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ABSTRACT—We implemented direct collocation on a full-
body neuromusculoskeletal model to calculate muscle forces,
ground reaction forces and knee contact loading simultane-
ously for one cycle of human gait. A data-tracking colloca-
tion problem was solved for walking at the normal speed to
establish the practicality of incorporating a 3D model of
articular contact and a model of foot–ground interaction
explicitly in a dynamic optimization simulation. The data-
tracking solution then was used as an initial guess to solve
predictive collocation problems, where novel patterns of
movement were generated for walking at slow and fast
speeds, independent of experimental data. The data-tracking
solutions accurately reproduced joint motion, ground forces
and knee contact loads measured for two total knee
arthroplasty patients walking at their preferred speeds.
RMS errors in joint kinematics were < 2.0� for rotations
and < 0.3 cm for translations while errors in the model-
computed ground-reaction and knee-contact forces were <
0.07 BW and < 0.4 BW, respectively. The predictive
solutions were also consistent with joint kinematics, ground
forces, knee contact loads and muscle activation patterns
measured for slow and fast walking. The results demonstrate
the feasibility of performing computationally-efficient, pre-
dictive, dynamic optimization simulations of movement
using full-body, muscle-actuated models with realistic repre-
sentations of joint function.

Keywords—Musculoskeletal model, Dynamic optimization,

Collocation, Knee contact model, Foot–ground interaction.

INTRODUCTION

The ability to perform predictive simulations is ar-
guably the last grand challenge for bio-scientists and
engineers interested in computational modelling of
human movement. Model simulations that predict

biomechanical function may aid in the design of more
effective (targeted) exercise-based therapies for patients
with movement abnormalities resulting from stroke,13

cerebral palsy5 and osteoarthritis.9,39 Predictive
biomechanical simulations of movement may also as-
sist in pre-operative planning of orthopaedic surgical
procedures such as knee-ligament reconstructions and
joint replacement, while the ability to predict novel
movements would be valuable to sport scientists and
coaches aiming to improve the techniques used by
Olympic-calibre athletes to achieve exceptional per-
formance.

Dynamic optimization or optimal control theory is
well suited to exploring the interactions between the
neuromuscular and musculoskeletal systems because it
enables all quantities of interest (i.e., joint motion,
external (ground reaction) forces and muscle coordi-
nation patterns) to be predicted, independent of
experiment. Hatze12 pioneered the application of this
approach to the study of human motion biomechanics
by predicting the neuromuscular patterns needed to
produce a minimum-time kicking motion. Since then,
dynamic optimization has been used to simulate vari-
ous other tasks, including jumping,3,28,30,31,45

cycling,14,32 walking1,4,6,25 and running26 (see also
Pandy29 for a review). Many other studies have applied
an alternate formulation of the optimal control prob-
lem called ‘data-tracking’ (known more commonly as
‘state estimation’ in the literature on control systems
theory), where model-computed joint kinematics,
ground reaction forces, and sometimes muscle activa-
tions as well, are constrained to reproduce corre-
sponding experimental data obtained in vivo.36,42 Data-
tracking enables efficient calculation of the internal
states of the system, for example, the time histories of
individual muscle forces and muscle-fibre lengths;
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however, it is fundamentally descriptive and not
amenable to generating novel movements.

We recently implemented an implicit computational
method called ‘direct collocation’ on a complex neu-
romusculoskeletal model with foot–ground contact to
generate 3D data-tracking simulations of human
locomotion.23 Here we deploy direct collocation on a
model of even greater complexity to perform predictive
simulations of walking at different speeds. Our specific
aims were firstly, to solve a data-tracking collocation
problem for normal gait (i.e., walking at the preferred
speed) using a full-body neuromusculoskeletal model
in which the knee is represented as a 6-DOF joint with
articular contact; and secondly, to perform predictive
simulations of walking at slow and fast speeds using
the data-tracking solution for normal gait as an initial
guess.

