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Abstract—Musculoskeletal models permit the determination
of internal forces acting during dynamic movement, which is
clinically useful, but traditional methods may suffer from
slowness and a need for extensive input data. Recently, there
has been interest in the use of supervised learning to build
approximate models for computationally demanding pro-
cesses, with benefits in speed and flexibility. Here, we use a
deep neural network to learn the mapping from movement
space to muscle space. Trained on a set of kinematic, kinetic
and electromyographic measurements from 156 subjects
during gait, the network’s predictions of internal force
magnitudes show good concordance with those derived by
musculoskeletal modelling. In a separate set of experiments,
training on data from the most widely known benchmarks of
modelling performance, the international Grand Challenge
competitions, generates predictions that better those of the
winning submissions in four of the six competitions. Com-
putational speedup facilitates incorporation into a lab-based
system permitting real-time estimation of forces, and inter-
rogation of the trained neural networks provides novel
insights into population-level relationships between kine-
matic and kinetic factors.

Keywords—Musculoskeletal modelling, Neural networks,
Surrogate model.

INTRODUCTION

Human movement is a feat of extraordinary skill,
requiring the coordinated action of huge numbers of
muscle elements, in the face of changing environmental
conditions, in real time. Exactly how the central ner-
vous system (CNS) is able to achieve this task is un-
clear. In particular, the decoding of the neural
representation of abstract task-related goals such as

Address correspondence to Lance Rane, Department of Bio-
engineering, Imperial College London, Bessemer Building, South
Kensington Campus, London SW7 2AZ, UK. Electronic mails:
lance.ranel4@imperial.ac.uk, lance.rane@gmail.com

0090-6964/19/0300-0778/0 © 2018 The Author(s)

778

movement into specific muscle activation signals has
proven difficult to decipher.

An approximation of this mapping is central to at-
tempts at estimating the magnitudes of internal loads
during movement, a matter of established clinical rel-
evance for many patient groups.””> In the field of
biomechanics, musculoskeletal models are used to
approximate the mapping from kinematic space to
force space by applying a framework rooted in the laws
of classical mechanics. Experimentally observed kine-
matics and external forces can be used to formulate the
equations of motion, the solution of which yields
intersegmental forces and torques. It is in attributing
these torques to individual muscles—the load-sharing
problem—that it is necessary to specify the motor
strategy used by the CNS. This is usually done by
minimisation of an objective function representing
some putative overarching goal of the motor system,
with numerical optimisation techniques used to arrive
at an optimal solution.

The use of these techniques has been validated to
produce reasonable estimates of joint contact forces
and muscular activation patterns for repetitive motions
such as gait'®° but it is difficult to offer a biologically
consistent rationale for the choice of any objective
function, given our lack of knowledge about the
method used by the CNS. Moreover, for complex
models in high-dimensional spaces the computational
complexity—and thus slowness—of static optimisation
makes it a poor fit given the speed with which humans
can accomplish complex movements. This is of prac-
tical importance as it limits the utility of modelling for
real time applications, where the potential for clinical
benefit is great.

In addition, as a technique that deals with separate
trials independently, traditional inverse dynamic/ static
optimisation analysis has no capacity to exploit pop-
ulation-wide relationships between input and output,
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standing in contrast to models built upon data from
multiple trials.

SUPERVISED MODELS OF MOTOR LEARNING

Human motor learning involves adaptation to
changing conditions — in both the environment and the
plant (such as those due to growth, training or disease),
and the modulation of muscle activations to account
for such changes. For example, upon exposure to a
force field, human subjects demonstrate modification
of muscular activation patterns to efficiently compen-
sate for the motor disturbance,>* with persistence of
learned effects for some time following disengagement
from the field. These observations lend weight to the
notion of internal models that contain representations
of the physics of the external world and of the mus-
culoskeletal system, as put forward by Wolpert er al.*!
These models must be updated dynamically to reduce
errors such that future movements made on the basis
of their predictions are more optimal. This framing of
motor control as a problem of supervised learning has
its roots in the work of Albus and Marr,>>® where it
was applied specifically to the cerebellum. Later, Ka-
wato et al. proposed hierarchical neural networks as a
solution to the control problem and showed that an
internal inverse dynamics model could be learned by a
robotic controller.'”

