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Abstract—Abdominal aortic aneurysm (AAA) is an asymp-
tomatic aortic disease with a survival rate of 20% after
rupture. It is a vascular degenerative condition different from
occlusive arterial diseases. The size of the aneurysm is themost
important determining factor in its clinical management.
However, other measures of the AAA geometry that are
currently not used clinically may also influence its rupture risk.
With this in mind, the objectives of this work are to develop an
algorithm to calculate the AAAwall thickness and abdominal
aortic diameter at planes orthogonal to the vessel centerline,
and to quantify the effect of geometric indices derived from
this algorithm on the overall classification accuracy of AAA
based on whether they were electively or emergently repaired.
Such quantification was performed based on a retrospective
review of existing medical records of 150 AAA patients (75
electively repaired and 75 emergently repaired). Using an
algorithm implemented within the MATLAB computing
environment, 10 diameter- and wall thickness-related indices
had a significant difference in their means when calculated
relative to the AAA centerline compared to calculating them
relative to the medial axis. Of these 10 indices, nine were wall
thickness-related while the remaining one was the maximum
diameter (Dmax). Dmax calculated with respect to the medial
axis is over-estimated for both electively and emergently
repaired AAA compared to its counterpart with respect to the
centerline. C5.0 decision trees, a machine learning classifica-
tion algorithm implemented in the R environment, were used
to construct a statistical classifier. The decision trees were built
by splitting the data into 70% for training and 30% for testing,
and the properties of the classifier were estimated based on

1000 randomcombinations of the 70/30 data split. The ensuing
model had average and maximum classification accuracies of
81.0 and 95.6%, respectively, and revealed that the three most
significant indices in classifying AAA are, in order of impor-
tance: AAA centerline length, L2-norm of the Gaussian
curvature, andAAAwall surface area. Therefore, we infer that
the aforementioned three geometric indices could be used in a
clinical setting to assess the risk of AAA rupture by means of a
decision tree classifier. This work provides support for
calculating cross-sectional diameters and wall thicknesses
relative to the AAA centerline and using size and surface
curvature based indices in classification studies of AAA.

Keywords—Aneurysm, Geometric modeling, Machine learn-

ing, Decision trees.

INTRODUCTION

The overall mortality associated with the repair of
ruptured abdominal aortic aneurysms (rAAA) is
30.7%, a composite of 33.4% of deaths occurring
during open surgery and 26.2% of deaths during
endovascular aneurysm repair (EVAR).8 Currently,
maximum diameter (> 5.5 cm) of an abdominal aortic
aneurysm (AAA) and growth rate (> 1 cm/year) are
used as clinical standards for recommending elective
repair of the aneurysm. The basis for utilizing maxi-
mum diameter as a criterion may have originated from
the Law of Laplace, which states that the circumfer-
ential stress in the aortic wall is directly proportional to
its radius. This leads to larger aneurysms (i.e., with
larger maximum diameters) having a higher wall stress
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that is believed to translate into a higher rupture risk.22

However, since aneurysms have intricate geometries
and varying radii of curvature, the Law of Laplace is
unwarranted as it is only applicable for spherical or
cylindrical geometries with thin walls (ratio of wall
thickness to inner radius less than 0.1).28 In addition, a
study detailing autopsy results of 473 non-resected
AAA indicated that 13% of AAA with a maximum
diameter less than 5.5 cm ruptured while 60% of AAA
with a maximum diameter greater than 5.5 cm never
ruptured.6 Of the latter, 54% had diameters ranging
from 7.1 to 10 cm.2 From these, we infer that the
decision for recommending elective repair should not
be solely based on the maximum diameter as small
AAA with a high rupture risk would not be repaired in
a timely manner. Likewise, there are avoidable inter-
ventions performed on AAA that are otherwise
stable despite qualifying for elective repair based on
their size. Vascular surgeons and interventional radi-
ologists make a judgment on the need for repair by
weighing the risks associated with an intervention vs.
the risk of aneurysm rupture. Results from four clinical
trials (UKSAT, ADAM, PIVOTAL, and CAESAR)
indicate that for small AAA, watchful waiting (i.e.,
monitoring at regular time intervals) is advised as
survival chances are not improved by either open
surgery or EVAR.10 EVAR carries a mortality rate of
< 2% while open abdominal surgery has a mortality
rate of 2–4% and is far more invasive than EVAR,
leading to greater co-morbidities.12

