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Guimaraes, Portugal; 3Life and Health Sciences Research Institute, University of Minho, Campus Gualtar, 4710-057 Braga,
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Abstract—Angioectasias are lesions that occur in the blood
vessels of the bowel and are the cause of more than 8% of all
gastrointestinal bleeding episodes. They are usually classified
as bleeding related lesions, however current state-of-the-art
bleeding detection algorithms present low sensitivity in the
detection of these lesions. This paper proposes a methodol-
ogy for the automatic detection of angioectasias in wireless
capsule endoscopy (WCE) videos. This method relies on the
automatic selection of a region of interest, selected by using
an image segmentation module based on the Maximum a
Posteriori (MAP) approach where a new accelerated version
of the Expectation-Maximization (EM) algorithm is also
proposed. Spatial context information is modeled in the prior
probability density function by using Markov Random
Fields with the inclusion of a weighted boundary function.
Higher order statistics computed in the CIELab color space
with the luminance component removed and intensity
normalization of high reflectance regions, showed to be
effective features regarding angioectasia detection. The
proposed method outperforms some current state of the art
algorithms, achieving sensitivity and specificity values of
more than 96% in a database containing 800 WCE frames
labeled by two gastroenterologists.

Keywords—Capsule endoscopy, EM segmentation, Machine

learning, Markov Random Fields, Angioectasias.

INTRODUCTION

Angioectasias are degenerative lesions of the blood
vessels, caused by microvascular abnormalities that
may appear in the mucosa and submucosa of the bowel
wall.9 These lesions are the most common source of

bleeding from the small bowel in patients older than 50
years,26 and are the cause of approximately 8% of all
gastrointestinal (GI) bleeding episodes.6 These lesions
have a cherry red appearance, and usually have a
diameter from 2 to 10 mm. They are superficial lesions,
therefore easily spotted by imaging techniques that
capture images from the inside of the GI tract.32

Wireless capsule endoscopy (WCE) is a medical
device that was introduced as a novel technology that,
contrary to the conventional endoscopy, allows the
inspection of the entire GI tract without major risks
and discomfort to the patients, not requiring special-
ized endoscopic operators.17 The WCE is a pill-like
device that includes a miniaturized camera, a light
source consisting on four LED’s and a wireless circuit
for the acquisition and posterior transmission of sig-
nals. After the acquisition, the video frames are wire-
lessly transmitted to an external receiver, worn in a belt
by the patient, and stored in a hard drive. The images
are captured by a short focal length lens, as the capsule
is propelled through the GI tract, with an acquisition
of 2 frames per second.14 The resulting video, with a
duration of about 8 hours, consists of about 60.000
frames. This is a large number of images to be analyzed
by a physician and being a boring task, is predisposed
to subjective errors since most frames contain only
normal tissue.1 A 2012 study36 reports that only 69%
of angioectasias were detected by selected experts,
which potentiates the inclusion of automatic diagnosis
systems for this particular pathology.

Segmentation-based approaches present two major
advantages: assessment of areas/volumes of lesions and
lesion localization inside the image. When comparing
different exams over time, treatment efficiency and/or
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severity of the pathology can be obtained. Lesion
localization separates the lesion from normal tissue
which can be used for physicians’ training.

Suspected Blood Indicator (SBI) is a tool included in
the software of PillCamTMdevices, helping the detection
of small bowel bleeding lesions in capsule endoscopy
procedures. During the last years, several published
studies analyzed SBI performance of detecting the
presence of blood and several lesions, including
angioectasias. A meta-analysis review for the validity of
the SBI in clinical context clearly shows the high sensi-
tivity of this tool for detecting active bleeding (around
99%), although it still shows a low specificity (around
65%). However, the detection of lesions with bleeding
potential is clearly reduced, with values of 55 and 58%
for sensitivity and specificity, respectively.35 When
looking for angioectasia detectiononly, a significant loss
of performance occurs, with values of 13 and 85%21; 41
and 68%5; 39 and 54%2 of sensitivity and specificity,
respectively. Therefore more efficient tools than SBI are
needed for the diagnosis of angioectasias.

Literature Review

The first study with the purpose of detecting blood
in WCE frames is of Hwang et al.,10 that proposed a
segmentation of bleeding regions, using the Expecta-
tion-Maximization (EM) algorithm for clustering and
the Bayesian information criterion for helping to
choose the number of clusters, using the values of
RGB channels as observations. A frame is considered
as bleeding if after the segmentation, a blood region is
found. Alternative approaches also using the RGB
color space can be found in Reference 16 where a
Karhunen-Loeve based color space transformation is
followed by a Fuzzy based segmentation, or in Refer-
ence 15 where the removal of under and over illumi-
nated regions, and a transformation of the red channel
are both explored for segmentation purposes, to name
only a few. Alternative color spaces such as CIELab
have also been used for the same purpose such as in
Reference 23 where the Euclidean distance from each
pixel to the bleeding pattern cluster center is used for
classification purposes, or in Reference 7 where the
second component is used with the objective of high-
light blood regions. Some algorithms focus only on the
blood detection by dividing the image in a fixed
number of regions by using RGB8, HSV19 or HIS20

color spaces. Such methods have the advantage of not
classifying the whole frame, so reducing the probability
of diluting the lesion tissue on the rest of the image.
However the division of the frame in rigid blocks may
also divide lesions making them small in each of the
patches; so a traditional segmentation algorithm may
be preferable.