More recently, supervised learning, manifest as
neural networks, has been used to obtain increasingly
impressive performances in a number of challenging
prediction problems such as object and speech recog-
nition, outperforming traditional modelling
devices.'""!” These breakthroughs have been viewed as
significant because they represent foundational prob-
lems of human intelligence—tasks at which humans
naturally excel but which have traditionally proven
difficult for machines—much like the motor control
problem. In the motor system, hierarchical layering of
the type found in neural networks has been proposed
as a means of mitigating problems associated with the
immense complexity of the control problem,* al-
though it remains poorly understood.

APPLICATION OF SUPERVISED LEARNING
TO MUSCULOSKELETAL MODELLING

The replacement of a computationally expensive
optimisation process with a fast solution learned under
supervision is a well-established use of supervised
models. There have been multiple applications of such
‘surrogate’ models both within the domain of biome-
chanical simulation—with uses in the estimation of

implant pressure distribution* and deformable joint
contact®—as well as elsewhere.'* A major advantage of
these models is speed; training may be lengthy but as
inference involves a relatively simple forward pass
through the network, it is computationally inexpensive
and thus very quick. The potential for computational
speedup is important as the slowness of static optimi-
sation can make real time estimation of internal forces
with complex models difficult. The problem of mod-
elling complexity has been surmounted by the use of
proxies for internal forces, such as the external knee
adduction moment,*® an important biomarker for
patients with osteoarthritis (OA) of the knee. As
prevalence rates for this disease soar in the western
world® novel preventative approaches have been
sought, amongst them real time gait retraining, which
aims to slow disease progression through the entrain-
ing of a walking technique that mitigates joint loading.
However, evidence of a significant disparity between
the external adduction moment and true internal
forces*® emphasises the need for true force estimation.
This has been attempted in real time by explicit limi-
tation of model complexity. Van den Bogert et. al.”’
achieved a real time system that employed static opti-
misation to produce muscle force estimates at a rate in
excess of 100 Hz but in order to achieve such speed
muscle moment arms were approximated by prescribed
polynomials and an iterative optimisation solver was
curtailed after a set period of time had elapsed. More
recently, EMG-driven models have been run close to
real time. One such system was used to provide feed-
back on kinetic variables to subjects walking on a
treadmill, but with a latency of 115 ms,”’ far in excess
of the maximum 75ms considered optimal for real time
biofeedback.'*

Further benefits stem from the capacity of machine
learning techniques to find latent structure in data.
This leads to an important possibility: a reduction in
the need for input data in the formulation of predictive
models. The extensive ensemble of data required for
the operation of physics-based musculoskeletal is an
important factor limiting the clinical utilisation of such
models.

Finally, because networks are imprinted with the
training data, which contribute to their final nodal
weights, their use allows a probing of population-level
causal relationships between inputs and outputs. The
trained network may be viewed as a function approx-
imator where the information encoded in population-
level relationships has been transferred to its weights,
and may be analysed through interrogation of the
network.