Geometry and biomechanics of AAA are known to
be interdependent with variations in aneurysm
geometries responsible for the spatial non-uniformity
of wall stress distributions. Pappu et al.18 concluded
from a study of 15 small AAA that three aneurysms
that eventually ruptured had a 29% higher tortuosity
than the average of the other 12 aneurysms. This and
other similar studies point to the convenience of
defining a comprehensive set of geometric indices to
quantify the AAA shape and surface curvature. To this
end, the work of Martufi et al.15 proposed the use of
several one-dimensional, two-dimensional size and
shape indices, and three-dimensional indices for
quantifying patient specific AAA geometry. The in-
dices can be used for individual rupture risk assessment
by establishing thresholds based on a statistical clas-
sifier that uses numerous image datasets.24 In a study
by Tang et al.,27 it was concluded that area-averaged
Mean curvature (MAA) and bulge height (BL) were
independently associated with AAA rupture risk. In
their study, when these two indices were included in the
rupture risk prediction model, the sensitivity and
specificity of the model showed an increase of 4 and
2%, respectively. In a retrospective study of 76 an-
eurysms, Shum et al.24 found that a classification

algorithm based on maximum diameter (Dmax), surface
area (S), tortuosity (T), and ILT volume ratio (c had a
classification accuracy of 86.6%.

Most image-based measurement methods use planes
orthogonal to the medial (i.e., vertical) axis to quantify
vessel diameter, leading to its over-estimation com-
pared to using planes orthogonal to the centerline.9

Therefore, quantifying geometric indices relative to the
AAA centerline would be necessary to have a more
reliable rupture risk classification model. Clinicians use
the AAA centerline to estimate the maximum AAA
diameter as the cross sections of the abdominal aorta
may appear elliptical on medial planes due to projec-
tion, thus leading to low reproducibility of the esti-
mates. Assessment of cross-sectional diameters is
highly sensitive to whether the transverse planes are
orthogonal to the centerline or to a prescribed medial
axis.7 Manning et al.14 indicated that axial measures of
diameter on computed tomography (CT) scans were
higher than diameters measured orthogonal to the flow
centerline of AAA by a mean of 2.4 ± 5.0 mm.

Wall thickness has been known to affect mechanical
wall stress and hence has the potential to be a rupture
risk marker.16 Di Martino et al.3 found a substantial
difference in wall thickness between ruptured
(3.6 ± 0.3 mm) and electively repaired (2.5 ± 0.1 mm)
AAA. Conversely, the work of Raghavan et al.19 in an
experimental study on one ruptured and three unrup-
tured AAA indicates that there is a significant reduc-
tion in wall thickness near the rupture site (0.23 mm) in
comparison to a calcified site (4.26 mm). Saccular an-
eurysms are more prone to rupture than fusiform
aneurysms,26 which supports the notion of shape-
based indices as measures that can be used for rupture
risk assessment. Peak wall stress increases non-linearly
with AAA asymmetry,19 which is a geometry index
dependent on the aneurysm centerline. Similarly,
Doyle et al.4 studied 15 patient specific AAA and
found an increase in wall stress of 38% with an in-
crease in asymmetry. These studies substantiate the
importance of asymmetry as a surrogate for wall stress.

In the present work, we perform a statistical com-
parison of geometric indices derived from local
diameter and wall thickness measures calculated at
planes orthogonal to the medial axis and orthogonal
to the AAA centerline. In addition, we compute var-
ious other one-dimensional, two-dimensional and
three-dimensional size and shape indices for a group
of electively and emergently repaired AAA. We
hypothesize that a set of geometric indices that in-
cludes aneurysm diameter and wall thickness mea-
sures calculated at planes orthogonal to the AAA
centerline will yield the highest accuracy when dis-
criminating between electively and emergently re-
paired AAA. To this end, the contribution of this
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work is the construction of a statistical classifier based
on geometry that can be used for rupture risk
assessment in a clinical setting.

MATERIALS AND METHODS

A retrospective review of existing medical records
was performed following approval of the human sub-
jects research protocols by the corresponding Institu-
tional Review Committees at Allegheny General
Hospital (Pittsburgh, PA) and Northwestern Memo-
rial Hospital (Chicago, IL). The abdominal computed
tomography angiography (CTA) scans of 75 patients
who underwent elective repair (Group 1 subjects) and
75 patients who underwent emergent repair of their
AAA (Group 2 subjects) were obtained retrospectively
from existing databases at the aforementioned clinical
centers. The scans corresponded to the last available
surveillance imaging, which occurred no greater than
1 month prior to the emergent intervention and no
greater than 6 months prior to the elective repair.
Noteworthy is that all Group 1 AAA were unruptured
while Group 2 AAA included both ruptured and
symptomatic AAA.

