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Abstract—Precise management of patients with cerebral
diseases often requires intracranial pressure (ICP) monitor-
ing, which is highly invasive and requires a specialized ICU
setting. The ability to noninvasively estimate ICP is highly
compelling as an alternative to, or screening for, invasive ICP
measurement. Most existing approaches for noninvasive ICP
estimation aim to build a regression function that maps
noninvasive measurements to an ICP estimate using statis-
tical learning techniques. These data-based approaches have
met limited success, likely because the amount of training
data needed is onerous for this complex applications. In this
work, we discuss an alternative strategy that aims to better
utilize noninvasive measurement data by leveraging mecha-
nistic understanding of physiology. Specifically, we devel-
oped a Bayesian framework that combines a multiscale
model of intracranial physiology with noninvasive measure-
ments of cerebral blood flow using transcranial Doppler.
Virtual experiments with synthetic data are conducted to
verify and analyze the proposed framework. A preliminary
clinical application study on two patients is also performed in
which we demonstrate the ability of this method to improve
ICP prediction.

Keywords—Cerebrovascular dynamics, Data assimilation,

Patient-specific modeling, Transcranial Doppler.

INTRODUCTION

Determination of intracranial pressure (ICP) is
essential for precise management of patients with brain
injury, hemorrhage, tumor, hydrocephalus and other
neurologic conditions. Elevated ICP reduces cerebral
blood flow, which can lead to brain damage or death.10

The clinical standard for ICP monitoring, which en-

tails penetrations of the skull and brain, carries the
risks of hemorrhage, infection and tissue damage.12

Moreover, such invasive techniques require neurosur-
gical expertise and a specialized ICU setting.44 Even in
such a setting, a significant concern is to identify when
ICP monitoring should be initiated for a given patient.
A noninvasive method to estimate ICP can reduce the
risks of invasive ICP monitoring, better identify
patients needing invasive monitoring, and potentially
broaden ICP evaluation beyond the ICU setting.

The majority of noninvasive ICP (nICP) research
has been to identify noninvasive signals that are cor-
related to ICP. These have included pupil size,
intraocular pressure, optic nerve sheath diameter,
tympanic membrane displacement, cerebral blood flow
velocity (CBFV), visual evoked potentials and skull
movements, among others.4 However, identifying
noninvasive signals that are correlated to ICP often
only enables inference of ICP trending or its detri-
mental effects. There remains a need to quantitatively
estimate ICP from noninvasive signals for proper
clinical response.4,44 To address this challenge, nICP
research has recently sought to develop algorithmic
solutions that can bridge the gap between noninvasive
measurements (measurable states) and ICP (the hidden
state).7

To connect measurable states with a hidden state
requires a model, which can be data-based or theory-
based. Most prior works on nICP estimation have been
data-based, and have tried to construct mapping
functions between noninvasive signals and ICP using
supervised learning techniques, including linear/non-
linear regression,6 support vector machines (SVM),43

kernel spectral regression,24 and artificial neural net-
works.15 Despite the varied attempts, these methods
have struggled to achieve accurate nICP assessment for
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a de novo patient. The limitation of a data-based
approach is the requirement of sufficient training data.
Data is inherently limited for this problem because
gold-standard ICP measurement is highly invasive,
data can vary in quality or consistency, and compli-
cations with sharing patient data. Moreover, a large
amount of data is likely necessary due to the com-
plexity of the underlying physiology and inter-patient
variability.

Utilization of theory-based models may help to
alleviate the need for inordinate training data, and
maximize the utility of each individual’s data, when
compared to a data-based approach. Theory-based
intracranial modeling has advanced in recent years to
increase our understanding of the mechanisms that
drive intracranial pressure.26,42 In contrast to black-
box models that depend on training data, theory-based
models rely on physiological knowledge and physical
principles. It is broadly accepted that ICP dynamics is
driven by the interactions between cerebral blood flow
(CBF), cerebrospinal fluid (CSF), and brain soft tissue
under the constraints of a rigid skull. Lumped-pa-
rameter (LP) models are widely employed for modeling
the dynamics of these intracranial components, and
among the several publications in this area, Ursino
et al.,40,41 Stevens et al.,38 and Linninger et al.27 have
contributed significantly to establishing theoretical
models of the component dynamics. However, the
clinical impact of existing theory-based models re-
mains negligible.

The challenges of using theory-based model for ICP
estimation include the coupling of sufficiently com-
prehensive component models needed to capture the
important physiology, and calibration of these model
parameters for a de novo patient. A promising
approach is to combine useful information from both
theory-based modeling and noninvasive measurement.
Kashif et al.22 demonstrated the merits of this idea.
Namely, they showed that the accuracy of a model-
based nICP approach was significantly improved
compared to a purely data-driven approach. Hu et al.14

also exploited using a basic physiologic model with
measured data and filtering to estimate ICP. A recent
review7 comprehensively comparing existing nICP
algorithms also confirmed the advantage of introduc-
ing physical models/constraints. While these works
substantiate the potential of this approach, theory-
based nICP methods still require significant develop-
ment both in terms of modeling the physiology and
effective assimilation of data. Data assimilation (DA)
is emerging in other areas of biomechanics modeling,28

and has recently included the use of variational-based
methods,21,39 unscented Kalman filtering,5,29,31 and
most recently ensemble Kalman filtering (EnKF).2,25

The framework developed herein advances both
intracranial modeling capabilities and data assimila-
tion methodology in comparison to prior works in
nICP estimation. Namely, we employ a Bayesian data
assimilation (DA) framework that uses a regularizing
iterative ensemble Kalman filtering to combine non-
invasive transcranial Doppler (TCD) measurements
with a recent multiscale intracranial dynamics model.
The novelty of this work is in the state-of-the-art
Bayesian DA and intracranial dynamics modeling, as
well as an alternative from existing data-based, black-
box nICP methods. Moreover, this work is significant
in that the performance of the proposed approach in
both synthetic and patient-specific cases demonstrates
that TCD CBF measurements are informative of ICP
dynamics, and that ICP can be potentially estimated
noninvasively from CBF waveforms. The rest of this
paper is organized as follows. ‘‘Materials and Meth-
ods’’ section introduces the key components of the
proposed model-based nICP framework, including the
multiscale intracranial model and regularizing iterative
ensemble Kalman method. ‘‘Results’’ section presents
numerical results for both synthetic cases and patient-
specific cases to demonstrate merits of the proposed
method. Finally, the success and limitations of the
method are discussed in ‘‘Discussion’’ section.

