histology-informed
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INTRODUCTION

Human brain white matter consists mainly of long
myelinated and unmyelinated axonal fibers extending
from soma into the deep structures such as corpus
callosum, corona radiata, and brain stem. Diffuse ax-
onal injury (DAI), characterized by stretching or shear
straining of axons and impairment of axoplasmic
transport, is considered as a main cause of damage to
the white matter. It has been reported to lead to a wide
array of symptoms, from permanent disability to coma
and death, as a result of subsequent swelling and
neuropathologic changes in the tissue.7,11,38

DAI involves a multi-scale damage mechanism; the
macroscopic large deformations in the tissue result in
microscopic localized injuries mainly in the so called
‘‘injury triad’’, i.e., the lobar white matter (including
corona radiata), the corpus callosum, and the dorso-
lateral quadrant of the rostal brainstem adjacent to the
superior cerebellar peduncle.40 Hence, understanding
and prognosis of the effects of DAI requires an in-
depth knowledge of the mechanical behavior of the
white matter at both the macroscopic and microscopic
levels. Micromechanical modelling of the white matter
can help to gain a deeper insight into the mechanical
response of tissue to various mechanical stimuli, in
macroscopic and microscopic scales.

A large number of fiber-reinforced micromechanical
models of the white matter have been developed by
researchers to account for the anisotropic and
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heterogamous microstructure of tissue.1,17,18,22,41,46

These models represent the white matter as a com-
posite of axonal fibers embedded in an extra-cellular
matrix (ECM). The constitutes are usually modeled as
hyperplastic materials, with their material constants
characterized based on the experimental results of
compressive, tensile, and shear oscillatory tests.6,35,41,44

The currently available micromechanical models of
the white matter can capture the homogenized
(macroscopic) direction-dependent mechanical behav-
ior of the tissue relatively well. However, they are not
often capable of realizing the localized microscopic
responses required for investigation of the damage
mechanisms, due to being based on simplified
microstructures. As the histological studies4 have
shown, the axonal fibers not only have different vol-
ume fractions in different parts of the white matter, but
also their calibers and orientations change substan-
tially within each specific structure. This highly
heterogeneous microstructure is thought to be
responsible for the inter-regional and intra-regional
heterogeneity of the mechanical behavior of white
matter, reported by previous studies.6,26,35,43 In fact,
the discrepancy of the experimental observations while
testing the whole tissue samples19,22,44 is also thought
to be at least in part a result of the randomized intra-
regional microstructure of the white matter.17

In a recent study,46 we showed that the degree of the
injury predicted by a computational model of the DAI
is highly dependent on the assumed microstructure.
For a realistic prediction of the strain/stress levels in
the tissue substructures, the model should consider the
detailed architecture of the axons within the ECM,
accounting for their non-uniform and randomized
distributions of the diameters and orientations. The
previous statistical micromechanical models of the
white matter45,46 have only accounted for the proba-

bilistic distribution of axonal calibers within the ECM.
The purpose of this study is to develop a more com-
prehensive statistical histology-informed microme-
chanical model of the tissue and investigate the effects
of axonal architecture on the localized responses of the
substructures. The corrected embedded element tech-
nique (EET)45 is used to create a statistical volume
element (SVE) of the white matter based on the find-
ings of the diffusion weighted imaging (DWI), diffu-
sion tensor imaging (DTI), fiber tractography, and
scanning electron microscopy (SEM) studies in the
literature. A simplistic RVE with hexagonal arrange-
ment of axonal fibers within the ECM is also devel-
oped for comparison of the results. A sensitivity
analysis in conducted to find the optimum edge and
mesh size for both models. The hyper-viscoelastic
material properties of the ECM and axonal fibers are
characterized, for both models, by using a multi-ob-
jective evolutionary optimization procedure to fit the
homogenized stress responses onto the experimental
curves. The validity of the optimally characterized
models is assessed by comparing the predicted
homogenized responses of the white matter structures
with the experimental data reported for different
loading rates and scenarios. The models are then used
to investigate the homogenized tissue behavior, as well
as the associated localized responses of the axonal fi-
bers, under quasi-static and dynamic loadings. The
results help to understand the importance of the fiber
architecture on the localized responses of the white
matter substructures and provide a deeper insight into
the axonal damage mechanism due to the DAI at the
microscopic level. Furthermore, by linking such model
with a macro-mechanical model of the human brain in
a multiscale framework, it would be possible to predict
the axonal responses to the external loads more accu-
rately.