Image Processing

Using an in-house segmentation code (dubbed
AAAVasc), computer models were generated for all
patient specific AAA. Three anatomical regions were
segmented, namely the lumen, inner wall and outer
wall. The lumen segmentation algorithm quantifies
the intensity gradient between the lumen and sur-
rounding structures (wall or thrombus) and is pri-
marily based on a thresholding technique.25 The
inner wall boundary is identified by training a neural
network based on extracting the background,
thrombus and lumen regions. This method gives an
estimate of the region where the inner wall may be
present. The outer wall is segmented by reducing the
image region that only contains the aorta. Conse-
quently, contours are identified that represent the
aorta outer wall boundary and the best one is selected
by the user. Additional details on the image pro-
cessing protocol are described in Shum et al.23 Image
processing yields point clouds for the lumen, inner
wall and outer wall boundaries. In addition, binary
masks are also created for the lumen, thrombus, wall,
and background regions. These masks are used with
an in-house meshing code (dubbed AAAMesh) to
generate triangular outer wall surface and hexahe-
dral + tetrahedral volume meshes for each AAA
according to the methods described in Gasser et al.5

and Raut et al.20

AAA Geometry Quantification Based on the Medial
Axis

The CTA images are acquired at planes orthogonal
to the Z-axis (i.e., the medial axis) and, thus, no
additional processing is required to identify the planes
orthogonal to this axis. Cubic splines are fit to the
outer wall point clouds at each cross-section. From
these, 47 shape- and size-based geometric indices were
quantified for each AAA based on the mathematical
formulations listed in Appendix A of the Supplemen-
tary Material. These include 11 (1-D) size indices, such
as the length of the AAA centerline, height of the neck,
distal and proximal neck diameters, etc., as shown in
Fig. 1. Nine (2-D) shape indices are calculated from
the 1-D size indices, while 4 (3-D) size indices are
calculated from the volumes enclosed by each domain
using the volume meshes. Four (3-D) curvature-based
shape indices are quantified using the biquintic hermite
finite element (BQFE) method, which is a high-order
surface discretization method that requires only 12
elements to represent the AAA sac geometry.7 Wall
thickness is calculated based on 12 indices represen-
tative of various measures of thickness, as described in
Appendix A of the Supplementary Material.

AAA Geometry Quantification Based on the Aneurysm
Centerline

To calculate diameter and wall thickness at planes
orthogonal to the AAA centerline, 3-D planes are
visualized at each cross-section centroid throughout
the aneurysm sac. The Z-coordinate of each plane is
calculated by solving Eq. (1),

~n X� P1ð Þ þ~n Y� P1ð Þ þ~n Z� P1ð Þ ¼~0 ð1Þ

where ~n ¼ P2� P1; P1 and P2 are consecutive points
on the centerline, and X, Y and Z are the coordinates
of the plane in the x, Y and Z axes, respectively.

Once the appropriate plane size is calculated, the
inner wall points that lie on the plane are obtained
using a k-nearest neighbors algorithm and the corre-
sponding outer wall points are found as those closest
to the inner wall points. Cubic splines are fit to the
outer wall points and the area and perimeter of the
spline are calculated after projecting it on the plane. As
the AAA cross-sections are non-circular, the hydraulic
diameter definition is used to calculate the diameters at
each plane,15 following Eq. (2),

Area ¼ 4Ac

Pc
ð2Þ

where Ac is the area of cross-section and Pc is its
perimeter. Wall thickness is defined as the shortest
distance between an inner wall point and its corre-
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sponding outer wall point for all points on each
orthogonal plane. The inner and outer wall points are
interpolated leading to wall thicknesses calculated for
approximately 300–400 points per cross-section. The
wall thicknesses are used to compute 12 global wall
thickness indices as described in Appendix A of the
Supplementary Material. Four diameter-related in-
dices are also calculated, namely maximum diameter
(Dmax), asymmetry ratio (b), maximum diameter to
proximal neck diameter ratio (DDr), and bulge height
(BL). Therefore, 16 global wall thickness and diameter-
related indices were calculated for each AAA with re-
spect to the centerline of the AAA sac. A script written
in MATLAB (The Mathworks Inc., Natick, MA) was
generated to perform all the calculations involving the
AAA centerline.