In spite of the high number of papers involving
WCE research only a few refer specifically to
angioectasias. A saliency maps based approach from
RGB color space (only channels red and green) was
proposed in References 3 and 4, where a sensitivity of
94% and a specificity of 84% were reported in a da-
tabase with more than 3600 images. Handcraft (color
and texture) and Deep Learning (DL) based features
were compared in Reference 25 for angioectasia lesion
detection in a database of 600 frames having been
reported a sensitivity and specificity of 62 e 78%,
respectively. A DL based architecture for pixel-wise
segmentation purposes was proposed in Reference 27
by using AlbuNet and TernausNet networks where a
Dice coefficient of 85% in a database of 600 images
was reported. Although it is stated that it can be used
for a detection purpose, the paper does not present
these results. In general small datasets are not appro-
priate for DL based strategies; therefore, alternative
approaches may achieve higher performances. As an
example we can focus on Reference 22 where a his-
togram equalization step is used to increase image
contrast with a posterior decorrelation between RGB
channels to enhance color differences in the images. To
select a ROI, a threshold is used in the green channel to
provide a seed to a region growing algorithm. The
resultant regions are then splitted when the variance is
high enough. Then 24 statistical textural and geomet-
rical features are extracted for several color spaces. A
decision tree is used to classify each region as normal
and abnormal reaching an accuracy of 96.80%.

Angioectasia segmentation by using the EM algo-
rithm with Markov Random Fields (MRF) was pro-
posed in Reference 30 and improved in several aspects
in the current paper. As shown in that paper
angioectasias seem to have a better characterization in
the CIELab than in the RGB color spaces. Therefore,
CIELab will be the color space chosen in the current
approach. A new acceleration procedure for the EM
algorithm is proposed in order to avoid slow conver-
gence especially in normal frames where the classes
may be poorly separated. A MRF approach allows to
compensate the assumption of independence inside the
Gaussian Mixture Model (GMM) model among dif-
ferent components, and also to add spatial information
to the segmentation procedure. A relaxation coefficient
computed on the basis of pixel intensities is proposed
in order to cope with boundaries’ imperfections. A
sigmoid-based function is proposed to compute this
coefficient, which was obtained by experimentation.
Regarding feature extraction for classification pur-
poses several statistical measures are computed in both
regions where one is considered background (normal
tissue). This procedure leads the system to focus more
on the differences between regions than in absolute
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values in each region, improving perhaps robustness
against patient and device variability being a signifi-
cant novelty of the proposed approach.

MATERIALS AND METHODS

Figure 1 shows the flowchart of the proposed sys-
tem, which consists in two major blocks: segmentation
and classification modules. The purpose of the seg-
mentation module is to break the image into two log-
ical regions, where each logical region may have
several space regions since lesions may be scattered
across the frame. The purpose of the classification
module is to characterize the lesion nature by
extracting adequate features in both logical regions.
Lesion nature knowledge was previously acquired in
the training phase. This approach presents sufficient
versatility to control the sensibility to unwanted type
of lesions which can be of utmost importance in mul-
tipathology automatic diagnosis.

Minor blocks include color space transformation
from RGB to CIELab since as shown in ‘‘Color Space
and Pre-processing’’, angioectasia lesions are better
characterized in this color space. Sub-modules such as
pre- and post-processing are included for the goal of
emphasizing lesions and improving the edges and are
described in ‘‘Color Characterization of Angioec-
tasias’’ and ‘‘Post-processing’’, respectively. The seg-
mentation of normal frames present one of the logical
regions broken into several very small spatial regions
which in some cases can disappear during the post-
processing stage. Therefore, in these cases, after the
segmentation module, these frames are automatically
selected as normal. The rest of the images have sta-
tistical features extracted from the regions selected in
the previous step, that are then considered as input to a
supervised classifier (‘‘Feature Extraction’’)

Color Characterization of Angioectasias

CIELab is characterized by three statistical inde-
pendent components30,34: L represents the lightness
information that goes from 0 (black) to 100 (diffuse
white), and the components a and b represent the
color-opponent dimensions. Negative values of chan-
nel a indicate green and positive indicate magenta
(adequate for the detection of red color); and negative
values of b indicate blue and positive indicate yellow.33

Figure 2a shows a frame with an angioectasia lesion
and in Figure 2b the correspondent component a of the
same frame. It is clear that the angioectasia tissue (red
arrow) is highlighted when comparing with normal tis-

sue. Nevertheless, the set of pixels next to the yellow
arrows also appear highlighted, not corresponding to
angioectasia tissue. These regions correspond to shad-
ows of some bubbles; which are characterized by low
levels of intensity for green and/or blue components
which usually don’t characterize tissue regions.

Therefore, a pre-processing algorithm is proposed
to improve the performance of the segmentation pro-
cess. Let C be a RGB image with a M�N size and D
the corresponding image in CIELab color space.