MATERIALS AND METHODS

Overview of Data-Augmented, Theory-Based Modeling
Framework

The main idea of the proposed framework is to
combine a physiological model of ICP dynamics and
noninvasive ICP-related measurements (e.g., CBFV or
arterial blood pressure, ABP) to achieve an nICP
estimation. A Bayesian data assimilation scheme is
adopted to incorporate the noninvasive data for cali-
brating the model and estimating unobserved states
(i.e., ICP) for a de novo patient. A schematic of this
framework is shown in Fig. 1. Conceptually, it consists
of three modules, including (1) a forward model of
intracranial dynamics, (2) noninvasive measurement
data, and (3) a data assimilation scheme, which are
marked by the red, blue and green boxes, respectively,
in Fig. 1. The theory-based forward model within the
red box is used to compute measurable states (e.g.,
CBFV and ABP) and hidden states (e.g., ICP) based
on physical principles. Without calibration, the model
can be expected to produce an inaccurate prediction
(red curve) due in large part to inaccurate model
parameters for a de novo patient. To address this issue,
noninvasive measurement data specific to each patient
are integrated into the model within a Bayesian
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framework, and thus primary model parameters can be
more accurately established, leading to improvement
in the calibrated ICP prediction (green curve).

Specifically, a multiscale cerebrovascular model34 is
employed as the forward model in this work to simu-
late intracranial states z (e.g., ICP, CBFV, and ABP)
based on prescribed initial states z0, boundary condi-
tions @D, and model parameters h. The forward
problem can be generally represented as a mapping
z ¼ Fðz0; @D; hÞ. The predicted state z can be expected
to be biased from the truth ~z due to model-form errors
in F and uncertainties in boundary conditions @D and
parameters h. This can be expressed as

z ¼ Fðz0; @D; hÞ ¼ ~zþ rm; ð1Þ

where rm represents the model discrepancy. Similarly,
noninvasive measurement data y, e.g., CBFV or sys-
temic ABP, to be assimilated are imprecise and indirect
in relation to ICP. This can be expressed as

y ¼ Hð~zÞ þ rd; ð2Þ

where Hð�Þ represents a projection operator mapping
the full state to the observed space, and rd represents
measurement noise. Typically, the measurements are
sparse in time and/or space. In the proposed frame-
work, the model discrepancy rm is modeled as a ran-
dom process representing an epistemic uncertainty,

while the data noises are modeled as independent
Gaussian random variables. The fusion of the model
and data are formulated in a Bayesian manner.
Namely, the prior estimation is obtained from the
baseline model by assuming prior distributions for the
initial conditions zo, boundary conditions @D, and
parameters h. The likelihood is obtained from the
probabilistic distribution of the data uncertainty, and
the data-assimilated prediction is the posterior esti-
mation obtained after the Bayesian updating.

The forward model and data assimilation
scheme are described further below, as well as the
assimilation of noninvasive data from both synthetic
experiments and actual patient-specific scenarios.

Forward Model of Intracranial Dynamics

The multiscale cerebrovascular model described in
Ryu et al.34 was adopted as the forward model. This
model was developed to simulate regulatory cere-
brovascular flow by coupling a distributed one-di-
mensional (1D) propagation network model of the
major systemic arteries to a sophisticated lumped
parameter (LP) network of the intracranial dynamics.
The intracranial LP portion of the model includes
mechanisms such as cerebral autoregulation, collateral
rerouting, and CSF and ICP coupling. A schematic of
the multiscale forward model is shown in Fig. 2.

FIGURE 1. Schematic of the proposed data-augmented, theory-based framework for ICP dynamics. By assimilating noninvasively
measurable data (e.g., CBFV and/or ABP at certain vessels) into the theory-based physiological model, predictions of the
unobservable states (e.g., ICP) can be significantly improved.
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The 1D distributed network (Fig. 2a) models arte-
rial blood flow and pressure throughout the major
systemic and cerebral arteries. While the number of the
arteries is adjustable, we included the major arteries
supplying the head, arms, and torso as shown in
Fig. 2a. Each arterial segment is modeled as a de-
formable tube with blood flow and wall deformation
governed by the 1D Navier-Stokes and Laplace equa-
tions,
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where x and r are the axial and radial coordinates, R,
h, A, r and E are respectively the vessel radius, thick-
ness, cross-section area, Poisson’s ratio and Young’s
modulus. U is the transverse average of the axial

velocity u, p is the transversely averaged pressure, q
and l are blood density and viscosity, p0 is the external
pressure, and R0 is the radius at zero transmural
pressure (p ¼ p0). The parameter a and wall shear rate

½@u@r�R are determined from an assumed velocity profile17

with the arterial segment diameter. In regards to
boundary conditions, a sinusoidal inflow rate QinðtÞ is
prescribed at the aortic root, the extracranial terminals
(marked with � in Fig. 2a) are coupled to three-element
Windkessel models, and the intracranial terminals
(marked with � in Fig. 2a) are coupled with the LP
intracranial network.