MATERIALS AND METHODS

Gait Experiments

Experimental data were obtained from the Third
and Fourth ‘‘Grand Challenge Competitions to Predict
In Vivo Knee Loads.’’10,16 Data were collected from
two participants (participant 1: female; age, 69 years;
mass, 78 kg; height, 1.70 m; and participant 2: male,
age, 80 years; mass, 68 kg; height, 1.70 m) implanted
with instrumented knee replacements which measured
the net tibiofemoral contact force.8,17 Data for par-
ticipant 1 were obtained from the 3rd competition and
that for participant 2 from the 4th competition. Both
participants walked over ground at their preferred
speeds (1.1 and 1.3 m/s for participants 1 and 2,
respectively) and participant 2 also walked at the much
slower speed of 0.8 m/s on a treadmill. Skin-marker
motion, ground reaction forces, knee contact forces,
and muscle electromyographic (EMG) signals were
recorded simultaneously for each trial. The measured
ground reaction forces and knee contact forces were
used to directly validate the corresponding model-
predicted quantities, while the EMG data were used to
qualitatively verify the sequence and timing of the
calculated muscle excitations. Data were extracted and
processed so that one complete stride cycle began and
ended at ipsilateral heel strike. The leg with the knee
implant was selected as the ipsilateral limb (participant
1, left leg; participant 2, right leg).

Neuromusculoskeletal Model of the Body

A full-body musculoskeletal model of each partici-
pant was created in OpenSim.7 The body was repre-
sented as a 25-degree-of-freedom (DOF) skeleton

actuated by 80 muscle–tendon units. The pelvis was
connected to the ground by a 6-DOF free joint and
articulated with the torso via a 3-DOF ball-and-socket
back joint. Each hip was represented as a 3-DOF ball-
and-socket joint, each ankle as a 2-DOF universal
joint, and the contralateral knee as a 1-DOF translat-
ing hinge joint. The ipsilateral knee was represented as
a 6-DOF joint with articular contact between the fe-
mur and tibia simulated using a model of surrogate
joint contact.21,22,46 The surrogate contact model was
developed to perform computationally efficient contact
analyses within multi-body dynamic simulations by
eliminating repeated geometry evaluations required by
deformable-body-contact models. Details of the cre-
ation of the surrogate contact model are given by
Walter and Pandy.46 The model skeleton was actuated
by 80 muscle–tendon units with each unit represented
as a Hill-type muscle in series with an elastic tendon.
Muscle excitation–contraction (activation) dynamics
was represented as a first-order model with activation
and deactivation time constants of 10 and 40 ms,
respectively.47 To reduce computational time during a
simulation, tendon was assumed to be inextensible
whenever tendon slack length was less than the opti-
mum fibre length of the corresponding muscle.33

Twenty-two of the 80 muscle–tendon units were com-
prised of a rigid tendon based on this assumption (see
Supplementary Material). Foot–ground interaction
was simulated with six Hunt-Crossley contact spheres
placed under each foot: four under the hind foot and
two under the toes. Normal forces at each contact
sphere were generated by a nonlinear spring-damper
system while shear forces were simulated by applying a
model of Coulomb friction. The foot–ground contact
model was based on that described by Lin and
Pandy.23 Details of the neuromusculoskeletal model
used in this study can be found at https://simtk.org/h
ome/DCwithJtContact/.

Data-Tracking Collocation Problem

Direct collocation was used to calculate a set of
states and controls needed to reproduce measurements
of the time histories of body-segmental motions and
ground reaction forces obtained from both partici-
pants walking at their preferred speeds. The states were
comprised of 25 generalized coordinates, 25 general-
ized speeds, 80 muscle activations, and 58 muscle-fiber
lengths, while the controls consisted of 80 muscle
excitations. Only 58 muscle-fiber lengths were included
as states because the remaining 22 muscle–tendon units
possessed rigid tendons, and the associated muscle-fi-
ber lengths were therefore determined by the measured
generalized coordinates. The time histories of the states
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and controls were each discretized on a grid of 80
evenly-spaced nodes over one gait cycle.