Ckði; jÞ and Dlði; jÞ represent the correspondent pixel in
the component k ¼ R;G;B and l ¼ L; a; b, respectively,
and with the coordinates i ¼ 1; 2; :::;M and
j ¼ 1; 2; :::;N. In this algorihtm (Algorithm 1), the
pixels that present values of green or blue components
lower than a chosen threshold (d), are replaced by an
average of a neighboring region (with a variable size)

centered in that pixel (@fDlði; jÞg).

FIGURE 1. Pipeline of the methodology.
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Next section details the proposed segmentation
module emphasizing the effectiveness of this proce-
dure.

Segmentation

The segmentation module is based on the Maximum
a Posteriori (MAP) approach by using the EM algo-
rithm. A modified version of the Andersen acceleration
algorithm is proposed in order to make the EM usable
in poor separated cases. A modified MRF, with a
weighted boundary function, was included for spatial
context modeling purposes.

Expectation-Maximization

The segmentation module uses a statistical classifi-
cation based on Bayes rule (Eq. (1)). This rule indicates
how the posterior probability of each class is calcu-
lated.

pðxjjxÞ ¼
pðxjxjÞ:pðxjÞ

pðxÞ ð1Þ

In this equation, xj refers to the jth class and x to the
feature vector, while pðxjjxÞ, pðxjxjÞ and pðxjÞ are the
a posteriori probability of class xj, the class conditional

probability density function and the a priori proba-

bility, respectively. The term pðxÞ is a scaling factor
which purpose is setting the a posteriori probability to
the range between zero and one, that however can be
ignored since it takes the same value for each class xj.

Therefore, for comparison purposes among classes,
Eq. (1) can be written as:

pðxjjxÞ ¼ pðxjxjÞ:pðxjÞ ð2Þ

Assuming the number of classes as nc, for a given x, the
MAP is computed for all classes and x is assigned to
the class with maximum MAP. Class conditional
probability density function is usually assigned to the
Gaussian function, being the observations modeled as
a Gaussian mixture whose parameters can be itera-
tively estimated by using the EM algorithm. The a
priori probability has a precise meaning in the model
regarding data partition over all classes, however it is
frequently used as a spatial regularizer by capturing
neighboring information, not taken into consideration
in the Gaussian mixture model that models pixel
intensities as random variables independent and iden-
tically distributed. Neighborhood information can be
modelled by MRFs.

The most appropriate parameters of the GMM are
then estimated according to the Maximum Likelihood
(ML) criterion. This likelihood, regarding one feature
vector x is given by:

pðxjuÞ ¼
Xcn

j¼1

pðxjÞ:pðxjxj;ujÞ ð3Þ

In Eq. (3), uj corresponds to the vector of estimated
parameters for class j, in this case mean, variance and
class coefficient. Because the measures are considered

FIGURE 2. Original frame with an angioectasia lesion and the component a of the same frame a with a red arrow showing the
lesion and with yellow arrows showing non-lesion highlighted regions.
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independent, the likelihood for N measures pðXjuÞ can
be written as:

pðXjuÞ ¼
YN

i¼1

pðxijuÞ ð4Þ

Maximizing the likelihood can be achieved indirectly
by maximizing the log-likelihood, since the logarithm
is a crescent function. Apart from that, having Gaus-
sian functions involved using the logarithm is advan-
tegeous regarding derivative calculations since the
exponential is anulated.

lðuÞ ¼ log pðXjuÞ ¼ log
YN

i¼1

pðxijuÞ

¼
XN

i¼1

log
Xcn

j¼1

pðxjÞ:pðxijxj;ujÞ
ð5Þ

The maximization of the log-likelihood results in the
following re-estimation equations for the parameter’s
update:

p̂j ¼
1

cn

XN

i¼1

pðxijxj;ujÞ ð6Þ

m̂j ¼
PN

i¼1 pðxijxj;ujÞ:xiPN
i¼1 pðxijxj;ujÞ

ð7Þ

r̂j ¼
PN

i¼1 pðxijxj;ujÞ:ðxi �mjÞ2PN
i¼1 pðxijxj;ujÞ

ð8Þ

The weight of class j shown in Eq. (8) will be affected
by pixel neighborhood, using MRFs (‘‘Computation of
a Priori Probability with MRF’’).

The process to find the best parameters is iterative
and proceeds as follows:

1. Initialization of parameters, which in this case was
done by using K-means algorithm

2. E-step (expectation): calculation of likelihood of
each sample for each class

3. M-step (maximization): find maximum likelihood
value and recalculate the parameters

Steps 2 and 3 are repeated until convergence is
achieved.

Convergence Acceleration of the EM Algorithm

One of the most important properties of the EM
algorithm is the linearity of its convergence that can be
unacceptably slow when the populations are poorly
separated. The Anderson acceleration method is based
on a fixed-point iteration and tries to make use of
information gained from previous iterations for
accelerating the convergence process. The goal of
fixed-point iteration is to solve gðxÞ ¼ x in an iterative
manner. For any fixed-point problem we have the
general Algorithm 2.