FIGURE 1. Electron micrographs showing the diverse architecture of myelinated axons in white matter structures: (a) cross
section of splenium of corpus callosum (adapted with permission from Pesaresi et al.33); (b) cross section of brainstem (adapted
with permission from Javid et al.18); (c) longitudinal section of corpus callosum (adapted with permission from Zemmoura et al.47).
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METHODS

Despite the routine simplifications employed in
micromechanical models, in general, the axonal
architecture is extremely complicated within the white
matter (Fig. 1). This complicated architecture involves
randomized and diverse distributions of the axonal
calibers, densities, and orientations in different tissue
structures.33,47 The probability distribution functions
obtained from the results of the experimental mea-
surements, e.g., SEM, and DWI, may be utilized to
characterize this randomized architecture. Based on
the electron micrographs from various structures of the
white matter, three morphological levels of random
microstructure have been utilized in this study. First,
the white matter is considered to have a variable spa-
tial fiber density, in view of the SEM cross-sectional
micrographs (Figs. 1a and 1b) which show a random
distribution of axonal fiber locations within the tissue.
Secondly, the calibers of the axonal fibers are assumed
to be variable, considering the same micrographic data
(Fig. 1b) which demonstrates substantial changes of
the axon calibers even amongst adjacent tracts. This
assumption is also supported by some recent studies9

which reported that axonal calibers can further fluc-
tuate in space and time due to the organelles and
activity-dependent mechanisms. Thirdly, the axons are
assumed to have variable orientations within bundles
of neural tracts, based on the SEM longitudinal
micrographs (Fig. 1c) and Fractional Anisotropy (FA)
data extracted from DTI.13

Data Acquisition and Processing

MR and diffusion weighted images (DWIs) were
obtained from a 25-year-old male volunteer using a 3T
Siemens TrioTIM scanner. The MR images included
176 slices with 1 mm slice thickness (TR/TE = 6700/

5.5 ms, 1 mm in plane resolution, 256 9 256 mm
FOV). The DWIs were captured by using the single
shot imaging pulse sequence with gradient sectors in 12

directions and b-value ¼ 1000 s=mm2, and included 88
slices with 2 mm slice thickness (TR/TE ¼
8900=100ms, 2mm in plane resolution). The white
matter was separated from the rest of the brain by
implementing thresholding and segmentation tech-
niques. Explore DTI was utilized to register DTI data
onto T1 images and extract the 4D diffusion tensors
for all voxels of the white matter24 (Figs. 2a and 2b).
The results were verified by using Freesurfer.36 The
voxels of three target structures, i.e. corpus callosum
and corona radiata were marked and extracted from
the white matter by means of a semi-automatic brain
atlas27 (Fig. 2c). The main axonal orientation corre-
sponding to the highest eigenvalue of the dispersion
tensor in each voxel was expressed in terms of the angle
h with respect to the dominant fiber direction in the
structure (e.g., X-axis for corpus callosum) as shown in
Fig. 2d.

Statistical Volume Element Construction

The statistical volume element, constructed in this
study, was a cubic lattice consisting of a random dis-
tribution of axons (with main orientation along x
direction), within the ECM (Fig. 2a). The axonal
density was assigned by using the volume fraction Vf,
defined as the ratio of the fiber volume to the SVE
volume as in (1):

Vf ¼
p
4a2

XN

i¼1

d2i ð1Þ

where a is the lattice edge length and di represents the
diameter of the ith cylindrical fiber. A three-step ran-
domization procedure was adopted to create a fiber

FIGURE 2. Schematic illustration of DTI data extraction for a typical structure of the white matter, i.e., corpus callosum: (a) fiber
tractography map for all voxels within the white matter; (b) segmentation and marking of corpus callosum structure; (c) extraction
of voxels; (d) a voxel with the main axonal orientation expressed in terms of the angle h with respect to the X-axis.
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architecture with random position, caliber and orien-
tation. At the first step, unidirectional cylindrical ax-
ons of the same caliber (1:9 lm) were positioned one-
by-one at random positions on the YZ-plane of the
unit cell. Subsequently, the axonal calibers were ran-
domized by using a cumulative density function
(CDF). To this purpose, the CDF proposed by Se-
pehrband et al.37 was used which describes the density
of axonal calibers by a gamma distribution function
parameterized in terms of a shape factor, k and a scale
factor, s (Fig. 3a):

F x; k; sð Þ ¼
c k; xs
� �

C kð Þ ð2Þ

where c k; xs
� �

is the lower incomplete gamma function
defined in Eq. (3).

c k;
x

s

� �
¼ r

x
s

0

tk�1e�tdt ð3Þ

Finally, while keeping the random positions and
calibers of the axons, the orientations of axons were
randomized by using another CDF, obtained from
analyzing the main orientations of all DTI voxels
within the structure under study, using a method
similar to the one described for axonal calibers. An

exponential fit in the form of F x; kð Þ ¼ 1� e�kx, with
k ¼ 0:076 as the rate parameter, was used to describe
the CDF (Fig. 3b). In order to introduce the proba-
bilistic distribution of axonal orientations into the
model, the orientation vector p, characterized by two
spherical angles h and /, was assigned to the axons
contained in the SVE (Fig. 3c). The angle h between
the main axonal orientation (X-axis) and vector p was
assigned based on the DTI analysis, while the angle /
between Z-axis and the projection of the orientation
vector p onto the YZ-plane was assumed to be nor-
mally distributed between zero and 360 degrees. A
minimum myelin sheath of 0:05lm was considered to
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FIGURE 3. Construction of the statistical volume element: (a, b) cumulative distribution functions of axonal calibers and
orientations of a typical structure of white matter, i.e. corpus callosum, based on the experimental data reported by Sepehrband
et al.37 and DTI analysis of this study, respectively; (c) spherical components of the orientation vector p assigned to the axons
contained in the SVE model; (d) symmetrical RVE with simple uniform axonal architecture; (e) histology-informed SVE with random
position, caliber, and orientation of axons.
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satisfy impenetrability and overlapping. The procedure
of positioning axons in the SVE continued until the
desired portion of the lattice was filled, i.e., the speci-
fied volume fraction was achieved. The periodicity of
the SVE was preserved throughout the process by
using DIGIMAT 2017.0. The resulting SVE, and a
simple hexagonal symmetrical RVE, considered as the
benchmark, are shown in Figs. 3d and 3e.