Statistical Analysis and Machine Learning

Using the methods described in ‘‘AAA Geometry
Quantification Based on the Medial Axis’’ and ‘‘AAA
Geometry Quantification Based on the Aneurysm
Centerline,’’ all geometric indices were calculated for
each of the 150 AAA. A series of paired t tests were
conducted to determine if the differences in the means
of the 16 global diameter- and wall thickness-related
indices obtained using the centerline and medial axis

methods were significantly different. A p value less
than 0.05 was deemed to provide evidence of a statis-
tically significant difference.

A machine learning analysis was carried out within
the R environment, with the goal of deriving a geom-
etry-based classifier for the AAA subject population.
Specifically, the R package C5011 was used to train
decision trees to classify AAA as either electively or
emergently repaired using the geometry-based mea-
sures as attributes. C5.0 decision trees depend on the
concepts of information gain (IG) and entropy to
determine the attributes that provide the highest
information about the instances on which the tree is
modeled. The IG is calculated for each of the attributes
and the one with the smallest entropy (highest IG)
forms the root node of the tree. The subsequent nodes
are determined in the same way.11 Some details
regarding C5.0 decision trees can be found in Appen-
dix B of the Supplementary Material. The area under
the receiver operator characteristic (ROC) curve was
computed for each of the models to determine the
performance of the classifier. The kappa statistic (j)
was also computed to provide a measure of accuracy of
the decision tree classifier; it considers the instances
identified correctly by chance in calculating the model
accuracy and, thus, provides an additional measure of
classification performance.

FIGURE 1. Schematic representation of 1-D geometric indices calculated using planes orthogonal to the medial axis (reproduced
from Kontopodis et al.10).
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FIGURE 2. Schematic of the workflow followed in segmenting the clinical images, meshing the AAA models, evaluating the
geometric indices, and performing statistical and decision tree learning analyses. Insets reproduced from Kontopodis et al.9 and
Shum et al.23

Decision Tree Based Classification of Abdominal Aortic Aneurysms 2139



To evaluate the efficacy of the centerline based
geometric indices on the overall AAA classification
accuracy, four classification problems were analyzed:

(I) None of the 16 centerline based indices were
used in training the model; thus, 16 of the 47
indices used in the model were calculated
based on the medial axis. This model was used
as a benchmark to make comparisons with the
three classification problems that follow.

(II) Replacing the 4 diameter-related indices
(Dmax, b, DDr, and BL) of the model devel-
oped in (I) with their counterparts calculated
based on the AAA centerline.

(III) Replacing the 12 global wall thickness indices
of the model developed in (I) with their
counterparts calculated based on the AAA
centerline.

(IV) Replacing all 16 global wall thickness and
diameter-related indices of the model devel-
oped in (I) with their counterparts calculated
based on the AAA centerline.

The dataset was randomly split into 70% for training
(Ntraining = 105 AAA) and 30% for testing the models
(Ntesting = 45 AAA) for each of the aforementioned
classification problems. The rationale for performing a
70/30 split was to mimic the availability of a database
of existing AAA from which a statistical classifier is
trained and prospectively acquired AAA data on
which the classifier is tested. The splitting was per-
formed randomly for n = 1000 times, thus leading to
1000 different combinations of training and testing
groups. The classification accuracy, the kappa statistic
and area under the ROC curve (AUC) were averaged
over all iterations. This was done to reduce the
possibility of not considering a specific instance in
training the model. Figure 2 shows a schematic of the
study design workflow inclusive of the indices that are
dependent on the choice of axis and the aforemen-
tioned four classification problems.