A fixed-point problem can be adapted to the EM
algorithm by using the Q-function (Eq. (5)) through
the relationship fðxÞ ¼ gðxÞ � x ¼ 0, or in other words
a maximum-likelihood estimate is a fixed-point of the
iteration.

Let xk�m; :::; xk 2 Rd denote the most current mþ 1

iterations and fk�m; :::; fk 2 Rd, where m represents the
number of stored iterations to be able to accurately
predict the next. In this case, the Anderson Accelera-
tion Algorithm applied in the context of the EM can be
described as it can be seen in Algorithm 3.31
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This is a constrained problem, which can be refor-
mulated in an unconstrained optimization problem, as
can be seen in Reference 31. However, the EM algo-
rithm is characterized as having a smooth curve,
meaning that last iterations lead to better predictions
than older iterations. Therefore, our implementation
have one more constraint characterized by aj<ajþ1

subjected to the constraint a>d, being d a small con-
stant assuring that all the previous iterations are
effectively used. This constrained optimization prob-
lem can be solved by using the Lagrange multipliers
method as follows:

First, a vector containing the difference of the log-
likelihood between successive iterations must be com-
posed. These differences capture the rate of conver-
gence of the EM algorithm among iterations. Defining
this vector as �c ¼ fc1; c2; :::; cng and assuming the
existence of a a vector such as �a ¼ fa1; a2; :::; ang, the
main goal is to find the alpha vector that minimizes the
following function:

fð�aÞ ¼
Xn

i¼1

ciai ð9Þ

subject to the following constraints:

ai � 0
Xn

i¼1
ai ¼ 1

ai � aiþ1

8
>>><

>>>:
ð10Þ

Applying Lagrange multipliers we obtain:

Lð�a; �k; �l; cÞ ¼
Xn

i¼1

ciai þ
Xn

i¼1

kið�aiÞ þ
Xn�1

i¼1

liðai � aiþ1Þ

þ c
Xn

i¼1

ai � 1

 !

ð11Þ

The solution for this problem requires the simultane-
ous solution of a set of equations that include the non-
negativity conditions (ki; li � 0) and the differentiation
of the Lagrangian function in order to all the un-
knowns, known as the stationary of Lagrange and the
complementarity conditions given by kiai ¼ 0 and
liðai � aiþ1Þ ¼ 0.

The proposed algorithm outperforms the conven-
tional algorithm for the poor separated cases presented
in Reference 24 in approximately 12:5%. We used m ¼
7 and I ¼ 13 to make the algorithm with a quick and
reliable behaviour.

Computation of a Priori Probability with MRF

MRF models have the ability of capturing neigh-
borhood information to improve a priori probabilities
pðxÞ. An image can be considered as a random field, or
a collection of random variables (X ¼ X1; :::;XN) that
are defined on the set S. A random field is considered
an MRF only when the following conditions are ful-
filled:

1. pðxÞ>0; 8x 2 X, which is the condition of posi-
tivity,

2. pðxjjxS�fjgÞ ¼ pðxjjxNj
Þ, which is the condition of

Markovianity.

The first condition is straightforward fulfilled just
because the values are probabilities, so by definition,
greater than 0. The condition of Markovianity states
that the probability of an observation xj, given the
other random variables in the field, is equal to the
probability of the same observation, given a neighbor-
hood around its location (N j), or in other words, given
its neighborhood, a variable is independent on the rest
of the variables. Fulfilling this condition is in fact
modelling the neighborhood effect. Using Gibbs Ran-
dom Field (GRF), the apriori class probability can be
assigned such as:
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PðxÞ ¼ 1

Z
exp

�UðxÞ
T

� �
ð12Þ

Z ¼
X

x

exp �UðxÞ
T

� �
ð13Þ

In this equation, the constant T represents the tem-
perature and controls the level of peaking in the
probability density, and the quantity Z is a normaliz-
ing constant which guarantees that pðxÞ is always
between zero and one. UðxÞ is an energy function and
is obtained by summing all functions VðxÞ (clique
potential) over all C possible cliques. A clique is de-
fined as a grouping of pixels in a neighborhood system,
such that the grouping includes pixels that are neigh-
bors of another in the same system.

UðxÞ ¼
X

C2N
VCðxÞ ð14Þ

The Hammersley-Clifford theorem defines that if and
only if a random field X on S is a MRF with respect to
neighborhood system N , then X is a GRF on S with

respect to a neighborhood system N . This fact allows
to convert the conditional probability as a Marko-
vianity condition of a MRF to the non-conditional
probability of a Gibbs distribution of Eq. (12).

To compute the estimation of pðxÞ, the energy
function used was based on Reference 28:

UðxjÞ ¼
X

k

bk:lk;j ð15Þ

In Eq. (15), k is the direction (in this case it can be
horizontal or vertical) and lk;j is the Dirac impulse

function in such a way that UðxjÞ depends on the

count of pixels in neighborhood that do not belong to
class j.