Material Modeling

The white matter has been shown to be a hetero-
geneous and anisotropic material.44 Also, under large
deformation, the brain tissue has been reported to
display incompressible hyperelastic behavior.25,26,35,39

The hyperelastic mechanical behavior of axons and the
ECM can be described using OGDEN-type strain en-
ergy density function10 (SEDF) as (4):

W ¼ 2l
a2

ka1 þ ka2 þ ka3 � 3
� �

þ 1

D
J� 1ð Þ2 ð4Þ

where ki i ¼ 1; 2; 3ð Þ are the principal stretches, l indi-
cates the shear modulus, D is a material constant re-
lated to the bulk modulus,a is a material constant, and
J is the determinant of the deformation gradient ten-
sor. By assuming incompressibility J ¼ 1ð Þ for both
fiber and ECM, the SEDF may be re-written for axon
and the ECM as (5) and (6), respectively:

Waxon ¼ 2laxon
a2axon

kaaxon1 þ kaaxon2 þ kaaxon3 � 3
� �

ð5Þ

WECM ¼ 2lECM
a2ECM

kaECM1 þ kaECM2 þ kaECM3 � 3
� �

ð6Þ

In addition, it has been shown that the material
constant a is not sensitive to the test direction.29

Therefore, assuming aAxon= aECM= a, three inde-
pendent material constants, i.e., laxon, lECM, and a,
would be sufficient to characterize the hyperelastic
properties of the white matter constituents.46

Moreover, it has been reported that the white mat-
ter exhibits viscoelastic behavior, mainly through its
changing mechanical response at different strain
rates.28,35,44 The rate dependent response of the tissue
can be realized by defining the strain energy function in
the form of a convolution integral.34,35 By using Prony
series approximation, the time dependent shear relax-
ation moduli of the white matter constitutes, i.e.,
laxon tð Þ and lECM tð Þ, are described as in (7) and (8).18

laxon tð Þ ¼ l0axon 1�
XM

i¼1

gi;axon 1� exp � t

si;axon

� �� �" #

ð7Þ

lECM tð Þ ¼ l0ECM 1�
XM

i¼1

gi;ECM 1� exp � t

si;ECM

� �� �" #

ð8Þ

where M is the number of terms in the Prony series, gi
and si are the material-dependent coefficients, and

l0axon and l0ECM represent the instantaneous shear

moduli of axon and ECM, respectively. For a two-
term Prony series, one can define the instantaneous
moduli in terms of the equilibrium moduli, i.e., leaxon
and leECM, and Prony constants, as in (9) and (10),

l0axon ¼ leaxon
1� g1;axon þ g2;axon

� � ð9Þ

l0ECM ¼ leaxon
1� g1;ECM þ g2;ECM

� � ð10Þ

where the equilibrium shear moduli of the axon and
ECM are the same as those of the hyperelastic models,
i.e., (5) and (6), under quasi-static loading. Therefore,
having the equilibrium shear moduli from the hyper-
elastic models, a set of Prony constants, i.e., g1, g2, s1,
and s2, is sufficient to characterize the viscoelastic
properties of each of the axon and ECM.

Application of Embedded Element Technique

The embedded element technique was applied to the
SVE and RVE models by superimposing the guest
domain (axons) onto the host domain (ECM), creating
independent grids, and coupling the translational de-
grees of freedom in the superimposed regions (Fig. 4).
The stiffness redundancy of the models was corrected
by subtracting the shear modulus of the ECM from
that of the axons in the fiber domain,45 as (11):

l�axon ¼ laxon � lECM ð11Þ

where l�axon is the corrected shear modulus for axonal
tracts in the EET method. The axonal fibers were
modeled by using 4-node tetrahedron linear hybrid
elements (C3D10H in ABAQUS 6.14), and the ECM
by 8-node linear brick hybrid elements (C3D8RH),
considering the incompressibility assumption. The
symmetricity of the mesh on the opposite nodes of the
models was maintained by applying face partitioning
for host and guest domains, separately.