RESULTS

Comparison of Methods for Estimation of Cross-
sectional Diameters and Wall Thicknesses

Paired t tests were performed for all 16 diameter-
and wall thickness-related indices to assess the signifi-
cance of the mean differences found by using the two
methods of calculation, namely with planes orthogonal
to the medial axis and the AAA centerline. Table 1
shows the p values obtained for these indices for
Groups 1 and 2. The outcome of the tests for Group 1
indicate that the differences in the means were signifi-

cant (p < 0.05) for the following 10 indices: Dmax,
average thickness, maximum thickness, minimum
thickness, average wall thickness at Dmax, mode
thickness, mean thickness variance, median thickness
variance, % thickness below average thickness, and %
thickness above average thickness. Similarly, for
Group 2, the differences in means for the following 9
indices were significant (p < 0.05): Dmax, maximum
thickness, minimum thickness, average wall thickness
at Dmax, mode thickness, median thickness, mean
thickness variance, median thickness variance, and
percent thickness above average thickness. Figure 3
illustrates histograms depicting the discrepancy in the
means of maximum diameter and average wall thick-
ness obtained by the two methods of calculation for
both population groups and their statistical signifi-
cance.

Table 2 shows the 31 geometric indices that are not
dependent on the choice of planes orthogonal to either
the medial axis or AAA centerline, reported as
mean ± standard deviation, for the two groups of
aneurysms. Additionally, Tables 3 and 4 report on the
16 diameter- and wall thickness-related indices for
both groups calculated using planes orthogonal to the
medial axis and AAA centerline, respectively. The
mean Dmax for Group 1 was 53.1 ± 11.4 mm when
calculated with respect to the medial axis and
50.6 ± 11.8 mm when calculated with respect to the
AAA centerline. Similarly, the mean average wall
thickness for this group was 1.84 mm ± 0.55 mm
when calculated with respect to the medial axis and
1.70 mm ± 0.50 mm when calculated with respect to
the AAA centerline. For Group 2, the mean Dmax was
68.8 ± 17.8 mm when calculated with respect to the

TABLE 1. p Values obtained from paired t tests with the 16
indices dependent on the AAA centerline signifying difference
of the means when compared to indices calculated relative to
the medial axis (p < 0.05 was deemed to represent statistical

significance).

Geometric index Group 1 Group 2

Dmax < 0.0001 < 0.0001

dc 0.256 0.734

DDr 0.002 0.028

b 0.378 0.435

tw,ave < 0.0001 < 0.0001

tw,max < 0.0001 < 0.0001

tw,min < 0.0001 < 0.0001

tw,Dmax < 0.0001 < 0.0001

tw,mode < 0.0001 < 0.0001

tw,median < 0.0001 < 0.0001

tw,minVar 0.351 0.365

tw,MaxVar 0.0166 0.050

tw,meanVar < 0.0001 < 0.0001

tw,medianVar < 0.0001 < 0.0001

PercentAbove 0.351 < 0.0001

PercentBelow < 0.0001 0.356
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medial axis and 64.6 ± 11.8 mm when calculated with
respect to the AAA centerline. Likewise, the mean
average wall thickness for Group 2 was

2.03 ± 0.60 mm and 1.85 mm ± 0.54 mm, calculated
relative to each of the aforementioned methods,
respectively.

FIGURE 3. Comparison of the mean (a) Dmax and (b) tw,ave calculated relative to the medial axis and centerline for both AAA
groups. The differences among the groups are statistically significant (p < 0.05).
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Classification Based on Decision Tree Analysis

The average and maximum classification accuracies
for the four classification problems using C5.0 decision
trees, along with their kappa statistics and AUCs
counterparts are shown in Table 5. These averages and
maxima were calculated from the 1000 different deci-
sion tree models generated from the random splitting
of the dataset into training and testing groups. For
example, for problem (I) the average classification
accuracy of the decision tree was 80.6% ± 6.0%, the
average j was 0.61 ± 0.12, and the average AUC was
0.81 ± 0.06. Over n = 1000 iterations, the decision
tree model with the highest classification accuracy
yielded a classification accuracy of 95.5%, j = 0.91,
and AUC = 0.96. Similar statistics are reported in
Table 5 for classification problems (II)–(IV).

Figure 4 displays an exemplary decision tree model
[for classification problem (I)], indicating the most
significant geometric indices and their threshold values
where each bifurcation takes place. L (AAA centerline

length) is the first geometric index in the decision tree
and, thus, the feature with the highest information
gain. The other attributes (i.e., geometric indices)
involved in the classifier are GLN, tt,min, S, Cave, DDr,
and Lsac, and tw,meanVar. The decision tree shown is
based on the application of the classifier on all 150
AAA in the dataset. The correctly classified and mis-
classified instances are indicated at a particular node
with the ‘‘/’’ sign and whether the instance corresponds
to the electively repaired (Group 1) or emergently re-
paired (Group 2) AAA.