Usually, in practice, models are considered as iso-
tropic, so the amount of variables to estimate is
strongly decreased, becoming in this case bk a con-
stant. However pixels near the borders are sometimes
wrongly classified in the Gaussian Mixture especially
due to the partial volume effect. Therefore using the bk
parameter to model intensity differences in neighbor-
hood pixels in order to reinforce border conditions has
been used in several works where several functions
have been suggested. The main idea is to set bk in such
a way that a direct interference on border location is
achieved. Heuristically we want to avoid class j under
situations of high variance that usually appear near
borders, even if a large number of pixels belong to class
j. Under relative smooth conditions the border can also
be present and can be detected by pixel intensity
variations which occurs at corners of small structures.
Some tests were conducted in order to compute bk for

pixels on and near the border of several angioectasias
and the approximated function given by Eq. (16) was
found and is proposed in the ambit of this paper as
follows:

bk ¼
rk

1þ exp �rk

Pn

i
jIi�Icj:distðIi;IcÞ

n

� �
ð16Þ

In Eq. (16) bk is dependent on the difference of
intensities (jIi � Icj) of the neighbor in the direction k,
but also of the distance between the pixel in the center
and the neighbouring pixel (distðIi; IcÞ). The term r is
the standard deviation of the neighboring used in this
case and presented in Fig. 3.

This energy function uses a 2D-neighboring system
of 8 pixels that can be seen in Fig. 3, where the darker
pixel is the current observation.

Post-processing

The purpose of the post-processing step is to im-
prove the segmentation results, where the main limi-
tations are:

1. isolated pixels are sometimes selected as abnormal
region,

2. sharp and irregular edges in some lesions,
3. selection of tissue region as abnormal that are in

fact normal.

Problem 1 can be solved by using the mathematical
morphology opening operation. Using a small struc-
turing element, the regions that consist of isolated
pixels will disappear from the binary image. This will
also help to correct some of the irregularity described
in problem 2, but using also a mathematical morphol-
ogy closing operation with the same structuring
element the results can be improved. In fact, while
opening has the objective to regularize sharp edges to
the outside of the lesion, closing will smooth the edges
to the inside of the lesion, so the result will be a smooth
contour for both directions. Regarding the problem 3,
the regions that are incorrectly selected as angioectasia
are usually small vessels that appear on the surface of
the tissue, and the biggest difference between these two
types of tissue are their shape. In the case of angioec-

FIGURE 3. Neighborhood system of 8 pixels used.
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tasias, they are usually circular lesions, while vessels
are elongated regions; so, applying the connected
components algorithm, each lesion could be analyzed
individually. In this regard, lesion tissue can be selected
by using the ratio between major and minor axis length
of each region, that being compared with a predefined
threshold, established on the basis of previous tests;
which value was set to 3.

Feature Extraction

The output of the segmentation module can have 3
different results:

1. after post-processing step, only one region exists in
the image,

2. the image is divided into two different regions (one
of them contains an angioectasia lesion),

3. the image is divided in two different regions (none
of them contains an angioectasia lesion).

In the first situation the image is automatically
classified as normal, since no significant differences
are found in channel a values that support different

classes under the constraint of contiguous minimum
area. Second and third cases require a classifier module
that rely on features extracted from both regions. This
approach models the difference between both regions,
in order to improve robustness against environmental
conditions (related to device and subject changes). In
fact, light characteristics may vary among different
devices while tissue color may vary among different
subjects.

Figures 4 and 5 show the histograms of channel a
and b, respectively, for angioectasia and normal tissue.
It is clear that for both channels both shape and mean
(more in channel a than in b) of distributions can help
to distinguish normal from angioectasia regions.
Therefore, histogram measures seem adequate to de-
tect the presence of an angioectasia lesion. In the
current work mean, variance, entropy and kurtosis are
proposed as features, and were computed by the fol-
lowing expressions:

l ¼EfXg ¼ 1

N

XN

i

xi ð17Þ

FIGURE 4. Histogram of intensities of component a of the CIELab color space of the region with angioectasia (a) and the normal
region (b).
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r2 ¼EfðX� lÞ2g ¼ 1

N

XN

i

ðxi � lÞ2 ð18Þ

H ¼Ef� ln pðXÞg ¼ �
X

k

pk ln pk ð19Þ

k ¼EfðX� lÞ4g
r4

¼
1
N

PN
i ðxi � lÞ4

1
N

PN
i ðxi � lÞ2

� �2 ð20Þ

These four measures are then computed in both
regions and concatenated forming the feature vector;
which will feed the supervised classifiers.

RESULTS

This section presents the used datasets and some
implementation details, followed by some partial re-
sults focused on the segmentation module and ending
with global classification results.

Datasets and Implementation

In this work, two different databases were used:

1. For the evaluation of the segmentation module,
the public database KID was used.11–13,18 This
database consists of 27 images, divided into 3
groups of different bleeding probabilities (P0, P1
and P2; from the lowest probability to the high-
est). All the images were manually segmented by
experienced physicians and were all acquired with
MiroCam�.

2. For detection purposes, a bigger database was
used, with 798 images ( 248 images with angioec-
tasias and 550 images labeled as normal). All the
images with lesions and 300 normal frames were
taken from 20 exams from PillCamTM SB2, where
the rest of normal images (250) were taken from 5
normal exams from MiroCam� in order to obtain
a higher degree of generalization. All the exams
were performed in Hospital of Braga (Portugal)
and were examined by two expert physicians in the
diagnosis of WCE exams. The images were

FIGURE 5. Histogram of intensities of component b of the CIELab color space of the region with angioectasia (a) and the normal
region (b).
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included in the database only when both agreed
with the diagnosis.