An intracranial LP network (Fig. 2b) is coupled to
the 1D domain to capture the dynamics and coupling
between CBF, CSF and ICP. The six major arterial
territories of the brain (Left/Right Anterior/Middle/
Posterior) are represented by lumped vessel models,
and are controlled by the respective vascular passive
elastic tension Te, viscous tension Tm, and active ten-
sion Tm produced by the smooth muscle contraction in
response to autoregulation stimuli–either myogenic or
metabolic. Briefly, the relation between transmural
pressure and wall tensions is applied based on La-
place’s Law,

FIGURE 2. Schematic of the multiscale cerebrovascular model coupling (a) a distributed 1D propagation network model for major
systemic arteries and (b) a lumped parameter (LP) network for intracranial dynamics. Outflow in the 1D portion marked with open
circles are coupled with the LP network in (right), and boundaries marked with closed circles are coupled to 3-element Windkessel
models. The bounding box represents intracranial space. Adapted from Ref. 34.
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Pdrd � Picðrd þ hdÞ ¼ Te þ Tm þ Tm; ð4Þ

where Pd, rd, and hd are pressure, effective radius, and
vessel thickness of each lumped arterial bed, and Pic

represents the intracranial pressure. The passive elastic
tension is calculated by assuming an exponential
functional form of rd as,

Te ¼ re0 expðKr
rd � rd0

rd0
Þ � 1

� �
� rcoll

� �
hd; ð5Þ

where re0, rd0, Kr, and rcoll are constant model
parameters. The viscous tension is related to the vis-
cous force of the blood flow, which is expressed as
Tm ¼ ðg=rm0Þðdrd=dtÞ with g and rm0 being constant
model parameters. Cerebral autoregulation is carried
by smooth muscle producing an elastic tension as,

Tm ¼ T0ð1þMÞ exp � rd � rm
rt � rm

����
����
nm� �

ð6Þ

where T0, rt, rm, and nm are constant model parame-
ters, and M is the autoregulation activation factor
responding to maintain CBF, which varies between [–
1, 1] and can be calculated by,

M ¼ e2x � 1

e2x þ 1
: ð7Þ

The extreme values of M, 1 and – 1, represent maximal
vasoconstriction and vasodilation. To maintain CBF,
the control function is modeled with a first-order low
pass system expressed as,

tCA
dx

dt
¼ �xþ GCA

qd � qn
qn

; ð8Þ

where qd is the CBF at each cerebral territory, and qn is
the respect target flow rate. tCA and GCA are constant
parameters representing the time scale and gain of the
low pass filter, respectively.

ICP Pic is spatially uniform within the intracranial
compartment and shared by the six distal vascular
beds. The ICP and its coupling with the cerebral vas-
cular system are determined by the Monro–Kellie
principle, assuming that the total volume inside the
cranium remains constant, which can be represented as
follows,

Cic
Pic

dt
¼

X6
k¼1

dVk

dt
þ Ifk

� �
� I0 ð9Þ

where k represents the indices of six distal vascular
beds, Vk is the blood volume of vascular bed k, Ifk and

I0 are CSF inflow and outflow, respectively. The
intracranial compliance Cic is modeled as a nonlinear
function of ICP. The volume changes of Vk is repre-
sented by a differential equation of effective vessel

radius rd of each vascular territory, which varies due to
blood pressure and myogenic or metabolic autoregu-
lation. This cerebrovascular model has been validated
against clinical measurements of a transient hyperemic
response test,11 which quantifies the dynamics change
of CBFV in the right MCA due to transient com-
pression of the carotid artery. Additionally, qualitative
validation of the model with regards to CO2 inhalation
and hyperventilation tests have also been performed.35

Further implementation details and nominal parame-
ter assignment for this model can be found in Ref. 34.

This multi-scale model is potentially advantageous
for several reasons. A distributed 1D network for
modeling the major systemic and cerebral arteries
facilitates data assimilation. Namely, measurements of
blood flow or pressure from specific arteries can be
more directly assimilated to corresponding locations in
the model. Moreover, the 1D distributed network en-
ables more realistic pressure and flow temporal wave-
forms,37 and therefore, measurements of (e.g., CBFV
or ABP) temporal waveform dynamics can be better
assimilated, potentially better informing model cali-
bration and ICP estimation. These pressure and flow
waveforms are also the main ‘‘forcing functions’’ to
intracranial dynamics. The multi-scale model also en-
ables more avenues to make the model patient-specific
from, e.g., angiography, or other clinically-available
data.

Regularizing Iterative Ensemble Kalman Method

Data-assisted predictions of unobserved states and
parameters can be considered posterior estimations
calculated from the prior (Eq. 1) and data (Eq. 2)
using Bayes’ theorem

pðxjyÞ � pðxÞpðyjxÞ; ð10Þ

where pðxjyÞ, pðxÞ, and pðyjxÞ are the probability
density functions of the posterior state, prior state, and
data uncertainty, respectively. To obtain the exact
posterior estimation, Markov chain Monte Carlo
(MCMC) sampling is typically required to sample the
posterior distribution. This process involves an oner-
ous number of forward model evaluations sequentially,
which is prohibitively expensive for nontrivial systems.
As such, we adopt an approximate Bayesian approach,
the iterative ensemble Kalman method (IEnKM),19

along with an ensemble-based regularizing scheme.18

Instead of directly sampling the entire posterior dis-
tribution, the Bayesian analysis formula in the IEnKM
is derived under a Gaussian assumption. Specifically,
by assuming that measurement noises rd obey an
unbiased Gaussian distribution with a covariance Pd

and the underlying distribution of model predictions is

BIOMEDICAL
ENGINEERING 
SOCIETY

WANG et al.718



also Gaussian with the mean �x and covariance Pm, the
updated state (i.e., Bayesian analyzed state with a
maximized posterior) x̂ can be expressed as,

x̂ ¼ xþ PmH
TðHPmH

T þ aPdÞ�1ðy�HxÞ; ð11Þ

where ½��T denotes matrix transpose; H is the matrix
form of the observation projection function Hð�Þ
mapping the full state x to the observed state y; a is a
control variable used for regularization described be-
low. The Monte Carlo method is employed to estimate
associated statistical information. Namely, the error
covariance matrices Pm and Pd for the forward model
predictions and observation data are estimated based
on a number of samples. Therefore, potential non-
Gaussian behavior and nonlinearity of the model can
be considered by the ensemble-based estimations.
Conceptually, to perform IEnKM-based data assimi-
lation, there are three main steps: (1) prior sampling,
(2) forward prediction (3) Bayesian analysis. These
procedures are presented in the Fig. 3, and will be
detailed below. The entire algorithm can be found in
Appendix 4

Prior sampling: The variations of model predictions
(i.e., predicted CBFV and ICP) are induced by uncer-
tainties in model parameters h, initial physical state zo,
and boundary conditions @D. To capture correlations

among them, an augmented state vector x ¼
½zTo ; hT; @DT�T is used in the data assimilationprocess. To

begin, we sample the initial parameter space based on
prior knowledge to represent the uncertainties in model
parameters and initial/boundary conditions. The Latin
hypercube sampling method20 is adopted to efficiently

generate the initial state ensemble fxjgNs

j¼1, where Ns

represents number of samples. As shown in Fig. 3, each
sample (red dot in the blue dashed box) represents one
possible initial guess of the model inputs, i.e., model
parameter set, initial and boundary conditions.