Each collocation problem was solved by minimizing
three sources of errors that arise during a simulation of
movement: defect errors, data-tracking errors, and the
violation of periodic boundary conditions. Defect er-
rors consisted of (25 + 25 + 80 + 58) 9 79
= 14,852 equations, which represented the errors
resulting from trapezoidal approximations of the dy-
namic equations of motion (see Eq. (2) in Lin and
Pandy19); defect errors were calculated 79 times
(number of nodes 2 1) for each state variable because
the trapezoidal approximation was applied to each pair
of two adjacent nodes. Data-tracking errors consisted
of two sets of 6 9 80 = 480 equations: the first set of
these equations accounted for differences between the
six measured and calculated ground reaction forces at
each instant during the gait cycle (three components of
the ground force acting under each foot, hence 6
ground forces in total); the second set of equations
represented the errors between the measured and cal-
culated pelvic generalized coordinates (6 coordinates in
total) over the entire gait cycle. Periodic boundary
conditions consisted of 268 2 6 = 262 equations,
which required all control and state variables (268 in
total) to be identical at the start and end of the gait
cycle, except for the six tracked pelvic generalized
coordinates.

Each data-tracking problem was formulated as a
nonlinear least-squares problem as there were more
unknowns than equations. Specifically, each data-
tracking problem consisted of 21,440 control and state
variables (80 9 80 = 6400 control variables plus
188 9 80 = 15,040 state variables) and 16,074 equa-
tions (14,852 defect error equations + 2 9 480 data-
tracking error equations + 262 equations for violation
of the periodic boundary conditions). A nonlinear
system solver called ‘fsolve’ was used in conjunction
with a Levenberg–Marquardt algorithm available in
MATLAB (Mathworks,Natick, MA, USA) to solve
the least-squares problem by minimizing sum of the
squares of the residuals of the 16,074 equations.

Static optimization was used to generate an initial
guess for each data-tracking collocation solution.
First, an inverse kinematics analysis was performed to
calculate the generalized coordinates corresponding to
the measured marker motion. This step involved
solving a weighted least-squares optimization problem
which minimized the sum of the squares of the differ-
ences between the positions of virtual markers defined
in the model and reflective markers mounted on the
subject.24 All three tibiofemoral translations as well as
the knee abduction–adduction angle were set to zero
during this analysis due to the effect of soft-tissue
artefact resulting from skin-mounted markers.2,40

Knee internal–external rotation was determined by the
inverse kinematics analysis because X-ray fluoroscopy
studies have shown that this motion is less affected by
soft-tissue artefact than the abduction–adduction angle
during gait.2,40 The resulting generalized coordinates
and generalized speeds were used together with the
force-plate data to calculate the net moments exerted
about each joint. The muscle force-joint moment
redundancy problem was then solved by applying
static optimization and minimizing the sum of the
squares of all muscle activations subject to each mus-
cle’s force–length-velocity property. The entire proce-
dure was performed in OpenSim without including
either the foot–ground contact model or the surrogate
joint contact model. Thus, the values of the generalized
coordinates, generalized speeds, muscle fiber-lengths
and muscle activations derived from static optimiza-
tion were used as an initial guess for the states, while
the values of the muscle activations were equated to
the muscle excitations and used as an initial guess for
the controls.

Predictive Collocation Problem

Direct collocation was also used to perform pre-
dictive simulations of slow and fast walking for par-
ticipant 2. The data-tracking solution derived for
walking at the preferred speed was used as an initial
guess in these simulations. The optimization problem
was to find a set of states and controls needed to
reproduce the prescribed walking speed (0.8 m/s and
2.0 m/s for slow and fast walking, respectively) while
minimizing the cost of transport, J (Joules/kg m), over
one stride cycle, thus:

J ¼ r
T
0
_Edt

Dx �m ð1Þ

where the metabolic rate, _E (Joules), represents the
sum of the activation heat rate, maintenance rate,
shortening heat rate, and mechanical work rate of each
muscle; Dx represents the horizontal displacement of
the center of mass of the pelvis over one stride cycle;
and m is the mass of the whole body. The final time, T,
was left free and included as an additional design

variable in the optimization problem. _E was calculated
using the model of muscle energy expenditure de-
scribed by Umberger44 via an OpenSim API (version
3.3) function called ‘Umberger2010MuscleMetabol-
icsProbe’.