Experimental results of classification were obtained by
using WEKA—an open source machine learning
package. A stratified 10-fold cross-validation was
used, taking into consideration subject variability
along folds, with a Multilayer Perceptron (MLP) neu-
ral network and a Support Vector Machine (SVM).

For evaluation purposes, several metrics were
computed for each test: sensitivity, specificity and
accuracy, computed as follows, as well as area under
the ROC curve (AUC):

Sensitivity ¼ TP

TP + FN
ð21Þ

Specificity ¼ TN

FP + TN
ð22Þ

Accuracy ¼ TP + TN

TP + FP + TN + FN
ð23Þ

A baseline system was implemented, with the purpose
of comparing the proposed method with a reference
result. This implementation was based on the algo-
rithm described in Reference 22, which was already
described in the ‘‘Introduction’’. This method applies a
histogram equalization step to increase contrast of the
images and a decorrelation between RGB channels to
enhance color differences. After, a threshold is applied
to the green channel, which will work as a seed to a
region growing algorithm. Regions with specific values
of area, perimeter and extent are then removed; and
the rest of regions are splitted when their variance were
higher than a specific value. Then, 24 statistical, tex-
tural and geometrical features are extracted for several
color spaces (RGB, HSV, CIELab and YCbCr). A
decision tree (RUSBoosted) is used to classify each
region as normal or abnormal.

Color Space and Pre-processing

The purpose of this sub-section is to show that the
CIELab Color Space has some advantages over RGB
even if the relative Red value is used, as defined in
Eq. (24). For this purpose Fig. 6 presents a frame
containing an angioectasia shown in different color
channels of different color spaces. It is clear that the a
channel (Fig. 6d) clearly shows the lesion, while some
potential false positives are avoided. R* channel
(Fig. 6c) also avoids potential false positives however
the lesion appears much more subtle. Because RGB
shows a high correlation among the three channels,29

the relationship between color red and channel R is not
direct. In other words, information carried by the red
component is also carried by the other two compo-
nents, hence a large range of information is simulta-
neously carried by the different color components.
Therefore, even using the R* component, the dis-
crimination remains difficult, however slightly better
when compared to the red component (R).

R� ¼
R

Rþ Gþ B
ð24Þ

Figure 7 shows some results after using the pre-
processing step, previously explained in ‘‘Color Char-
acterization of Angioectasias’’, where an angioectasia
frame is used as input with different neighborhood
sizes (7, 21 and 51). Results show that with an

increasing size of @fDlði; jÞg, the algorithm shows a
better performance. Although the lesion also becomes
less intense when increasing the neighborhood size, this
pre-processing step improves the overall results of
segmentation (as will be discussed in the next subsec-
tion). The chosen d was 5, because presented good
results for removing these highlighted regions, not
affecting the lesion area.

FIGURE 6. Example of an angioectasia in the small bowel taken from a WCE exam (a), red component of image in RGB (b), relative
red component in RGB (c) and a channel from CIELab (d).
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Segmentation

The segmentation of angioectasias is an important
part of this system, because it strongly influences the
next step (Classification). The segmentation algorithm
proposed in this paper is an improvement of the one
presented in Reference 30, which was also tested in the
KID dataset. Major improvements are the acceleration
of convergence of the EM algorithm and a new param-
eter bk which incorporates pixel intensity in the com-
putation of a priori probabilities provided by the MRF.

Figure 8 shows segmentation results of an image
with an angioectasia lesion. Figure 8b shows the per-
formance of the Otsu algorithm applied to the channel
a of the frame. It is clear that with this basic segmen-
tation method it is impossible to correctly differentiate
normal from angioectasia tissue. Figure 8c shows that
the use of MAP algorithm leads to a major improve-
ment when compared to the Otsu method. The same
argument can be used when looking at Figs. 8d and 8e;
where both pre- and post-processing methods lead to
an improvement in the segmentation of this image. In

FIGURE 7. Original a component of CIELab space color (a) and the same component with the pre-processing step with a
neighborood of 7 pixels (b), 21 pixels (c) and 51 pixels (d).

FIGURE 8. Image with an angioectasia (a), segmentation results with Otsu thresholding of component a (b), MAP without pre-
processing (c), MAP with pre-processing but no post-processing (d) and MAP with pre- and post-processing (e).
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the case of the pre-processing step, almost all non-le-
sion zones highlighted with channel a were removed.
With the use of post-processing, small regions were
also removed, reaching a result where the only selected
pixels are the ones belonging to the angioectasia.

Figure 9 shows another example of a frame with an
angioectasia, but in this case there is a higher incidence
of bubbles in the image. This fact increases the number
of pixels corresponding to reflections in these bubbles,
that contain a high component of a (which can be
verified with the analysis of Fig. 9b). When no pre-
processing is applied, the region of angioectasia is not
selected by the segmentation module (Fig. 9c). The
result is improved with the inclusion of the pre-pro-
cessing step, in which the angioectasia lesion is also
selected (Fig. 9d). This result is also improved with the
inclusion of the post-processing step (Fig. 9e), exactly
as in the previous example.