Forward prediction: The uncertainties in model in-
puts lead to different predicted states by evaluating the
forward intracranial model Ns times. Namely, each
initial sample in the parameter space corresponds to one
possible physical state predicted by the forward model.
The physical state vector consists of variables including
ICP and CBFV and ABP at various vessels. Augmented
with model parameters and boundary conditions, an

ensemble of predicted states fxjgNs

j¼1 is obtained, which

are represented by the red dots in the state space ‘‘1’’ in
Fig. 3. Without incorporating any data, the forward
prediction can be seen as an uncertainty propagation
process, where variations of model inputs are propa-
gated to the predicted state variables as propagated
uncertainties. The predicted state ensemble represents a
prior estimation of the intracranial state.

Bayesian analysis: When data (i.e., TCD-based
CBFV and/or ABP) are available, the predicted state
ensemble can be updated based on the Eq. (11). This is
Bayesian analysis where both the physical variables and
model parameters are updated by incorporating infor-
mation from observation data. To calculate the ana-
lyzed state x̂, mean and error covariance information of
predicted states and observation data is estimated by

samples. The perturbed observation samples fyjg
Ns

j¼1

(blue triangles in Fig. 3) are obtained within the obser-
vation space spanned bymeasurement uncertainties and
process errors. Note that only a very limited portion of
the state is observed (e.g., CBFV atMCA), and thus the
dimension of observation vector y is much smaller than
that of the full state vector x, as shown in Fig. 3. Finally,
the updated state ensemble is in turn used as the initial
ensemble in next iteration of the IEnKM.

Iterative regularization scheme: The forward pre-
diction and Bayesian analysis steps are conducted
iteratively until a prescribed stopping criterion. To
stabilize the Bayesian update and control the iterative
process, a regularization scheme proposed in Ref. 18
was adopted. Specifically, the control variable a in
Eq. 11 is calculated by the following sequence,

aiþ1 ¼ 2ia0; ð12Þ

where a0 is an initial guess. Then, we chose a ¼ aN,
where N is the first integer such that,

aNjjP�1=2
d ðHPmH

T þ aNPdÞ�1ðy�H�xÞjj2
� qjjP�1=2

d ðy�H�xÞjj2;
ð13Þ

where jj � jj2 represents L2 norm, and q is a constant
parameter within an interval of (0, 1). Larger q indicates
slowly decaying a and thus more regularization on the
Bayesian analysis. The iteration is terminated whenever
the normalized misfit between prediction and data is
smaller than the noise level of the data, as shown by
Eq. (22). This regularization scheme can be derived as
an approximation of the regularizing Levenberg-Mar-
quardt scheme,30 where the derivative of the forward
operator and its adjoint are approximated using
ensemble-based covariances. The details of associated
derivations and proofs can be found in Ref. 18.

RESULTS

We first consider synthetic data to systematically
explore the proposed framework. Our goal is to test if
the assimilation of middle cerebral artery (MCA)
blood flow velocity, which is readily accessible clini-
cally, is sufficient to improve prediction of ICP in the
model. Note, it is not obvious that assimilation of
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MCA CBFV data alone (and even if the data is noise-
free) can lead to significant improvement in ICP pre-
diction since the intracranial model is highly nonlinear,
and MCA flow velocity has no direct relation to ICP.
We then proceed to a more realistic application, using
patient-specific TCD data measured clinically in
patients suspected of having intracranial hypertension.
These patients also had invasive ICP measurements
performed that the model prediction can be compared
against.

Based on a parameter sensitivity analysis (see Ta-
ble 1) for the intracranial model by the one-factor-at-
a-time (OFAT) method, we identified that the target
perfusion flow rate parameters qn (see Eq. 8) of the six
arterial territories are important for both CBFV and
ICP prediction. (Note, this does not necessarily imply
CBFV is dominant in ICP prediction.) To improve
identifiability of the problem, only the six primary
parameters qn are inferred simultaneously along with
the hidden ICP state. Other parameters, which were
deemed less important by the sensitivity analysis were
determined offline from population-based calibrations
conducted in previous studies.14,40 The full set of pri-
mary parameters for both the forward intracranial
model and the data assimilation process are given by
Table 2.

Verification with Synthetic Data

The intracranial model was run using an arbitrary
but physiologic set of model parameters as the
‘‘ground truth’’. That is, instead of data coming from a
patient, data comes from the model run with a hidden
parameter set. The six unknown ‘‘true’’ target flow rate
parameters are shown as black lines in Fig. 4. Syn-
thetic TCD data was obtained by ‘‘measuring’’ CBFV
at the left and right MCAs, with and without artificial

random noises added. Then all simulated information
is discarded, except the measured MCA CBFV data,
and the ICP which was blinded and reserved as the
‘‘ground truth’’ to later compare against. To determine
the sample size sufficient for an accurate mean esti-
mation, data assimilation using Ns ¼ 20; 50, and 100
samples was conducted and the expectations of pos-
terior ICP estimations are compared. The results
showed that the difference among these cases was less
2%. Therefore, twenty samples (Ns ¼ 20) were adopted
in the following numerical cases. Note that the term
‘‘sample’’ represents one of the randomly perturbed
forward simulations in IEnKM, while the term ‘‘data’’
refers to the noninvasive measurements within this
paper.