The predictive collocation problem was solved
subject to a set of equality path constraints, boundary
constraints, and path bounds. The equality path con-
straints were identical with the trapezoidal approxi-
mations of the system dynamic equations derived for
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the data-tracking collocation problem described
above. A set of boundary constraints were formulated
to impose periodic boundary conditions on all of the
states and controls, except the anterior–posterior
translation of the pelvis. An additional boundary
constraint was included to ensure the target walking
speed (V) was achieved:

V ¼ Dx
T

ð2Þ

Upper- and lower-bound constraints were also im-
posed on the control and state variables at each time
instant as follows:

10�3<uðtÞ<1

10�3<aðtÞ<1

0:25lmo <lmðtÞ<1:5lmo ð3Þ

q
DT

ðtÞ � Dq
DT

<qðtÞ<q
DT

ðtÞ þ Dq
DT

_q
DT

ðtÞ � D _q
DT

< _qðtÞ< _q
DT

ðtÞ þ D _q
DT

where u is a 80 9 1 vector of muscle excitations; a is an
80 9 1 vector of muscle activations; lm and lmo are

58 9 1 vectors of muscle-fiber lengths and optimum
muscle-fiber lengths, respectively; q and _q are 25 9 1

vectors of generalized coordinates and generalized
speeds, respectively; q

DT
and _q

DT
are 25 9 1 vectors of

generalized coordinates and generalized speeds
obtained from the data-tracking collocation solution;
and Dq

DT
and D _q

DT
are 25 9 1 time-independent

vectors defining the range of each DOF specified in
q
DT

and _q
DT

, respectively. The predictive collocation

solution was computed using a nonlinear program-
ming algorithm called ‘fmincon’ available in MA-
TLAB.

For both the data-tracking and predictive colloca-
tion problems, the derivatives of the performance cri-
terion and constraints were calculated using central
differences as described by Porsa et al.31 Articular

contact forces for the ipsilateral knee were calculated
using the surrogate contact model while the joint
reaction force acting at the contralateral knee was
found using the Joint Reaction Analysis available in
OpenSim.41 All calculations were performed on a
3.4 GHz desktop computer (Intel� CoreTM i7-4770
Processor) and parallelized across four cores using the
Matlab Parallel Computing Toolbox.

RESULTS

The data-tracking collocation solutions accurately
reproduced the body-segmental displacements, ground
reaction forces and knee contact loads measured for
both participants walking at their preferred speeds
(Table 1 and Figs. 1, 2). The measured pelvic motion
was tracked with RMS errors < 0.3� for rotations
and < 0.3 cm for translations whilst RMS errors for
all remaining generalized coordinates were < 2.2�
(Table 1 and Fig. 1). The measured ground forces were
tracked with RMS errors < 0.03 body weight (BW),
0.08 BW and 0.03 BW in the fore-aft, vertical, and
mediolateral directions, respectively (Table 1 and
Fig. 2). Although not explicitly tracked, the model-
computed knee-contact loads were also in good
agreement with corresponding measurements obtained
from the instrumented implants, with RMS errors
of < 0.4 BW (Table 1 and Fig. 2).

The patterns of muscle excitations predicted by the
data-tracking solutions were temporally consistent
with EMG activity measured for walking at the pre-
ferred speed (Fig. 3; see also Supplementary Material).
In both the model and the subjects, the vasti and ankle
plantarflexors were activated during early and late
stance, respectively, while the gluteal muscles (max-
imus and medius) remained active for the duration of
the stance phase. Some differences in timing between
model and experiment were also evident, particularly
in relation to the muscle excitations predicted for vasti
and gluteus maximus during terminal swing.

The predictive collocation solutions obtained for
slow and fast walking were also consistent with experi-

TABLE 1. RMS errors between model and experiment for two participants walking at their preferred speeds. The measured six
pelvic generalized coordinates and ground reaction forces were tracked during the process of solving the data-tracking problems,

while the measurements of remaining generalized coordinates and knee contact forces were not tracked.