KID Database was used to validate the segmenta-
tion algorithm since manual segmentation of all the
images are available. To compare the different meth-
ods the Dice metric (Eq. (25)) was computed over all
the 27 images of the database. In this equation A is the
set of pixels segmented by the algorithm and B is the
set of pixels in the manual segmentation. The higher
the Dice metric, the better is the performance of the
segmentation algorithm.

DðA;BÞ ¼ 2jA \ Bj
jAj þ jBj ð25Þ

To see how every step would influence the segmenta-
tion of the images 4 different experiments were carried
out:

1. Exp A Results without pre and post-processing,
using MRF with constant b values.

2. Exp B Results with pre-processing but without
post-processing, using MRF with constant b
values.

3. Exp C Results with pre and post-processing, using
MRF with constant b values.

4. Exp D Results with pre and post-processing, using
MRF with varying b values.

Figure 10 shows Dice values for both the whole KID
dataset (a) and only P2 lesions from the same dataset
(b). These lesions are the ones with the biggest
probability to bleed, therefore they are most dangerous
for the patients. Also, it is common for these lesions to
appear bigger and more reddish.

Results allow to infer the efficiency of each block of
segmentation algorithm; pre-processing, post-process-
ing and intensity based anisotropic MRF modeling.
The improvement is more prominent from Exp. A to

FIGURE 9. Image with bubbles and an angioectasia (a), channel a of the same frame (b), MAP without pre-processing (c), MAP
with pre-processing but no post-processing (d) and MAP with pre- and post-processing (e).
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Exp. B, showing that indeed the pre-processing step
has a relevant role in the segmentation method as a
whole. The inclusion of post-processing also leads to
an improvement in the segmentation performance
(Exp. B to Exp. C). Lastly, an improvement is also
notorious when comparing standard MRF with the
new approach proposed in this paper (Exp. C to Exp.
D).

When comparing the results from Figs. 10a and
10b, the more immediate conclusion is that Dice values
are bigger when only using P2 lesions, which was al-
ready concluded in Reference 30. It is also important
to notice that P2 lesions show a bigger improvement
when the proposed equation for MRF is included. This
fact shows that this new parameter is important for
segmentation of this type of lesions that have sharper
edges.

It can be also interesting to analyze some images
that show some flaws in the Segmentation step, which
will directly affect their classification afterwards. In
Fig. 11, both images led to bad segmentation results,
as it can be seen in the images on the right. The first
example (top), the lesion is behind the bubbles, which
becomes difficult for the system to localize it (channel a
is highlighted in lesion tissue and in presence of bub-
bles). Although the system could find some of the
angioectasia tissue, most part of the result is not cor-
rect. In the bottom example, the angioectasia is at an
early stage, appearing with a very soft red appearance
in the middle of the tissue. As it can be seen in
Fig. 11b, abnormal tissue is not that highlighted,
which leads to the result on the right where several
false positives appear.

Classification

One of the advantages of the approach presented in
this paper is that not all images need to be passed in the
classifier to be classified. Some of the normal ones are
classified by the segmentation module because they do
not have ROI. In fact, normal frames present smooth
amplitude variations between neighboring pixels,
which causes the most intense class to be spread in
numerous groups of few pixels that are easily elimi-
nated in the post-processing step. Table 1 shows that
more than 33% of normal frames were correctly clas-
sified as normal and none of the pathological ones was
classified as normal. This is a major advantage for the
classifier enabling a more effective discrimination by
reducing the sample space.

Given the findings and conclusions of ‘‘Feature
Extraction’’, second and higher order statistics were
used in the ambit of this paper. A feature analysis
algorithm was used to rank the different features
according to its discriminative and predictive power. A
correlation based feature selection, which computes
the Pearson’s correlation value between the value and
its class, was used. These results can be analyzed in
Table 2, where all the features were ranked according
to the correlation values obtained using WEKA.

It is possible to conclude that channel a presents the
most representative features, where the mean reaches
the highest value. It was decided to group features into
different sets, which were built according to the results
in the previous table and according to the statistical
measures that were expected to represent in a better
way the data. The chosen sets can be seen in Table 3.

FIGURE 10. Box plots of Dice values after 4 different experiments with the whole KID Database (a) and only with P2 lesions (b). In
each plot, from left to right, without pre and post processing, only with pre-processing, MRF with constant b values and MRF with
varying b values.
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In Tables 4 and 5 were included the results with a
MLP classifier and a SVM classifier, respectively. Not
surprisingly, given the non-Gaussian nature of the

intensity distribution, the best results were achieved by
including higher order statistics. It was also observed
that entropy seems to have more discriminative power

FIGURE 11. Examples of misclassified frames (angioectasias with red circles) (a), with the respective images representing the
channel a (b) and the segmentation result after applying the proposed method (c).

TABLE 1. Results after the first step of the algorithm.

Type of images Normal Angioectasia

# of images in the Database 550 248

# of images classified as normal after the segmentation step 182 0

# of images used in the classification step 368 248

TABLE 2. Correlation based feature selection.