Application of Periodic Boundary Conditions

Periodic boundary conditions (PBC) were applied to
enforce deformation and stress continuity within the
models, by using a set of algebraic equations which
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equalized the deformations on the opposite faces of
each of the SVE and RVE.17 Considering a deforma-
tion gradient field, Fijði; j ¼ 1; 2; 3Þ, acting on the unit

cell, the PBC were applied on each pair of nodes on
two opposite faces of Sþx and S�x perpendicular to the
X-axis, as (12) to (14):

uSþx
� uS�x

� L F11 � 1ð Þ ¼ 0 ð12Þ

vSþx
� vS�x

� LF12 ¼ 0 ð13Þ

wSþx
� wS�x

� LF13 ¼ 0 ð14Þ

where L is the characteristic length of the unit cell, and
u, v, and w represent the nodal displacements in X, Y
and Z directions, respectively. By applying a similar
approach, six equations were derived for edge nodes
and nine equations for each corner node. The resulting
constraints were applied to the models by using a
custom Python script in ABAQUS 6.14-1. The appli-
cation of the PBC was facilitated by the EET as the
girds were independent in host and guest domains,
providing identical elemental sizes, shapes, and distri-
butions. The continuity of stress (traction boundary
conditions) was verified by conducting a series of
simulations which ensured the symmetry of stress
contour on the opposite faces of the RVE and SVE
models.14

Material Characterization

The hyperelastic constants of the axonal fibers and
the ECM were found using a multi-objective opti-
mization procedure. Assuming that the tissue is sub-
jected to quasi-static large deformation in both axonal
and transverse directions, simultaneously, the cost
functions were defined as the deviations of the
homogenized responses of the tissue and the experi-
mental data in the axonal and transverse directions.
The choice of two cost functions from two sets of
experimental data (tests at two different directions) has
proven to provide more precise results regarding the
hyperelastic material model.23 An evolutionary opti-
mization procedure, based on the imperialist compet-
itive algorithm,3 was then used to search for the best
hyperelastic material constants which minimized the
cost functions.

The flowchart of the optimization procedure is
shown in Fig. 11 in Appendix. The domain of the
material parameters were set to laxon 2 1002000½ �,
lECM 2 0500½ �, and a 2 010½ �; considering the values
reported in the literature.5,29,46 The algorithm was run
with an assimilation coefficient of c ¼ 0:3 and the ini-
tial population of 100 sets of variables (100� 3 array),
among which 10 of the most powerful solutions were
selected as imperialists in the first decade (iteration),
forming 10 initial empires. The cost functions, CF?

FIGURE 4. Applying the EET method to the SVE: (a) superimposing the guest domain (axons) onto the host domain (ECM); (b) the
mesh with independent grids for host and guest domains.
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and CFk, were formulated as the sum of the coefficient

of determination (R2) and the root mean square error
(RMSE) of stress values, between every two set of data
points, to account for deviations of both the patterns
and the values of the resulting curves from the exper-
imental data, respectively, as (15) and (16):

CFk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1

SMod
k;i � SExp

k;i

SExp
k;i

 !2

vuuut

þ
PN

i¼1 SMod
k;i � SExp

k;i

� �2

PN
i¼1 SExp

k;i � SExp
k

� �2 ð15Þ

CF? ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

SMod
?;i � SExp

?;i

SExp
?;i

 !2
vuut

þ
PN

i¼1 SMod
?;i � SExp

?;i

� �2

PN
i¼1 SExp

?;i � SExp
?

� �2 ð16Þ

where CF is the cost function, N in the number of data
points in the stress curve,S is the nominal stress, and
the subscript indices k and ? stand for the axonal and
transverse directions, respectively. The superscripts
Mod and Exp stand for the corresponding values
obtained by the models and the experiments, and I is
the index of summation. The average stress of the
experimental curve is described by (17):

rExp ¼
PN

i¼1 r
Exp
i

N
ð17Þ

The stop condition, yielding the optimal set of
parameters, was defined as a single remaining empire
with a total cost of 0 � CFk;CF? � 0:2. In this case,

the resulting optimal parameters were checked to be
within the pre-assumed initial range and the process
was terminated. Otherwise, it continued to create a
new set of parameters and the competitive algorithm
was repeated until the stop condition was satisfied. In
order to ensure that the global optimum solutions are
achieved, a sensitivity analysis was conducted to verify
the independence of the optimal solutions from the
upper and lower bounds of the parameters.

A similar approach was adopted to optimize the
viscoelastic material constants of each of the axon and
ECM. The optimal hyperelastic constants from the
previous optimization step were used as equilibrium
moduli, and the algorithm searched for optimal Prony
constants, i.e., g1, g2, s1, and s2. The domain of these
constants were set to g1; g2 2 01½ � and s1; s2 2 01000½ �
for both the axon and ECM constituents, considering
the data reported in the literature.6,18,31 The cost

functions were also defined similar to that of the
hyperelastic characterization, i.e., (10) and (11), as the
sum of R2 and RMSE between every two sets of data
points of the model-predicted and experimental relax-
ation curves.

Volume Averaging

In order to characterize the overall mechanical
behaviors of the SVE and RVE, volume averaging of
stresses and strains was performed by using an ABA-
QUS user subroutine which integrated the nodal
stresses and strains over the volume of the unit cells.15

Equations (18) and (19) were used to estimate the
volume-averaged values of the outputs17:

�rij ¼
1

V
r
V

rij x; y; zð ÞdV ð18Þ

�eij ¼
1

V
r
V

eij x; y; zð ÞdV ð19Þ

where V is the volume of the unit cell, �rij and �eij rep-
resent the volume-averaged values of the stress and
strain, and rij and eij are average nodal stresses and

strains, respectively.