Noise-Free CBFV Data

We first consider the case in which the MCA CBFV
measurements are noise-free. Figure 4 shows DA
iteration histories of the target flow rate parameters
qn; n ¼ 1; � � � ; 6, which are added to the extended state
vector and inferred during the DA process. All the
samples (light green lines) are scattered initially (iter-
ation step 0), representing the prior distributions of the
parameters. Each ensemble mean at iteration step 0
(first red dot) can be seen as a best prior guess for the
respective parameter; it is observed that these prior
guesses deviate significantly from the respective ground
truths (black lines), representing a typical biased prior
estimation. The bias is highly relevant in real-world
applications, since it is almost impossible to guarantee
an unbiased prior (initial guess for a de novo patient).
However, after assimilating the synthetic TCD velocity
‘‘measurements’’ at the MCAs, the unknown parame-
ters are well recovered within a few iterations and
uncertainty is largely reduced. As expected, CBFV

FIGURE 3. Schematic of the iterative ensemble Kalman method. (1) Initial ensemble is obtained by sampling the prior parameter
space and (2) is propagated through the forward intracranial model. (3) The propagated state will be updated by assimilating TCD
measurement data by Bayesian analysis. Steps (2) and (3) will be conducted iteratively until reaching the statistical convergence.
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data in the MCAs is most informative to MCA-related
target flow rates (q1 and q2), which converge exactly to
the truth, whereas slight discrepancies remain for ACA
and PCA territory perfusion flow rates (q3 – q6).

We next consider the hidden state of most interest,
ICP, which is less directly related to CBFV than the

hidden parameters qn. The comparison of prior and
posterior estimations for ICP are presented in Fig. 5.
In Fig. 5a, it can be observed that the prior samples of
ICP prediction are scattered from around 8.5 to 12.0
mmHg due to physiologic perturbations of the initial
state and parameters due to prior epistemic uncer-

TABLE 1. Sensitivity of primary model parameters to CBFV and ICP.

Parameters rd0 (%) re0 (%) Kr (%) rcoll (%) g (%) T0 (%) tCA (%) GCA (%) qn

CBFV 1.25 0.02 0.05 0.60 0.28 3.58 0.01 0.16 35.57

ICP 0.90 0.03 0.04 0.52 0.03 2.89 0.02 0.05 30.83

Specifically, each parameter is uniformly perturbed by 20% of its baseline value, and the corresponding perturbations of CBFV and ICP are

presented.

TABLE 2. Primary parameters of forward model and data assimilation.

Baseline values of forward intracranial model

rd0 ¼ 0:015 cm re0 ¼ 0:1425 cm Kr ¼ 10:0

rcoll ¼ 62:79 mm Hg g ¼ 232 mm Hg T0 ¼ 2:16 mm Hg cm

rt ¼ 0:018 cm rm ¼ 0:027 cm tCA ¼ 10 s

GCA ¼ 10 mm Hg�1 qn ¼ 2:2 (MCAs), 1.48 (ACAs), 1.14 (PCAs) ml s�1

Parameters of data assimilation (IEnKM)

Prior uncertaintiy 20% uniformly random perturbation

Number of samples Ns 20

Regularization parameters q ¼ 0:6; a0 ¼ 1

(a) (b) (c)

(d) (e) (f)

FIGURE 4. Iteration histories of unknown parameters (i.e., target flow rates qn , n ¼ 1 � � � ; 6) by assimilating noise-free synthetic
TCD data. The prior ensemble of each parameter is biased from the respect truth.
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tainty. Similarly, the mean (red dashed) of the prior
ICP ensemble is biased from the truth (black solid).
Figure 5b displays the convergence of each sample
following assimilation of the MCA CBFV data,
demonstrating that all the posterior samples converge
to the truth after the regularizing iterative ensemble
Kalman DA method is applied with very low uncer-
tainty and expected value very close to the true value.
We note that the other hidden physical states, includ-
ing flow velocity and pressure at unobserved arteries,
were also similarly recovered via this framework; since
the prediction performance is similar to that shown
here for ICP, those results are omitted.

Assimilating data from both MCAs was considered
in the synthetic tests since such simultaneous mea-
surements can, in theory, be obtained clinically.
Alternatively, we also consider data from only one
MCA, which is more consistent with the clinical cases
considered below in ‘‘Validation Against Clinical
Data’’ section. Results from the synthetic tests with
only the right MCA CBFV data assimilated are pre-
sented in Fig. 5, with the results from noise-free data in
panel (d) and from noisy data in panel (e). As shown,
the posterior mean of ICP maintains close consistency
with the true ICP. However, the posterior sample
scattering is slightly higher compared to the case with
data from both MCAs assimilated (Fig. 5, panels b
and c). This demonstrates that the epistemic uncer-
tainties resulting from the lack of data can be reason-
ably considered in the current Bayesian framework.

Noisy CBFV Data

We next consider corrupting the synthetic MCA
CBFV data with 10% Gaussian random noise to rep-
resent measurement error, and in addition a 10%
process error is considered to account for potential
model-form uncertainties. The combination of the
measurement error and process error are reflected by
the data error covariance matrix Pd

9. We focus here
on our ultimate target of ICP. Figure 5c displays the
ICP posterior estimation following assimilation of the
noisy MCA CBFV data. It is clear that all ICP sam-
ples, which as above demonstrate high scatter in the
prior estimation, converge toward the true signal by
incorporating the (now noisy) CBFV data, and that the
associated posterior uncertainties are largely reduced.
However, compared to the results of the noise-free case
as shown in Fig. 5b, where all posterior ICP samples
converge to the truth, the posterior ICP samples in
Fig. 5c display some scatter, or posterior uncertainty.
Nonetheless, all samples and the expectation are close
to the truth. Moreover, if only the data from one MCA
is assimilated, a higher posterior uncertainty (i.e.,

higher sample scatter) is observed in Fig. 5e, which is
expected due to the reduction of data.