In addition to the surrogate models described
above, previous attempts to apply neural networks
within the field of musculoskeletal modelling have
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involved mappings between EMG and kinematics,'%-**

and EMG to force.?3* However, datasets have been
small and the networks employed necessarily simple
and shallow, limiting the generalisability of the results
obtained. More recently, deep models combining
recurrent and convolutional modules have been
applied to time series of biological signals, for example
in the prediction of kinematic parameters from EMG
data.*? There has also been growing interest in the use
of deep learning architectures for motion capture-in-
dependent pose estimation.?*

Inspired by the recent successes of deep learning for
prediction problems, the present study aimed to exploit
a large corpus of motion data, applying deep neural
networks to compute the mapping from kinematic to
muscle space. Two sources of labelled data were used:
musculoskeletal modelling predictions obtained by in-
verse dynamic analysis and static optimisation, and
EMG sensor data. Validation was performed using
holdout data subsets. Further validation of the models
thus produced was performed using in-vivo knee
prosthetic data previously used for the ‘Grand Chal-
lenge’ competitions to predict in-vivo knee loads.'®

MATERIALS AND METHODS

The dataset comprised synchronously captured
kinematic (lower limb marker trajectories obtained by
optoelectronic capture—Vicon MX system, Vicon
Motion Systems Ltd, Oxford, UK), force plate
(ground reaction force and centre of pressure—Kistler
Instrumente AG, Winterthur, Switzerland) and EMG
(Trigno Wireless EMG system, Delsys, USA) data
from 156 subjects during multiple trials of level walk-
ing.?! Stance phase of both left and right lower limb
were represented and treated equivalently. EMG sig-
nals were measured for 8§ major muscles of each lower
limb. The subjects were diverse in body morphology,
age, gender and lower limb pathology, with a signifi-
cant proportion suffering from clinically diagnosed
OA of one or both knees (Table 1).

Several prediction problems were attempted:

— Prediction of medial knee joint reaction force

TABLE 1. Subject characteristics.

Mean (standard deviation)

Age (years) 48.5 (16.4)
Height (m) 1.71 (0.11)
Body mass (kg) 71.5 (13.1)
Percent female 49
Percent with OA 28
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— Prediction of forces for major muscle groups of the
lower limb
— Prediction of EMG sensor measurements

INPUT TENSORS FOR NEURAL NETWORK
TRAINING

Raw data comprising 3-dimensional marker posi-
tions for each of 18 lower limb markers (4 on the pelvis
and 14 on the stance limb), and force plate-derived 3-
dimensional centre of pressure and ground reaction
force were extracted from the duration of stance phase
for each trial. The data were used to train neural net-
works taking the data of a single time step of a single
trial as input. Thus, where the entirety of the data were
utilised, kinematic and kinetic data at each time step
were combined into a single vector of length 60, and
then concatenated with equivalent vectors from all
time steps, t, of a given trial to produce a matrix of
dimensions [z, 60]. Many such matrices from all pro-
cessed gait trials were concatenated to form a single
long matrix representing the whole dataset for the
neural network, where each row represented a single
input.

In the first instance, both kinematic and kinetic data
were used for training. Then, models were built using
only partial inputs in order to assess the ability of the
trained models to produce accurate predictions with-
out exposure to the full ensemble of input data.

TARGET TENSORS FOR NEURAL NETWORK
TRAINING

Inverse dynamic modelling was used to provide
targets for training. Processing of raw motion data was
performed using Vicon Nexus® (1.85) and Matlab®
(2017a; The MathWorks Inc., Natick, MA, USA).
Data filtering was performed in Matlab using a low-
pass fourth order Butterworth filter with a cutoff fre-
quency of 10 Hz. Freebody (v2.1),” an open-source
segment-based musculoskeletal model was used for
subsequent data processing to determine internal for-
ces. The model’s predictions of tibiofemoral JRF
during gait have been validated using data from
instrumented prostheses,” and predicted muscle force
waveforms have been shown to demonstrate high levels
of concordance with known -electromyography
envelopes.”!' Implementation involved the determi-
nation of coordinates of internal points in a subject-
specific frame of reference. This was achieved by
scaling using the measurements of a gender and height-
matched subject, chosen from a morphologically di-
verse cohort of eight subjects, for whom three-dimen-
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sional position data of internal points had been
obtained using magnetic resonance imaging.’ Pro-
cessed data were then taken as input by a Matlab®
implementation of interior points optimisation using
static trial data for model calibration, to determine
muscle and joint forces for each sampled frame. The
objective function applied was:

n F: 3
minimise J = Z( ! )
i=1

Imax

where F; is the force output of the ith muscle element,
F; .. defines the ith muscle element’s force at maximum
isometric contraction and #n is the total number of
muscle elements — 163.%° F;  was calculated for each
element from physiological cross-sectional area, which
was determined using subject-specific measurements
and anatomical values obtained from the same mat-
ched-subject MRI described above.