RESULTS

In order to examine the effect of the mesh size on the
responses of the SVE and RVE models, they were
subjected to a quasi-static extension of k = 1.3 in the
axonal direction (X-axis in Fig. 3) while changing the
number of nodes from 3000 to 35,000, approximately.
The axonal volume fraction of the models was set to
Vf � 50% and their edge size to 6 lm. The overall
tissue response was studied in terms of the homoge-
nized stresses, computed based on the averaging
method described in 2–7 sections (Fig. 5a). In addition,
the localized responses were investigated in terms of
the normalized maximum stress, i.e. rmax/rave as
shown in Fig. 5b. The results indicated that both the
local and overall tissue responses were almost inde-
pendent from the grid when the elements were suffi-
ciently fine. However, while the homogenized tissue
responses converged for both models at almost 18,000
nodes, the local responses of the SVE were more sen-
sitive to the grid size level; the normalized maximum
stress rmax/rave within the SVE required a higher
number of nodes (almost 27,000 nodes) to converge,
while this measure flattened at 12,000 nodes for the
RVE. Moreover, the SVE model converged to higher
fractions of local stress than the RVE model
(rmax=rave � 4 compared to rmax=rave � 2), while its
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homogenized Cauchy stress converged to relatively
lower values (almost 10%). This behavior was not
unexpected as the dispersion of axonal orientations in
the guest domain caused a lower equivalent stiffness in
the tissue along the X-axis. Based on the results, the
RVE and SVE models were meshed using almost
18,000 and 27,000 nodes, respectively.

The minimum edge size was also investigated in a
parametric study by subjecting the RVE and SVE
models to the same loading conditions as in the mesh
sensitivity analysis. While the mesh size of the RVE

and SVE was fixed at the optimum, their lattice edge
size was changed from 4 to 30 lm. The number of
axons and the approximate volume fraction of the
guest domain of the models are shown in Table 1. The
effect of the edge size on the average stress and
localized maximum/average stress are shown in
Figs. 5c and 5d. As expected, the homogenized
response of the RVE model was almost independent of
the lattice edge size, with marginal local variations in
the maximum stress. However, both the homogenized
and local responses of the SVE model experienced
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FIGURE 5. Sensitivity analysis of the overall and local responses of the RVE and SVE models for a hypothetical white matter
structure with Vf � 50%: (a, b) the effect of the grid size; (c, d) the effect of the edge length.

TABLE 1. The number of axons (N) and the estimated volume fraction (Vf) of 24 realizations of the RVE and SVE models for edge
size sensitivity analysis.

Edge size (lm)

4 8 12 16 20 24

N % Vf N % Vf N % Vf N % Vf NN % Vf N % Vf

RVE 9 49.2 18 49.4 34 50.4 80 50.7 112 50.2 161 50.9

SVE 6 54.9 22 52.2 35 49.8 71 48.3 98 46.1 149 49.3
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considerable variations with the change of the edge
length. The minimum acceptable edge length increased
with the microstructural randomness level, demanding
a larger SVE model (Edge size ¼ 20lm) compared to
the RVE model (Edge size ¼ 12lm) to stabilize the
tissue homogenized and local behaviors against the
microstructural variations.

The hyperelastic material properties of each of the
axonal fibers and the ECM were characterized by fit-

ting the homogenized response of the SVE and RVE
models of corpus callosum to quasi-static axonal and
transverse loading, onto the experimental results
reported by Budday et al.5 The volume fraction was set
to Vf ¼ 0:3 for both models to represent the average
volume fraction reported for the tissue, based on his-
tological observations.22 The optimization procedure
converged for the RVE and SVE models after 36 and
68 iterations with total runtimes of 2.1 and 6.5 h (for

TABLE 2. The optimal hyperelastic material constants of white matter constituents obtained for the RVE and SVE models of the
present study compared with the values reported by two previous studies.

Shear modulus, l (Pa)

Parameter a Minimum cost [NRMSER2]Axon ECM

RVE SVE RVE SVE RVE SVE RVE SVE

Present study 1062.87 738.3 80.12 99.36 4.89 4.49 [0.131 0.082] [0.138 0.083]

Yousefsani et al.45,46 1130.3 87.4 4.91 – –

Meany29 290.82 96.94 6.19 – –
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FIGURE 6. The overall responses of the RVE and SVE models of white matter structures to quasi-static extension in comparison
with the experimental data in the literature: (a) corpus callosum in longitudinal direction; (b) corpus callosum in transverse
direction; (c) corona radiata in longitudinal direction. The experimental data of (c) was not used in the characterization procedure.
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all iterations), respectively, on a PC with 8 CPUS and
12 GB of RAM. The optimal hyperelastic constants, as
well as the ones proposed by some previous studies, are
shown in Table 2. The corresponding values of the
objective functions, CF? and CFk, are also depicted. A

series of sensitivity analyses were conducted to ensure
the independence of the converged values from the
choice of the initial set of parameters, upper and lower
bounds, and initial number of imperialists in the
optimization algorithm. The response of the models
are compared with the experimental data used in the
optimization procedure41 in Figs. 6a and 6b.