Interestingly, in contrast to the ideal noise-free case
above where all the hidden states are essentially
recovered exactly, the posterior estimations of CBFV
at unobserved vessels are not significantly improved by
assimilating the noisy data. For example, Figs. 6a
and 6b show the prior and posterior ensembles of
CBFV at the right ACA, where the improvement of the
posterior sample mean is not notable compared to the
prior, and large uncertainties remain in the posterior
estimation. This indicates that CBFV data at the MCA
is not necessarily informative to CBFV at other
arteries, and exemplifies that it is not trivial to predict
which (presumably measurable) states will be signifi-
cantly informative of other (presumably hidden) states.

Assimilating Additional ABP Data

The cases showed above only utilize CBFV data in
the MCAs, which is commonly measurable by TCD
ultrasonography. Other than the TCD-based CBFV
data, systemic ABP measurements are also among the
data available bedside in routine clinical practice.
Therefore, it is also interesting to investigate whether
the posterior predictions can be further improved by
assimilating both ABP and CBFV measurements
simultaneously. We conducted another experiment
with the same set up as above, except using both CBFV
and ABP data sampled from two MCAs. By addi-
tionally incorporating the ABP data, performance of
the ICP prediction remained excellent, and addition-
ally posterior estimations of CBFV at unobserved
arteries were notably improved. For example, Fig. 6c
shows the posterior ensemble of CBFV at the right
ACA by assimilating both CBFV and ABP data at the
MCAs. All the samples are corrected toward the
ground truth and the posterior mean is significantly
improved compared to the results displayed in Fig. 6b.
Moreover, sample scattering is also relatively smaller.
Note that the ABP assimilated in our model was
arterial pressure at the MCA whereas systemic ABP
data are typically measured at the radial artery, which
differ in time and waveform. A correction algorithm
proposed by Kashif et al.22 needs to be employed to
obtain an approximation of ABP at MCAs when sys-
temic ABP data measured from the radial artery are
used.

Validation Against Clinical Data

Preliminary clinical application of the proposed
framework was also investigated. TCD measurements
were obtained in patients that had invasive ICP mea-
sured. Note, only right MCA CBFV was assimilated in
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these validation studies, compared to both left and
right MCA data being assimilated in the synthetic
cases above. Generally, the prior model parameters
and overall framework were the same as in the syn-
thetic test cases, except the observation data to be
assimilated. However, the main difference here from
synthetic cases is not just that real vs. synthetic TCD
data was used, but that the ICP we compare against

was measured from actual patients, and not the com-
putational model.

The TCD and ICP data were acquired by the pro-
tocol approved by the UCLA Internal Review Board
and the full dataset was reported in Ref. 23. In this
study, we focus on patients with a homeostatic
intracranial system, where the ICP/CBFV waveform is
assumed to have reproducible features at similar mean

(a) (b) (c)

(d) (e)

FIGURE 5. Comparison of (a) prior ICP prediction and posterior ICP predictions following (b) noise-free, two MCAs, (c) noisy, two
MCAs, (d) noise-free, right MCA and (e) noisy, right MCA CBFV data assimilations.

(a) (b) (c)

FIGURE 6. Comparison of prior and posterior predictions of CBFV at right ACA following noisy synthetic data assimilation. In (b)
CBFV data at two MCAs with 10% Gaussian noises are assimilated; In (c) Both CBFV and ABP data at two MCAs with 10% Gaussian
noises are assimilated.
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levels.13 We investigate two patients with approximate
homeostatic TCD and ICP signals. The two patients
are referred to as P1 and P2. Patient P1 was a 55 years-
old female and treated for aneurysmal subarachnoid
hemorrhage (aSAH), while patient P2 was a 47 years-
old male and treated for traumatic brain injury (TBI).
The ICP signals for both patients were obtained
through external ventricle drainage (EVD). Figure 7a
displays the raw TCD-measured CBFV signal at right
MCA for patient P1 over 260 cardiac cycles. The mean
CBFV level approximately remains the same, and
waveform features are also similar cycle to cycle, as
shown in the zoomed-in view of Fig. 7a. Similar steady
features are also observed in the corresponding ICP
signal and for the MCA CBFV and ICP data for pa-
tient P2.

Based on the quasi-steady nature of the signals,
pulses over the 260 cardiac cycles of raw CBFV signal
data were aggregated and the ensemble average was
computed. Figures 7b and 7c show the CBFV data of
patients P1 and P2 where all pulses from the raw signal

are plotted within one cardiac cycle, and the ensemble-
averaged pulse is plotted by a bold red line. The shape
of the mean pulse is triphasic (i.e., having three peaks)
for both patients, which is a commonly observed fea-
ture for both CBFV and ICP waveforms.16,32,33 Al-
though the waveforms of the MCA CBFV between the
two patients are similar, the mean CBFV level of pa-
tient P1 is slightly larger than that of patient P2.

The scattering of the pulse data represents uncer-
tainties introduced by TCD measurement errors, res-
piratory effects, and physiological deviations from the
steady-state assumption. These uncertainties are trea-
ted as data uncertainties in the assimilation process
and are estimated based on the pulse history. That is,
instead of assimilating the ensemble average, which
would effectively ignore this uncertainty, the statistical
distribution of the measured CBFV data was used to
sample data for assimilation. For example, Fig. 8a for
patient P1 (and in Fig. 8c for patient P2) displays the
uncertainty interval of TCD data (light blue region)
and sampled data for assimilation (green dots). As for