To formulate the targets for training, the resulting
scalar values of each timestep were combined into
individual vectors, for each trial, of dimensions [z, 1].
Again, many such vectors from different trials were
concatenated to form a single long target vector cor-
responding to the input data matrix.

For EMG signal prediction, the raw signal was full-
wave rectified, smoothed and resampled to match the
length of the input tensor. Root mean square
smoothing® was performed using a window size of
50 ms. All values were normalised to the observed
within-trial maximum, producing activation trajecto-
ries that varied between zero and one for each muscle
in every trial.

TRAINING/VALIDATION/TEST SPLIT

The data were randomly separated into three groups
according to an 80/10/10 relative split for the purposes
of training, validation and final evaluation. Two types
of final testing were performed. First, data obtained
from individual subjects were strictly isolated within
one group only to allow extrapolation of test evalua-
tion metrics to new subjects (‘subject-naive’ setting).
This was achieved by randomisation at the subject le-
vel. In the second, ‘subject-exposed’ setting, for every
trial in the test set, there was at least one other trial
from the same subject included in the training set. This
was achieved by active redistribution of trial data fol-
lowing randomisation, where required, from the test
set to the training set. The loss function for network
training was defined as the root mean square error
between predicted and actual target values:

S - )
i=1

where y; represents the target value of the ith training
example, generated by Freebody inverse dynamics for
a given trial at time #;, x; is the corresponding input
tensor at #; and ¢ represents the transform function
applied by the neural network. Training was per-
formed using the backpropagation algorithm®> and
network weights optimised using Adam.'” Final
training time was roughly one hour (NVIDIA Titan
Xp GPU).

NEURAL NETWORK ARCHITECTURE

The validation data were used to optimise network
architecture and hyperparameters for the prediction
task. Simple feedforward, convolutional and recurrent
architectures were tested, and it was established that
validation accuracy was greatest using a convolutional
neural network with fully connected output layers so
hyperparameter searches were henceforth focussed
here. In order to facilitate 2-dimensional convolution,
the input at each timestep was reshaped to dimensions
(x, 3), that is, each row of the input matrix corre-
sponded to the 3-dimensional position vector of a
single marker, or the 3-dimensional vectors of the
ground reaction force or centre of pressure. Batch
normalisation'? was found to improve accuracy and
speed of convergence, and was used in all tested net-
works, applied as per convention to all layers bar the
output. All networks utilised ReLU activations in their
hidden layers, with a single linear output neuron.
Manual hyperparameter optimisation was performed
incrementally to establish reasonable bounds for sub-
sequent search. Random sweeps within these bounds
were then performed to find optimum architecture and
hyperparameters. A single network architecture was
developed and optimised for all predictions, and vali-
dation of the final network was performed in two ways.

Validation 1: Comparison with Inverse Dynamics
and Static Optimisation/| EMG Data

Final evaluation was performed for the prediction
of major muscle group force magnitudes, EMG acti-
vations and the medial knee joint reaction force. Par-
ticular emphasis was given to the latter because of the
high level of wvalidation accuracy that has been
achieved by musculoskeletal models for its prediction,
and because of its established clinical relevance as a
marker for the risks of onset and progression of OA of
the knee.”**> Quantitative evaluation of accuracy was
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performed by comparison of the neural network’s
predictions with those obtained when the same input
data were analysed by inverse dynamic modelling, or
with the true EMG signal.