Tracking Non-tracking

Pelvic motion Ground reaction force (BW)
Joint motion

Knee contact force (BW)Participant Rotational (�) Translational (cm) Fore-aft Vertical Mediolateral Rotational (�)*

1 0.09 0.27 0.02 0.07 0.02 2.18 0.24

2 0.21 0.20 0.02 0.04 0.02 1.98 0.32

*Knee abduction–adduction and internal–external rotation were not included.
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ment (Figs. 4, 5, and 6). Stride cycle times predicted for
slow and fast walking were 1.30 and 0.92 s, respectively,
which agreed well with the average times of 1.45 and

0.93 s measured for the subjects. There was also good
agreement between the measured and predicted gener-
alized coordinates for both walking speeds, although
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FIGURE 1. Comparison between model-predicted kinematics (blue solid lines) and corresponding experimental results (red
dashed lines) obtained for two participants walking at their preferred speeds.
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some differences were evident in hip rotation and ankle
dorsiflexion at the slower speed (Fig. 4). The predicted
ground reaction forces and knee contact loads were
similar in shape and magnitude to the results obtained
from the gait experiments (Fig. 5). However, the first
peak in the vertical ground force predicted for fast
walking was 0.4 BW greater than the second peak, in
contrast to experiment where two peaks of similar
magnitude were registered by the force plate.

The time histories of muscle excitations predicted
for slow and fast walking were consistent with EMG
measurements and showed that peak muscle excita-
tions increased with walking speed (Fig. 6). For
example, peak soleus and gastrocnemius excitations
predicted for fast walking were approximately 2.5
times greater than those calculated for slow walking.

Muscle and knee contact forces computed for the
ipsilateral and contralateral legs were similar for walk-
ing at the slow and preferred speeds, while larger dif-
ferences were evident at the fast speed (Figs. 7 and 8).
For the knee-spanning muscles, the peak force devel-
opedby the contralateral gastrocnemiuswas higher than
that developed by the ipsilateral gastrocnemius for both
participants across all speeds, while the peak force
developed by the contralateral vasti was higher than that

developed by the ipsilateral vasti for participant 2
walking at the fast speed. For the non-knee-spanning
muscles, the peak force developed by the contralateral
gluteus medius was higher than that developed by the
ipsilateral gluteus medius for both participants at all
speeds. Differences in knee contact force between the
ipsilateral and contralateral legs were most pronounced
at the fast walking speed (Fig. 8).

CPU time required to converge to a predictive col-
location solution was considerably greater than that
needed to generate a data-tracking solution. Colloca-
tion took 3 and 5 h of CPU time, respectively, to solve
the data-tracking problems for participants 1 and 2
walking at their preferred speeds. By comparison, 17
and 13 h of CPU time were needed to compute the
predictive dynamic optimization solutions for slow and
fast walking, respectively.

DISCUSSION

We implemented direct collocation on a full-body
3D neuromusculoskeletal model to calculate muscle
forces, ground reaction forces and knee contact forces
simultaneously for one cycle of human gait. A data-
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tracking collocation problem was solved for normal
gait (walking at the preferred speed) to establish the
feasibility of incorporating a 6-DOF model of articular
contact and a model of foot–ground interaction
explicitly in a dynamic optimization simulation of
movement. The data-tracking solution then served as
an initial guess for solving predictive collocation
problems, where novel patterns of movement were
generated for walking at slow and fast speeds, inde-
pendent of experimental data.