In order to examine the validity of the hyperelastic
SVE and RVE models and the corresponding material
constants, the predictions for the mechanical behavior
of another white matter structure, i.e., corona radiata,
was compared with the experimental data in the liter-
ature. The volume fraction was set to Vf ¼ 35%, based
on the SEM observations for corona radiata22 The
homogenized responses of the models under quasi-
static longitudinal extension were compared with the
experimental results reported by Budday et al.5

(2017a), as shown in Fig. 6c. The results are indicated
in terms of the nominal stress to match those of the
experiments. There was a good agreement between the
predicted and the experimental stress curves for corona
radiata with normalized RMSEs less than 5 and 7%
for the RVE and SVE models, respectively.

The validity of the characterized hyperelastic SVE
and RVE models was further investigated by analyzing
the mechanical response of the white matter structures
to shear. The SVE and RVE models of corpus callo-
sum, with Vf ¼ 30%; were subjected to quasi-static

shear strains of 0 to 0.2 (small deformation regime) in
YZ and XZ planes. The shear strains were applied to
the models in the directions c32 and c31 where the first
subscript denotes the normal vector of the face that is
shifted by shear, and the second subscript denoted the
direction that the face is shifted. The predicted

homogenized shear stresses S32 and S31 are compared
with the experimental data reported by Budday et al.6

in two simple shear modes in Fig. 7. The results indi-
cated a considerable difference between the responses
of the two models, with the SVE displaying a sub-
stantially better agreement with the experimental data
in YZ-plane (Fig. 7a). Moreover, unlike the RVE
model, the SVE model could well capture the higher
stiffness of the tissue in the YZ-plane observed in the
experiments.

The localized responses of the hyperelastic RVE and
SVE models subject to 10% quasi-static longitudinal
extension, are shown in Figs. 8a and 8b. The longitu-
dinal extension caused a non-uniform distribution of
local stresses in the SVE model, unlike the RVE, due to
the probabilistic distribution and orientation of axonal
fibers. The localized stresses predicted by the SVE
model were almost two times higher than those of the
RVE model. A similar behavior was observed for the
localized responses of the models to 20% shear strain
(Figs. 8c and 8d). The non-uniform pattern of the
stress contours in the SVE model included higher stress
concentrations around smaller axons, up to 3 times the
average stress.

The viscoelastic material properties of each of the
axonal fibers and the ECM were characterized by fit-
ting the homogenized response of the SVE and RVE
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FIGURE 7. The overall responses of the RVE and SVE models of corpus callosum to quasi-static shear strains in (a) YZ and (b) XZ
planes compared with the experimental data not used in the characterization procedure.
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models of corpus callosum to dynamic loading, onto
the experimental relaxation curves reported by Budday
et al.5 At each run, a sudden shear strain of c ¼ 0:2 was
applied to each model in the XZ-plane and held for
100 s. The resulting homogenized shear stress response
of the model was then compared to the experimental
data to calculate the cost functions. The optimal

hyperelastic constants from Table 1 were used as
equilibrium moduli, and the algorithm searched for
optimal Prony constants. The procedure converged
after 36 and 42 iterations (with one single empire left)
after a total runtime of 5.3 and 11 h and the final value
of cost function 0.253 and 0.122 for the RVE and the
SVE, respectively (Table 3). The change in the cost

FIGURE 8. Deformed configurations and contour plots of stress distribution in axonal fibers and ECM: (a, b) normal stress in RVE
and SVE models of corpus callosum subjected to 10% quasi-static longitudinal extension, respectively; (c, d) shear stress in RVE
and SVE models of corpus callosum subjected to a 20% shear in the YZ plane, respectively (also displayed separately for host and
guest domains). The stress is indicated in MPa.

TABLE 3. Optimal viscoelastic constants for microstructural constituents of the RVE and SVE models.

g1 g2 s1ðsÞ s2ðsÞ Minimum cost ½NRMSER2]

SVE model

Axon 0.518 0.314 1.393 419.12 0.12 [0.08 0.96]

ECM 0.691 0.149 1.335 87.51

RVE model

Axon 0.512 0.261 1.424 639.24 0.25 [0.18 0.93]

ECM 0.527 0.272 1.307 67.19

BIOMEDICAL
ENGINEERING 
SOCIETY

A Three-Dimensional Statistical Volume Element 1347



function was less than 10�7 in the last three iterations
for both models. The relaxation time was reduced from
300 s (experimental curve) to 100 s to reduce the
computational cost of the optimization procedure
(Fig. 9). The resulting relaxation curves of the vis-
coelastic RVE and SVE models were within the stan-
dard deviations of the experimental curve, with the
SVE displaying a better agreement with the experi-
mental results.

The validity of the characterized viscoelastic SVE
and RVE models was investigated by analyzing the
mechanical responses of two white matter structures to
different loading rates. The characterized models of

corpus callosum and corona radiata were subjected to
50% tensile strain in the main axonal direction at three
strain rates of 0.5/s (low), 5/s (medium), and 30/s
(high) and the resulting tensile stresses were compared
with the experimental results reported by Jin et al.44 for
the same structures. The model-predicted and experi-
mental results in terms of the nominal tensile stress at
50% strain are compared in Fig. 10. Both the RVE
and the SVE models overestimated the tissues’
responses at all strain rates, with the SVE model dis-
playing a relatively better agreement with experimental
results; the deviations of the RVE and SVE model
predictions from the experimental results of corpus
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callosum and corona radiata were 49 and 54%, and 28
and 26%, respectively, in average (Fig. 10).