Validation 2: Grand Challenge Data

A neural network was trained to predict medial knee
contact force in each of the grand challenge competi-
tion years. Input data were restricted to include only
the three-dimensional ground reaction force vector;
this and instrumented prosthesis data were resampled
in order to equate lengths. Network architecture was
identical to that previously used for the prediction of
model force outputs, but potent regularisation tech-
niques were necessary given the relative paucity of data
available — these included L2 weight decay and early
stopping. A separate model was trained for each year
of the competition, by training using the data from all
of the other years, a subset of which was withheld for
the purposes of validation. Final evaluation was per-
formed on the two trials that made up the evaluation
trials in the real Grand Challenge of that particular
year. The remainder of that year’s data was discarded
from both training and test sets in order to match the
data available to Grand challenge competitors as clo-
sely as possible, for the purposes of fair comparison.
Rotation of the test dataset (leave-one-out cross-vali-
dation) yielded accuracy metrics for each of the six
competition years.

REAL TIME IMPLEMENTATION

For real time streaming of kinematic and kinetic
data direct to the gait lab console, the Vicon SDK
plugin®® was used and adapted to incorporate the
trained neural network. Input kinematic and kinetic
data were processed in real time and forward-propa-
gated through the network, returning values for
internal force magnitudes. A custom plotting interface
was developed in C+ + for real time visualisation.

NETWORK INTERROGATION

A neural network was trained to predict the medial
knee joint reaction force taking 3-dimensional inter-
segmental angle data and ground reaction force as
input. Following completion of network training,
examples were individually forward-propagated
through the network and at each time step the partial
derivatives of the output with respect to input elements
were computed. The gradients thus obtained per trial
were resampled from trial length to length 100 to allow
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for cross comparison and averaging across trials.
Average values were multiplied by the standard devi-
ation across trials of each feature at each time step in
order to obtain a measure of the relative contribution
of each feature to the variance of the medial knee JRF
across stance phase.

RESULTS

555 trials were successfully processed using Free-
body inverse dynamics. A small number of trials were
discarded because they failed to yield feasible solutions
to optimisation. The data were used to train a number
of different neural networks implemented in Python
usingi the Tensorflow library for numerical computa-
tion.

Network Architecture

Optimum architecture and parameters are illus-
trated in Figure 1 for a network taking the full extent
of kinematic and kinetic data as input. All convolu-
tional layers were 2-dimensional, applying a kernel size
of [1x 3] with stride size 1. To ensure equivalence of
the first two data dimensions, the input was padded
with zeros prior to application of the convolutional
operator, as per convention.

Validation 1: Accuracy vs. Inverse Dynamics/Static
Optimisation and EMG

The neural network outputs were compared with
those of Freebody and EMG sensor data as appro-
priate. Neural networks that had been exposed to
other data of the test subject during training (‘subject-
exposed’, below) in the majority of cases outperformed
those that had not.

Medial knee JRF Prediction
See Table 2 and Figs. 2a, 2b, 3, and 4

Muscle Force Prediction

See Table 3 and Figs. 5a and 5b

EMG prediction
See Table 4.

Computation Time (Average Per Trial)

Average computational time required for inference
was 71 milliseconds per trial, compared with 16 min-
utes for Freebody inverse dynamics and static opti-
misation (Intel Core i7 6700).
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FIGURE 1. Network architecture (dimensions not to scale). BN = batch normalisation; ReLU = rectified linear unit activation.

TABLE 2. Accuracy metrics for test set prediction of the medial knee joint reaction force. n denotes the number of test trials over
which evaluation was performed.