FIGURE 7. TCD CBFV data. (a) Raw TCD-based CBFV signals at right MCA of the patient P1 over 260 cardiac cycles. (b–c)
Aggregated CBFV pulses at the right MCA and its ensemble averaged for (b) patient P1 and (c) patient P2.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 8. CBFV predictions (a–d) and ICP predictions (e–h) following assimilation of TCD CBFV measurements.
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the synthetic cases above, the CBFV data is assimilated
to calibrate target flow rate parameters, which were
deemed to be informative of ICP via the OFAT sen-
sitivity analysis. We first compare the ability of the
model to match the measured TCD by simulating the
model with the inferred target flow rates for each pa-
tient. Without data assimilation, the prior predictions
of RMCA CBFV are highly scattered and biased, and
the mean CBFVs are largely underestimated for both
patients, as shown in Figs. 8a and 8c. Following data
assimilation, the model parameters (i.e., target flow
rates to each territory) appear well inferred as the
corresponding RMCA CBFV posterior prediction is
significantly improved when compared with the TCD
data and has less uncertainty, as shown in Figs. 8b
and 8d. Note that all the posterior samples are mostly
converged to the sample mean curve (red dashed line)
quickly. The reason for this is that the data uncertainty
level is relatively large compared to the perturbation of
simulations and thus the stopping criteria can be sat-
isfied within only a few DA iterations. Although the
posterior CBFV pulse agrees well with TCD data and
mostly falls inside the data uncertainty region, some
discrepancy can be observed at the beginning of the
CBFV pulse (‘‘early systole’’) in both patients. This is
likely due to the model-form error as discussed below.

Finally, we investigate the prediction of ICP for the
two patients in comparison to the invasive ICP data
measured from the lateral ventricles in each patient.
Similar to the TCD data, the raw ICP pulses are
aggregated to compute an ensemble average and sta-
tistical distribution for uncertainty. Figures 8e and 8g
show the ensemble-averaged pulse for the invasive ICP
measurements for patients P1 and P2, while Figs. 8f
and 8h display the noninvasive ICP predictions
obtained from our data assimilation framework. For
both patients, the baseline (prior mean) ICP prediction
substantially under-predicts the measured mean ICP.
However, after assimilating the TCD measurements,
the posterior ICP predictions of both patients (red
curve) increase significantly, with a mean value rea-
sonably close to the mean invasive ICP measurements
for each respective patient. Specifically, for patient P1
(Figs. 8e and 8f), the mean ICP measurement is 12.8
mmHg and the mean of TCD-augmented ICP predic-
tion is 11.2 mmHg. And for patient P2 (Figs. 8g
and 8h), the mean ICP measurement is 16.2 mmHg
and the mean of TCD-augmented ICP prediction is
15.9 mmHg. For both patients, the prediction error in
mean ICP is within 2 mmHg, which is the clinically-
accepted ICP error standard.44 Moreover, it is inter-
esting to note that the posterior ICP samples exhibit
relative scatter although the corresponding CBFV
samples are mostly converged. This is because no di-
rect ICP measurements are used in the assimilation and

thus relatively larger epistemic uncertainties are ex-
pected. Although mean ICP appears well predicted and
significantly improved using the framework proposed
herein, the predicted ICP waveform shape significantly
differs from the measured triphasic shape. This dis-
crepancy is discussed below.

DISCUSSION

We have presented a data-augmented, theory-based
modeling approach for noninvasive intracranial pres-
sure estimation, based on a multiscale intracranial
model and assimilation of clinically-available TCD
CBFV data. A regularizing iterative ensemble Kalman
method is employed for fusing the computational
model with measurement data. The proposed frame-
work has been examined through both synthetic tests
and tests with actual patient data, both of which
demonstrated that the presented assimilation proce-
dure was able to significantly improve mean ICP pre-
diction.

The tests using synthetic data were conducted to
verify implementations of the framework and analyze
the identifiability of the unknown parameters and
hidden variables. When both the forward intracranial
model and measurement data are precise (i.e., no error
in the model or synthetic data), all the unknown
parameters and hidden states including unobserved
CBFV and ICP can be precisely recovered by only
assimilating CBFV data at the MCAs and associated
uncertainties due to prior perturbations in model
parameters can be nearly eliminated. For a more
realistic condition, where both the forward model and
measurement data were made imprecise through the
introduction of a 10% error, strong performance of
ICP prediction was maintained. Namely, the posterior
mean of the ICP agreed well with the ground truth,
however uncertainty in the posterior ICP prediction
increased due to the uncertainties introduced by the
model inadequacy and measurement noise. Nonethe-
less, the results demonstrate that overall the ICP pre-
diction can be significantly improved by incorporating
noninvasive CBFV data, and uncertainties associated
with the data and model can be naturally considered
within the Bayesian framework presented.

Based on the results of the synthetic tests, CBFV
data at MCAs were demonstrated to be informative to
ICP predictions. However, they appeared less infor-
mative to CBFV at other unobserved arterials, e.g.,
ACAs, when data were corrupted by random noise.
Although ICP can be accurately predicted, the
improvement of posterior predictions of CBFV at
unobserved arterials was not remarkable and uncer-
tainties remained considerable after data assimilation.
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However, by additionally incorporating ABP data
along with CBFV data at MCAs, predictions of CBFV
at ACAs were significantly improved. These results
indicate that assimilating more independent informa-
tion can further enhance hidden state estimation and
reduce associated epistemic uncertainties. The assimi-
lations of multiple noninvasive signals is something to
be further explored to broaden or further improve the
utility of this framework.

Actual TCD and invasive ICP measurements from
two patients with approximate homeostatic intracranial
dynamics were used to examine the feasibility of the
proposed approach toward clinical application. The
performance of the proposed approach in these patient-
based cases was promising. The data assimilation pro-
cedure led to significant improvement in mean ICP pre-
diction,with aposterior estimateofmean ICPclose to the
invasively measured mean value and within the current
clinical standard for ICP error. These results indicate that
noninvasive ICP prediction can be informed by CBFV
data, and implies that the perfusion blood flow distribu-
tion among the six major vascular territories appears to
be a significant factor in steady-state ICP dynamics.
While the focus of this paper is the theoretic basis and
methodology of the data-augmented nICP framework,
these clinical comparisons, although limited, demon-
strate feasibility of the proposed approach. Nonetheless,
additional validations are needed to properly establish
clinical viability of this approach.