DISCUSSION

In order to understand the axonal injury mechanism
of the white matter and determine the injury thresh-
olds, it is necessary to develop sophisticated models of
the tissue in which the detailed microstructure is con-
sidered. This study presented, for the first time, a sta-
tistical volume element model of the white matter
structures, with histology-informed randomized
architecture of the axonal tracts within the ECM. The
previous micromechanical models of the white matter
lack such detailed histology information; in the most
detailed model so far46 only the variations in axon
calibers was taken into account. Our more sophisti-
cated hyper-viscoelastic micromechanical model en-
ables capturing the homogenized mechanical behavior
of the white matter structures in different loading rates
and scenarios, i.e., extension and shear, and provides a
more realistic presentation of the localized stresses
within the tissue substructures to study the axonal
damage mechanisms due to the DAI at the microscopic
level.

The hyperelastic material constants obtained in our
study for the axons and the ECM, by characterizing
the histology-informed, i.e., SVE, model of the white
matter structures, is considerably different from the
ones suggested by previous studies (Table 2). In par-
ticular, the shear modulus of the axon was approxi-
mately three times the value proposed by Meany29 and
25% lower than that suggested by Yousefsani et al.46

However, this discrepancy is not surprising considering
the insufficiencies involved in previous studies. First of
all, most previous investigations have characterized the
material properties of the axons and the ECM based
on the experimental data from tests in a single (mostly
axonal) direction.20,32 Such characterization has been
reported to yield unrealistic results as the relatively
large number of parameters make the problem
redundant.23,45 As Latorre et al.23 concluded, the
hyperelastic material model of fiber-reinforced bio-
materials such as the human brain should not be
characterized with tensile tests only; other tests
(preferably in alternative directions) are also required.

Moreover, some authors20,32 have considered the
shear modulus of ECM to be three times softer than
axonal fibers, i.e. lECM ¼ laxon=3, based on the oscil-
latory shear test results of Arbogast and Margulies2

(1997). However, these experimental results are not
applicable to large deformations and are limited to the
small deformation regime. The results of our charac-
terized SVE model (Table 2) suggest the ratio of the

long-term (equilibrium) shear moduli to be
laxon=lECM � 7:5 which is between the ratio suggested
by Yousefsani et al.46 i.e. laxon=lECM � 13, and that
reported by Meany (2003),29 i.e. laxon=lECM � 3.

Finally, material characterization has been per-
formed based on rather simplified micromechanical
models of the white matter in previous studies. Most
previous micromechanical models lacked histology
information of any kind; they either used a straight
single fiber embedded within the ECM,18 or a hexag-
onal arrangement of the aligned fibers.1 The rare his-
tology-informed models, on the other hand, were
based on insufficient histological data; they considered
the statistical distribution of axonal fibers either for
positions,1 or for calibers,45,46 neglecting the effects
associated with the randomized fiber orientations. This
is particularly important as previous studies42 have
shown that the degree of injury that is predicted by a
computational model of DAI is highly dependent on
the incorporation of the axonal orientation informa-
tion.

The results of our study indicate a good agreement
between the homogenized responses of the character-
ized SVE and RVE models of the corona radiata and
corpus callosum under quasi-static extension with the
experimental data in the literature (Figs. 6c and 6d).
Considering the fact that the experimental data of
corona radiata (Fig. 6c) were not seen by our model
(i.e. not used in the optimization of the hyperelastic
constants), these results suggest that both the SVE and
RVE micromechanical models provide good estima-
tions for the mechanical behavior of the white matter
under quasi-static extension. The results also suggest
that the models can capture the effect of the axonal
volume fraction on the mechanical response of the
white matter structures; as Figs. 6a and 6c illustrate,
the stress predicted for the corona radiata at the same
stretch level is higher than that predicted for corpus
callosum. This observation is in good agreement with
the findings of experimental studies in the literature.6,44

Despite the similar response of the SVE and RVE
models to quasi-static extension in the axonal direc-
tion, the homogenized response of the models to shear
strain involved considerable deviations, with the for-
mer model displaying a significantly closer response to
the experimental data under shear in the YZ-plane
(Fig. 7). This result indicates that the performance of
our histology-informed micromechanical model of the
white matter is not limited to a specific loading sce-
nario, unlike the RVE of this study and the previously
published models. In fact, one might conclude that the
hyperelastic micromechanical model of the white
matter presented in this study is indeed valid, and the
corresponding optimal material constants provide
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good estimations for the mechanical behavior of the
tissue constituents under quasi-static loading.

The important effect of the randomized fiber ori-
entations, implemented in this study, on the homoge-
nized behavior of the white matter structures might be
recognized more clearly if the results of our study are
compared with those of the previous statistical models.
For instance, Yousefsani et al.46 have validated their
histology-informed RVE (based on non-uniform cal-
iber distribution only) with the experimental data in
extension and reported a good agreement. However,
their optimal material properties are close to the data
obtained in our study for the RVE, but not the SVE
model (Table 2); their model would predict a homog-
enized response to shear strain similar to our RVE
model, which demonstrates large deviations from the
experimental results (Fig. 7). Considering the ran-
domized orientations of axonal fibers within the ECM
seems an essential requirement for the micromechani-
cal models of the white matter in order to capture the
actual mechanical behavior of the tissue in quasi-static
extension and shear, simultaneously.