Subject-naive*: RMSE (std.)/Pearson’s r

All test trials OA subject Subject-exposed*: RMSE (std.)/
Input data (n=63) trials (n = 28) Pearson’s r (n = 58)
Force plate and kinematic data 216 (136)/0.90 268 (104)/0.87 186 (207)/0.90
Force plate data only 291 (132)/0.82 296 (130)/0.81 268 (206)/0.89
Kinematic data only 247 (119)/0.84 284 (108)/0.84 212 (213)/0.87

* ‘Subject-naive’ denotes testing with models for which all trials of the test subjects were excluded from the training data. ‘Subject-exposed’
models were trained with one or more trials of the test subjects included in the training data. In the subject-naive condition, separate metrics
are provided for patients with OA.

a == Freebody neural network b = Freebody === neural network
1400 1400
1200 1200
1000 1000
é 800 5 800
8 =
o 9 8
400 400
200 200
0 0
25 50 75 100 25 50 75 100
percent stance percent stance

FIGURE 2. (a, b) Trajectories of the medial knee joint reaction force in two representative trials as predicted by the neural network
and Freebody inverse dynamics/ static optimisation.
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Validation 2: Grand Challenge Validation

Neural network outputs were compared with
ground truth tibiofemoral force data obtained from

== Freebody w==_neural network
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force (N)

600
400

200

percent stance
FIGURE 3. Trajectory of the medial knee joint reaction force
in a single representative trial as predicted by the neural

network using only force plate data, and that predicted by
Freebody inverse dynamics/static optimisation.

=== Freebody === neural network
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force (N)
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FIGURE 4. Trajectory of the medial knee joint reaction force
in a single representative trial as predicted by the neural
network using only kinematic data, and that predicted by
Freebody inverse dynamics/ static optimisation.

instrumented prostheses, as in the real Grand chal-
lenges. Evaluation metrics bettered those of the win-
ning submissions in 4 of the 6 competitions (Table 5).

Real Time Implementation

Real time deployment to the gait lab was successful,
with operation speeds in excess of 100Hz for the pre-
diction of internal forces from force plate data.

Network Interrogation

Feature importance maps derived by interrogation
of a neural network trained on the entirety of the data
showed smooth variation over stance phase (Fig. 6).

DISCUSSION

Supervised learning was proposed many decades
ago as a suitable framework for the posing of the
motor control problem. Since then, deep neural net-
works have enjoyed a resurgence of popularity, driven
by a number of impressive performances in difficult
problems including computer vision and speech
recognition. More recently there have been attempts to
fuse the disparate areas of deep learning and neuro-
science.?

Here, a novel integration of deep learning with
musculoskeletal modelling was used to demonstrate
advantages from the use of supervised learning tech-
niques in approximating the mapping from kinematic
space to muscle space. Good accuracy in force pre-
diction was achieved across a diverse test cohort, with
error metrics falling within the bounds of variability
resulting from the application of different anatomical
datasets, for example.” Performance in subjects with
pathology was, as expected, slightly reduced in most
cases relative to the entire test population, likely
reflecting a greater variability in kinematic and kinetic
features, and EMG signals. Some disparity in accuracy
was generally observed between subject-exposed and
subject-naive models, for prediction of both inverse

TABLE 3. Accuracy metrics for test set prediction of forces of major muscle groups during stance phase.

Subject-naive: RMSE (std.)/Pearson’s r

Muscle (stance side) All test trials

Subject-exposed:

OA subject trials RMSE (std.)/Pearson’s r

Gluteus maximus
Gluteus medius
Quadriceps
Hamstrings

127 (52)/0.69
274 (135)/0.71
214 (114)/0.62
126 (78)/0.91

96 (34)/0.74
294 (169)/0.76
235 (95)/0.89
135 (66)/0.85

91 (72)/0.81

196 (186)/0.86
194 (140)/0.93
140 (175)/0.77
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FIGURE 5. (a, b) Trajectories of muscle force in two representative trials as predicted by the neural network and Freebody inverse
dynamics/static optimisation Left: quadriceps; right: gluteus medius.

TABLE 4. Accuracy metrics for test set prediction of EMG signals.