A novel contribution of the present study is
demonstrating the feasibility of performing computa-
tionally-efficient, predictive, dynamic optimization
simulations of movement using a 3D neuromuscu-
loskeletal model consisting of a 6-DOF knee model
with articular contact and a model of foot–ground
interaction. A free-final-time optimal control solution
was computed for a target walking speed without
tracking any experimental data. Guess et al.11 per-
formed forward-dynamic simulations of walking using
a whole-body musculoskeletal model that included a
12-DOF knee model (6 DOFs for each of the tibiofe-
moral and patellofemoral joints) and a foot–ground
contact model. They used a proportional-integral-
derivative (PID) feedback control scheme to track joint

angles and muscle–tendon lengths derived from inverse
kinematics. Meyer et al.25 used direct collocation to
predict novel movement patterns for walking at 1.1 m/
s without reference to experimental data. While these
authors included a subject-specific ground contact
model to simulate foot–ground interaction, the knee
was represented as a 1-DOF hinge joint and the final
simulation time was fixed.

In contrast to our previous work,23 the process of
solving a data-tracking collocation problem was sim-
plified in the present study. Lin and Pandy23 recom-
mended that the defect errors associated with the initial
states and controls be minimized before these variables
are amalgamated into an initial guess for a data-
tracking optimization problem. Specifically, we pro-
posed that the Matlab function ‘fsolve’ be imple-
mented to minimize the defect errors before another
function called ‘fmincon’ is used to track the measured
ground forces. Whereas ‘fsolve’ required less than half
an hour of CPU time to converge to a least-squares
solution, at least 2 h of CPU time was required by
‘fmincon’ to solve a nonlinear constrained optimiza-
tion problem.23 In the present study, the defect errors
associated with the initial guess and the tracking errors
corresponding to the ground forces were minimized
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simultaneously using ‘fsolve’ alone. This simplification
obviated the need for ‘fmincon’ and enabled a more
efficient solution of the data-tracking optimization
problem.

The accuracy of our data-tracking simulations is
comparable to that derived by previous investigators
using forward-dynamics methods and the same Grand
Challenge dataset. Guess et al.11 reported RMS errors
of 0.07 BW, 0.15 BW and 0.02 BW for the ground
forces computed in the fore-aft, vertical and medio-
lateral directions when participant 2 walked at 1.4 m/s,
slightly faster than this subject’s preferred speed of
1.3 m/s. Thelen et al.43 simulated five overground gait
trials using a modified version of the computed muscle
control (CMC) algorithm and reported an average
RMS error of 0.51 BW in the calculated knee contact
force when participant 2 walked at the preferred speed.
More recently, Walter and Pandy46 used force-feed-
back-control to determine knee contact forces for
participants 1 and 2 walking at their preferred speeds.
They reported an average RMS error of 0.36 BW in the
knee contact force, calculated over five gait trials for
each participant. RMS errors obtained in the present
study were of similar magnitudes, with peak errors in
the ground reaction force and knee contact load
being < 0.1 BW and < 0.4 BW, respectively (Ta-

ble 1). We note here that while the knee contact force
may also be calculated accurately using more compu-
tationally-efficient methods such as inverse dynamics
optimization,27,35 this approach is not suitable for
predicting novel movements because experimental
force and motion data are used explicitly in the opti-
mization calculations.

The data-tracking collocation solutions accurately
reproduced the knee contact loads measured for both
participants walking at their preferred speeds. In con-
trast to the ground forces, measurements of the knee
contact loads were not explicitly tracked in these sim-
ulations. Ground reaction forces have been used as
force-feedback control terms in forward-dynamic
simulations to constrain the knee contact force within
physiological limits.39 Unfortunately, erroneous values
of ground forces and knee contact loads result when
the generalized coordinates and generalized speeds
obtained from an inverse kinematics analysis are
applied directly to a full-body model with foot–ground
contact. These errors arise mainly from inconsistencies
between the foot–ground forces calculated in the
model and the joint motions obtained from experi-
ment.23 For example, RMS errors in the model-com-
puted ground forces for participant 2 walking at the
preferred speed were 0.21 BW, 0.3 BW and 0.19 BW in
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the fore-aft, vertical, and mediolateral directions,
respectively, while the corresponding RMS error in the
knee contact load was 1.46 BW. These errors decreased
substantially once the nonlinear system solver ‘fsolve’
was applied to the inverse kinematics solution: RMS
errors in the vertical ground force decreased from 0.3
BW to 0.04 BW, and in the knee contact force, from
1.46 BW to 0.32 BW. We conclude, therefore, that
accurate estimates of ground reaction forces are nec-
essary to ensure reasonable estimates of articular
contact forces at the knee. This result can be especially
useful when in vivo measurements of articular contact
loading are not available for direct validation of
model-computed joint contact forces.