Feature Correlation value

la 0.7845

r2a 0.6701

Hb 0.6590

Ha 0.6587

lb 0.3647

ka 0.1640

r2b 0.1109

kb 0.0045

TABLE 3. Sets of features tested in this work.

Set Features

A l, r2

B l, k
C l, H
D l, r2, k
E l, r2, H
F l, r2, H, k
G 4 most representative features according to Table 2
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than kurtosis. Results present higher sensitivity than
specificity, which is usually the purpose with medical
applications, because it is more acceptable to have
some false positives than false negatives.

Another interesting finding is that, when using the
features that were chosen to be more representative
according to Table 2, the results did not show an
improvement. For example, the set C (which is a set
with also four features), presents similar results both
when using MLP or SVM. When using SVM, set A is
the set with only four features with the best perfor-
mance.

Both tables also show that MLP and SVM perform
similarly (mainly in accuracy), where the sensitivity
values are higher in SVM and specificity lower. The
best result was achieved using a MLP classifier
(96.60% of sensitivity and 94.08% of specificity,
leading to an accuracy value of 95.58%).

When comparing to the reference algorithm imple-
mented by the authors (Table 6), the proposed
approach lead to higher results both in sensitivity and

specificity. The selected method22 is based on several
parameters chosen by its authors, when using a specific
database, which is why the results shown in here are
not equivalent to those shown in the paper. We can
conclude that the performance of the proposed overall
system is better than the one considered as a reference.

DISCUSSION

Lesion detection in WCE exams is of a tremendous
interest for the future of medicine, and the develop-
ment of an automatic diagnosis system that deals with
this problem will allow for the physicians to reduce the
reviewing time of these exams. Although there are al-
ready commercial tools for the detection of blood-
based lesions, these show a sensitivity of 41% when
angioectasia are considered. This work presents an
effective approach for segmentation and detection of
angioectasias in small bowel tissue in WCE exams.

With this paper it was possible to conclude that the
use of CIELab color space indeed improves the high-
light of angioectasia lesions in WCE frames, specifi-
cally when the proposed pre-processing algorithm is
applied. The use of MRFs to model the pixels’ neigh-
borhood also shows improvements in lesion segmen-
tation, more specifically with the inclusion of the
proposed weighted-boundary function. Both of these
improvements were shown visually (Figs. 8 and 9) and
graphically (Fig. 10). Another important novelty pre-
sented in this paper is that the segmentation module
has the ability of correctly classify a substantial per-
centage of normal images of the dataset. This is
important to reduce the time needed to classify an
entire WCE video.

The use of a supervised classifier showed that these
lesions can be detected with the use of a small set of
features. As expected, higher order statistics improve
the system performance, given the non-Gaussianity
observed in intensity distributions.

When compared to the methods already published
to detect angioectasias in WCE images, the proposed
system shows a better performance. This method does
not use algorithms with a high computational com-
plexity (like deep learning), which can be an advantage
to be used in a clinical practice, where machines with a
high computational power are not usually available.
Also, the work described in this paper does not just has
the ability of detect angioectasia lesions, but also can
localize them in the image; which can be an extra help
for the physician.

Nevertheless, there are still some problems to ad-
dress. As was shown in Fig. 11, some images were
misclassified with the proposed method. The pre-pro-
cessing step should be improved so images with dif-

TABLE 4. Results using a MLP classifier and different sets of
color features from a and b components of Lab color space.

Set Sensitivity Specificity Accuracy AUC

A 93.52 89.34 91.86 90.21

B 91.24 86.91 89.53 91.39

C 92.35 91.07 91.86 88.98

D 94.33 89.30 92.33 93.46

E 94.69 92.94 93.95 94.51

F 96.60 94.08 95.58 94.98

G 92.41 91.72 92.19 93.42

TABLE 5. Results using a SVM classifier and different sets of
color features from a and b components of Lab color space.

Set Sensitivity Specificity Accuracy AUC

A 96.57 89.93 93.95 88.23

B 93.53 76.73 86.98 89.34

C 93.92 88.75 91.86 92.12

D 96.20 88.71 93.26 93.56

E 95.04 91.69 93.72 93.89

F 96.58 92.24 94.88 95.62

G 94.36 86.05 91.65 90.21

TABLE 6. Results of the reference algorithm based on the
algorithm explained in Reference 22 and the best results of
the current approach (considering the classification of both

steps).

Set Sensitivity Specificity Accuracy

Results of Reference 22 87.50 86.40 86.79

Current approach 96.60 96.55 96.58
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ferent backgrounds would have the lesions better
highlighted. Also, in future works, maybe other color
channels could be used simultaneously to segment
angioectasias. Also, the segmentation has room for
further improvement (specially when smaller lesions
are present), which consequently will improve the
classification. More promising features to encode color
information should be tested, like histogram of ori-
ented gradients (HOG). And improved classification
methods should be used (like deep learning or ensem-
ble learning), that usually need larger databases in
order to work properly. Looking at the performance
values that were reached, we can conclude that the use
of this system in the clinical practice can be started, as
well as tests with entire videos of WCE and the test of
this system in clinical practice.
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