Subject-naive: RMSE (std.)

Muscle (stance side) All test trials OA subject trials Subject-exposed: RMSE (std.)
Gluteus medius 0.22 (0.07) 0.23 (0.08) 0.22 (0.09)
Rectus femoris 0.27 (0.18) 0.25 (0.07) 0.24 (0.11)
Vastus lateralis 0.21 (0.17) 0.19 (0.15) 0.21 (0.11)
Vastus medialis 0.19 (0.08) 0.20 (0.08) 0.19 (0.08)
Biceps femoris 0.28 (0.12) 0.30 (0.14) 0.23 (0.10)
Semitendinosus 0.34 (0.13) 0.37 (0.17) 0.31 (0.16)
Soleus 0.25 (0.13) 0.33 (0.13) 0.24 (0.12)
Tibialis anterior 0.22 (0.15) 0.26 (0.09) 0.21 (0.10)

TABLE 5. Accuracy metrics for test set medial knee joint reaction force prediction using Grand Challenge data, together with
corresponding winning submission metrics.

Competition year

Winning submission RMSE (N)*

Neural network RMSE (N)/Pearson’s r

2010 230
2011 312
2012 284
2013 194
2014 235
2015 165

222/0.93
227/0.89
464/0.88
144/0.90
283/0.90
149/0.92

*Where multiple submissions were selected as winners, the lower of the error scores recorded on each trial has been selected for averaging.

dynamic outputs and the EMG signal. This likely re-
flects the relatively small size of the training dataset, so
that similarity of the train and test distributions was
not guaranteed in the subject-naive case. Until suffi-
cient data are available from a broad range of subjects,
the use of subject-specific models will be necessary if
the greatest levels of accuracy are required. A major
advantage of supervised learning over physics-based
modelling is speed; this enabled the development of a

real time lab-based system for feedback of internal
forces.

Comparison with Existing Real Time Methods

Real time feedback is not new”’*” but until now
true real time rates have often required a number of
compromises in terms of the complexity of the em-
ployed modelling. In contrast, the approach used here,

BIOMEDICAL
ENGINEERING
SOCIETY



786 RANE et al.

-200 -100

50 75 100
% stance
0 100 200

FIGURE 6. Feature importance map for joint angles and ground reaction force components plotted across stance phase.

by bypassing the computationally demanding explicit
execution of inverse kinematics, inverse dynamics and
static optimisation, promises the ability to build net-
works based on the results of models of increasing
complexity, including those that so far have failed to
achieve widespread use in large part because of their
intractability to computation, such as those based on
dynamic optimisation.> Though obtaining data using
such complex models would be computationally
expensive, the costs of network training and inference
are not expected to differ significantly from those
reported here. In fact, the computational costs of
inference are low enough to make the deployment of
trained networks to cheap portable hardware, includ-
ing mobile phones, feasible, raising the prospect of
force estimation away from the confines of the gait
laboratory.

A further contribution of the work is in the devel-
opment of means for musculoskeletal force prediction
in the absence of the full ensemble of input data
required for conventional modelling. Though accuracy
was greatest when the neural network was exposed to
all of the input data, reasonable performance was at-
tained with only part of it, suggesting a degree of
redundancy of information in the inputs. Machine
learning techniques should provide a natural means for
the exploitation of such redundancy. To test this
hypothesis, validation on Grand Challenge data was
performed using the three-dimensional ground reac-
tion force only as input, and the resulting models were
competitive with and, in most cases, bettered the
winning submissions produced using detailed, hand-
crafted musculoskeletal models that utilised all of the
available input data. This lessening of the input data
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requirement is particularly important in the clinical
domain, where time and/ or resource constraints may
be limiting. In the same vein, and in stark contrast to
physics-based modelling, the network-driven approach
requires no input of body segment parameters and no
calibration trials, further increasing its attractiveness.