Model-computed muscle forces and knee contact
loads were similar for the ipsilateral and contralateral
legs in the simulations of walking at the slow and
preferred speeds, but substantial differences were
observed at the fast speed (Figs. 7 and 8). Many
studies have calculated muscle forces and knee contact
loading sequentially, where muscle forces are first
found using a full-body musculoskeletal model with
the knee represented as a planar 1-DOF translating
hinge.15,37,38 The calculated values of muscle forces are
then applied to a separate 3D knee model, and a quasi-
static analysis performed to determine the articular

contact forces transmitted at the joint. A few studies
also have calculated muscle forces and knee contact
loading simultaneously using a single musculoskeletal
model with articular contact simulated at the
knee.11,21,27,30,46 No study to our knowledge has
compared model-computed muscle forces and knee
contact loading using two different knee models (i.e., a
1-DOF hinge knee without articular contact and a 6-
DOF knee with articular contact) implemented in the
same simulation. The results of Figs. 7 and 8 suggest
that a planar 1-DOF hinge-knee model may be suffi-
cient for accurate determination of muscle and knee
contact forces when humans walk at or below their
preferred speeds.

In contrast, larger differences were observed in the
muscle and knee contact forces calculated for the
ipsilateral and contralateral legs at the much faster
walking speed of 2 m/s (Figs. 7 and 8). Peak forces
developed by the contralateral vasti and gastrocnemius
muscles were, respectively, 2.0 BW and 0.5 BW higher
than the forces developed by the corresponding ipsi-
lateral leg muscles. These increases in muscle forces
were understandably reflected in a higher knee contact
force estimated for the contralateral leg, because vasti
and gastrocnemius are major contributors to the first
and second peaks, respectively, of the resultant force
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transmitted at the knee.34,37,38 Thus, muscle forces and
knee contact loading computed for walking at faster
speeds (e.g., near the transition speed of 2.0 m/s), and
presumably for running as well, should be interpreted
with caution due to the dependence of these calcula-
tions on knee model complexity.

The predictive collocation problems were formu-
lated by prescribing a target walking speed and leaving
both stride length and stride duration (inverse of stride
frequency) free to be determined by the performance
criterion and physiological constraints (e.g., the force–
length-velocity properties of the leg muscles). The
collocation algorithm altered stride length more than
stride duration in computing the optimal solutions for
slow and fast walking. For slow walking, stride length
decreased by 24% relative to its value at the initial
guess whereas stride duration increased by 21%. For
fast walking, stride length increased by 33% while
stride duration decreased by just 14% relative to their
values at the initial guess. Lim et al.19 performed a
series of gait experiments using prescribed combina-
tions of step length and step frequency to quantify the
effects of these two variables on leg-muscle function
across a range of walking speeds. They found that
walking biomechanics and leg-muscle function were
more heavily influenced by changes in step length
compared to step frequency. These results may explain
why varying stride length rather than stride duration
was favoured in the predictive dynamic optimization
solutions derived here.

The principal limitation of the present study was
that experimental gait data from only two subjects
were used to evaluate the model simulation results.
Similar previous studies exploiting the same Grand
Challenge dataset used measurements recorded from
multiple gait trials performed by a single subject.11,25,43

Deriving data-tracking and predictive simulations for a
larger cohort of subjects and for a broader range of
activities, for example, walking up and down ramps
and stairs, would help to increase confidence in the
proposed simulation methods. A second potential
limitation involves the motion of the metatarsal joint,
which was prescribed using the values obtained from
the inverse kinematics analysis performed for walking
at the preferred speed. Constraining the motion of the
metatarsal joint is likely to have affected the muscle
and ground reaction forces computed near toe-off in
the predictive simulations of gait.
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