It should be noted that althoughmean ICPprediction
matched reasonably with that from invasive measure-
ment, the shape of the measured ICP waveform was not
well replicated. This may be expected for several rea-
sons. First, the shape of the posterior prediction for the
MCA CBFV waveform differed (albeit to less degree)
from the measured waveform (Figs. 8b and 8d). This is
potentially due to the simplified sinusoidal waveform
used at the aortic root, which essentially drives wave-
form dynamics to the rest of the model. While it is pos-
sible to impose a more physiologic waveform at the
aortic root, ideally these dynamics should arise naturally
from the model assuming that an appropriate
‘‘unadulterated’’ waveform can be imposed, since the
measured aortic waveform already contains reflected
waves, which would be confounded by reflections gen-
erated from the 1D network model. Second, ICP mod-
eling herein was highly simplified, which likely
contributes to the damped dynamics of the ICP wave-
form. In our model, intracranial pressure and CSF was
modeled as spatially uniformand shared by the six distal
vascular beds. CFS (and hence ICP) dynamics were
governed by simple conductances at the capillary outlets
and venous return. This is a significant simplification
and in reality ICP dynamics is likely influenced by the
multi-ventricular flow of CSF and dynamic coupling

with brain tissue and different arterial territories.Hence,
it is expected that the forward model should be geared
toward improved ICP dynamics modeling by consider-
ing expanded modeling of the CFS circulation and dy-
namic couplingwith the brain andother tissues. (Indeed,
the computed and measured CBFV waveforms agreed
much more closely, even without calibration, as the
intracranial model employed was more hemodynamics-
oriented.) This is a significant undertaking and will be
pursued in a separate work, however, it is important to
note that mean ICP is generally used clinically for
diagnosis of intracranial hypertension. Nonetheless, it is
expected that improved modeling of CSF and ICP
dynamicswill improve the predictive capabilities of even
mean ICP, and moreover emerging research,3,8 is rec-
ognizing the importance of ICP waveform analysis for
diagnosis and differentiation of cerebral pathologies
and treatment management.

In regards to numerical implementation, the
majority of the forward intracranial model dynamics is
implemented in C++, where the 1D distributed net-
work is solved using an in-house finite volume solver
and the LP intracranial portion is solved using an
open-source ODE solver of a C++ library
SUNDIALS.36 The in-house data assimilation solver,
i.e., IEnKM, was implemented in Python. The com-
putational cost of this implementation mainly depends
on the number of samples used for Kalman updates,
since each sample involves a forward simulation. As
mentioned above, Ns ¼ 20 samples are used in this
work and approximately three to five iterations are
needed to achieve statistical convergence. Therefore,
each data assimilation case may involve approximately
100 forward model evaluations, which entails running
the model until it reaches homeostatic intracranial
state. If starting from the steady state of the baseline
case, each perturbed case typically converges in less
than five cardiac cycles. On a single CPU core, it takes
about 40 seconds to simulate one cardiac cycle. How-
ever, the propagation of case ensemble can be done in
parallel. In this work, a dual-processor with 20 CPU
cores was used and thus each data assimilation case
took approximately 15 min. However, computational
efficiency has not yet been a focus, since the objective
of this work has been to explore feasibility.

APPENDIX A ALGORITHM: REGULARIZING

ITERATIVE ENSEMBLE KALMAN METHOD

Prior sampling: Use Latin hypercube sampling

method to generate the prior state ensemble fxð0Þj gNs

j¼1,

where xj is jth sample of the augmented state, including

major arterials’ CBFV and ABP, ICP, and unknown
parameters. Let q 2 ð0; 1Þ and s ¼ 1=q.
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For n ¼ 1 : nmax

1. Forward prediction:

(a) Evaluate the forward intracranial model
with the initial physical state, boundary
conditions, and model parameters, which
are updated in the last iteration. Namely,
the analyzed state x̂

ðnÞ
j at iteration step n is

propagated through the forward model F at
ðnþ 1Þth iteration,

x
ðnþ1Þ
j ¼ Fðx̂nj Þ: ð14Þ

(b) Obtain the perturbed ensemble of observa-
tion data fyð0Þj gNs

j¼1 based on the data uncer-
tainty level rd.

(c) Calculate statistical information of predicted
state and observation data. We first calculate
the sample means of state and data as,

�xðnþ1Þ ¼ 1

Ns

XNs

j¼1

x
ðnþ1Þ
j ð15Þ

�yðnþ1Þ ¼ 1

Ns

XNs

j¼1

y
ðnþ1Þ
j : ð16Þ

The error covariances of the predicted state and
observation data can then be obtained,

Pðnþ1Þ
m ¼ 1

Ns � 1

XN
j¼1

�
x
ðnþ1Þ
j � �xÞðxðnþ1Þ

j � �xðnþ1Þ
�T

ð17Þ

P
ðnþ1Þ
d ¼ 1

Ns � 1

XN
j¼1

ðyðnþ1Þ
j � �yÞ

�
y
ðnþ1Þ
j � �yðnþ1Þ

�T

ð18Þ

2. Regularizing Bayesian analysis:

(a) Calculate the control variable aðnþ1Þ
i by

following sequence,

aðnþ1Þ
i ¼ 2iþ1a0; ð19Þ

where an initial guess of a0 ¼ 1 is used in this work. The

anþ1 is obtained as aðnþ1Þ 	 aðnþ1Þ
N , where N is the first

integer when the inequality defined by Eq. (13) is satis-
fied. (b) Compute regularized Kalman gain matrix as,

Kðnþ1Þ ¼ Pðnþ1Þ
m HT

�
HPðnþ1Þ

m HT þ aðnþ1ÞP
ðnþ1Þ
d

��1

;

ð20Þ

(c) Update each state sample as follows,

x̂
ðnþ1Þ
j ¼ x

ðnþ1Þ
j þ Kðnþ1Þ

�
�yðnþ1Þ �Hx

ðnþ1Þ
j

�
; ð21Þ

3. Stopping criteria:

If ����
����Pðnþ1Þ

d

�1=2
ðyðnþ1Þ �H�xðnþ1ÞÞ

����
���� 
 srd; ð22Þ

then, stop the iteration. rd represents noise level of
observation data.
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