The applications of the technique are broad. True
real time operation enables the use of model outputs as
biofeedback for the training of movement parameters.
For subjects with OA, an important application is gait
retraining with the purpose of reducing the medial
knee joint reaction force. It has been shown that real
time biofeedback can be used to modify important
kinetic parameters in healthy subjects,*® but as yet the
difficulty of true force prediction has meant that this
has not been accomplished for the medial knee JRF in
patients.

Reasonable accuracy was obtained for prediction of
the EMG signal from some muscles of the lower limb,
but for others significant variability in the signals
recorded from different trials of different subjects
meant that error metrics were relatively high. A lack of
repeatability is often a problem with the standard use
of real EMG signals,30 as inter-trial differences, for
example in electrode placement, may have major ef-
fects on the results obtained. There are other issues
with the standard use of EMG, including a require-
ment for expertise both in the acquisition and the
interpretation of sensor data, and, of course, the
requirement for the sensors themselves, which may be
expensive. For subjects who are sufficiently similar to
those upon whose data supervised models have been
built, or better yet where models have been exposed to
previous trials of a given subject, such models can



Deep Learning for Musculoskeletal Force Prediction 787

provide predictions of the EMG signal quickly and
without extensive pre-processing of input data.

Calculation of partial derivatives for the joint
reaction force with respect to input joint angles
allowed for the generation of feature importance maps
illustrating a measure of the importance of features in
the input for the prediction of the trained objective. To
our knowledge, this represents the first application of
the technique to motion data. These maps showed
smooth variation in importance across stance phase,
with several features inverting the sign of their con-
tribution to the medial knee JRF. The contributions of
two components, the knee abduction angle and the
vertical component of the ground reaction force, fit
with the well-established correlation between the
external knee adduction moment, with which these two
factors are themselves strongly correlated, and the
medial knee joint reaction force. Incidentally, recent
work supports the reliability of cohort-level modelling
over that performed on the basis of measurements
from individual subjects.?

It has been demonstrated that neural networks are
able to generalise well to subjects of varying body
morphology, age and pathology, often with very dif-
ferent gait patterns. However, this was shown only for
a single activity; confidence in the model’s ability to
provide accurate predictions for other types of move-
ment remains unwarranted. Moreover, in the clinical
domain, it is likely that rather than a capacity for
accuracy in prediction of absolute force values, the
ability to reveal trends in musculoskeletal forces with,
for example, gait modification, will be of greater util-
ity. Again, as yet, this ability remains unproven.
Greatest accuracy will be achieved with the training of
subject specific models, with the inclusion of a wide
range of activities in the training set.

The requirement for the use of conventional mus-
culoskeletal models to generate training data stems
from a lack of sufficient available data on internal
forces from other sources, a consequence of the diffi-
culty of obtaining measures by other means, such as
instrumented prostheses. However, the use of these
models is predicated on the assumptions that underlie
the solution of the muscle redundancy problem, and
modelling is also subject to errors arising from exper-
imental techniques such as motion capture. One of the
perceived benefits of supervised learning is that it af-
fords the ability to depart from the conventional
framework, and, in doing so, leave behind some of
these disadvantages. Training using data available
from the Grand Challenges showed that, contrary to
popular conception, neural networks can compete with
and often, in fact, outperform meticulously hand-
crafted solutions where only limited amounts of
training data are available. In future, as more sensor

data become available, the potential to use supervised
learning to obtain accurate predictions, and the con-
ditions under which it is possible to do so, are expected
to grow.

The use of neural networks to compute the mapping
from the kinematic space to force space brings several
advantages to musculoskeletal force prediction. Ulti-
mately, it is hoped that this new technique will be
useful in the clinical domain. A promising application
is that of real time gait analysis and feedback, where
the benefit of speed is of particular utility.Publisher’s
NoteSpringer Nature remains neutral with regard to
jurisdictional claims in published maps and institu-
tional affiliations.
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