The results of this study for the localized responses
of the white matter structures to quasi-static extension
(Figs. 8a and 8b) and shear (Figs. 8c and 8d), indicate
that they are affected greatly by the microstructure
assumed for the tissue. The SVE model, with a ran-
domized distribution of the axonal fibers’ positions,
calibers and orientations, resulted in a highly fluctu-
ating distribution of stresses, with substantially higher
local stresses around axonal tracts with lower calibers.
This observation is not surprising considering the lar-
ger localized stress concentration that are produced in
the SVE model with a non-uniform axonal architec-
ture, and suggest that such sophisticated model is
critical for micromechanical modeling of the brain
white matter when studying the axonal injury mecha-
nism due to DAI.

The viscoelastic material constants obtained in our
study for the axons and the ECM, by characterizing
the RVE and SVE models, provided reasonably good
agreement with the reference experimental data, par-
ticularly for the SVE (Fig. 9). Based on our results
(Table 3), the instantaneous moduli are 5.5 to 6 times
the equilibrium moduli for both the axons and the
ECM. We could not find comparable data in the lit-
erature for human brain tissue. However, Javid et al.18

reported ratios of 3.3 and 4 times for the instantaneous
and equilibrium moduli of the axons and the ECM of
the porcine brain, respectively, which are in the same
order of our results.

The characterized viscoelastic RVE and SVE
models of the corpus callosum and corona radiata
were validated against the experimental results
reported by Jin et al.44 for the same structures

(Fig. 10). In general, both models overestimated the
homogenized responses of the tissues, particularly at
high strain rates. However, the predictions of the SVE
model were in better agreement with the experimental
results (average deviation: 27%) in comparison with
those of the RVE model (average deviation: 52%). In
fact, for almost all six cases we studied, the SVE
model responses lay within the standard deviation of
the experimental data (Fig. 10), which suggests that
the SVE model can provide a reasonably good rep-
resentation of the viscoelastic behavior of the brain
white matter structures. Moreover, the SVE model
predicted the homogenized stress in the corona radi-
ata to be 2 and 49% higher than corpus callosum at
0.5/s and 30/s, respectively. This prediction is con-
sistent with the previous observations that the
heterogeneity of mechanical properties between
regions are most apparent at the shorter time frames,
i.e. for rapid events rather than slower crushing head
injuries,34 and provides a further evidence for the
validity of the SVE model. Nevertheless, it should be
noted that Jin et al.44 performed their experiments in
two axonal and transverse directions and reported no
clear directional dependence, which is inconsistent
with the findings of more recent studies.6

There are some limitations in the current study that
need to be addressed in future investigations. First of
all, we assumed periodicity and ergodicity character-
istics for the microstructure of the specific structures of
the white matter studied, i.e. corpus callosum and
corona radiata. While the axonal architecture is con-
sidered to be more or less unchanging in different
regions of each of these structures, a more sophisti-
cated model might consider the heterogeneity of the
axonal fiber arrangements in more details. In particu-
lar, we applied the main eigenvector of DTI and CDF
of orientations of DTI voxels to the SVE, while the
latter represents the fiber bundles orientation in the
macroscopic level. More specific and detailed
micromechanical models of the white matter structures
might use the fiber orientation distribution data
obtained from advanced diffusion MRI, such as multi-
shell multi-directions diffusion, to represent the axon
orientation distribution in the microscopic level. In
addition, the ECM may be considered as a heteroge-
neous microstructure by itself, considering its con-
stituents of glial cells and lipid tissue veined with
capillaries.

Furthermore, we used the corrected embedded ele-
ment technique to account for the stiffness redundancy
at the locations where the matrix and fibers overlap.
However, when coupled to macroscale models and
subjected to body force accelerations, the mass
redundancy of the model might be also important and
need correction. In such multi-scale framework, the
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external loading on the head is used as the initial
conditions for the macro-mechanical model and the
predicted deformation gradient tensor at each material
point provides the periodic boundary conditions for
the corresponding SVE/RVE of the micromechanical
model for detailed analysis of the injury path-
ways.8,12,21 Finally, in this study we focused on the
tensile and shear behaviors of the white matter struc-
tures, considering the fact the axonal damage and
rupture, as a result of DAI, are often associated with
the tensile and shear loads, as the prevailing modes of
failure in the tissue’s microstructure. In such loading
conditions, the ratio of the tensile stress (maximum
principal stress) to the compressive stress (pressure) is
more than 1000, neglecting the effect of compressive
mechanical behavior of the tissue on the results. For a
more generalized model of the white matter structures,
the tensile-compressive switch behavior of the axonal
tracts might be considered by using the tension-com-
pression asymmetry in OGDEN30 or Holzapfel16

material models.

APPENDIX

The flowchart of the optimization procedure is
shown in Fig. 11.
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