Table 6 shows the frequency of inclusion (in %) of
the geometric indices as nodes of the trees for each
classification problem. These are interpreted as a
measure of relative importance of the geometric indices
in the trees’ ability to discriminate between Groups 1
and 2 aneurysms. The higher the percentage of inclu-
sion, the more important the geometric index is in its
ability to classify a given AAA as belonging to either
group. For example, for classification problem (I), the
AAA centerline length was used in 100% of the in-

TABLE 2. The 31 geometric indices calculated for Group 1 (electively repaired AAA) and Group 2 (emergently repaired AAA).

Geometric index

Group 1 (n = 75) Group 2 (n = 75)

Mean SD Mean SD

Dneck,p 29.147 8.959 32.019 8.709

Dneck,d 27.722 15.894 28.440 17.858

H 100.607 18.434 114.231 24.743

L 26.140 19.234 21.173 19.897

Hneck 74.467 21.843 93.058 32.037

Lneck 127.623 21.513 184.568 49.424

Hsac 44.379 34.061 36.585 40.401

Lsac 83.244 32.556 147.985 49.877

Hb 59.933 18.370 78.840 37.040

DHr 0.572 0.369 0.657 0.567

Hr 0.264 0.203 0.196 0.183

BL 0.631 0.405 0.718 0.360

b 1.276 0.457 1.677 0.972

Cave 1.115 0.075 1.139 0.060

Cmin 1.492 0.430 1.783 0.412

Cmax 1.025 0.026 1.024 0.016

tt,ave 6.932 4.019 9.696 5.957

tt,max 19.948 9.965 27.853 14.679

tt,min 1.558 0.138 1.511 0.192

tt,minLoc 0.451 0.344 0.620 0.510

tt,maxLoc 0.674 0.492 0.810 0.493

V 190.905 209.611 320.148 211.493

S 163.619 55.443 237.939 97.750

VILT 67.311 59.888 143.933 122.456

c 0.358 0.196 0.419 0.194

NFI 1.090 0.169 1.089 0.110

IPR 5.336 1.073 5.431 0.381

GAA 8.096 9 1025 8.456 9 1025 8.813 9 1025 4.046 9 1025

MAA 0.024 0.005 0.020 0.008

GLN 6.063 2.151 18.340 51.506

MLN 0.640 0.176 1.333 1.450
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stances in which the classifier was applied to the da-
taset. Conversely, the minimum thrombus thickness
(tt,min) was used in only 6.67% of the instances. Similar
attribute uses are reported in Table 6 for classification
problems (II)–(IV).

DISCUSSION

The purpose of this study was two-fold: (i) to assess
the discrepancy between two methods for quantifying
AAA diameter and wall thickness, and (ii) to derive a
set of geometric indices that can classify an aneurysm
as either electively repaired or emergently repaired
based on a decision tree machine learning algorithm.
To this end, we found that calculating Dmax for Group
1 (electively repaired AAA) in planes orthogonal to the
medial axis yielded diameters 2.48 ± 4.19 mm larger
than those calculated in planes orthogonal to the an-
eurysm centerline. Likewise, Dmax for Group 2 (emer-
gently repaired AAA) was 3.99 ± 3.18 mm larger with
respect to the medial axis than with respect to the
centerline. These differences in aneurysm diameter
were found to be statistically significant for both
groups (p < 0.05). The range of diameter differences
for Group 1 was 24.25 mm and 16.75 mm for Group 2.
In addition, the average wall thicknesses for Group 1
calculated with both methods were different by
0.13 ± 0.27 mm and this difference was significant
(p < 0.05). For Group 2, the average wall thickness
calculated with respect to the centerline was
0.18 ± 0.18 mm higher than that calculated with re-
spect to the medial axis, and this difference too was
statistically significant (p < 0.05).

The work performed by Gharahi et al.6 on 3 AAA
showed that Dmax, when calculated with respect to
‘‘axial and orthogonal planes’’, differ on average by
4 mm with the maximum difference being 15 mm.
Novak et al.17 concluded that the median of the axial
diameter (58.0 mm) was significantly higher
(p < 0.001) than the median of the orthogonal diam-
eter (54.5 mm). A study conducted by Kontopodis
et al.9 reported a consistently higher axial measure-
ment of Dmax compared to the orthogonal measure-
ment. A mean difference of 2.0 ± 2.8 mm and a range
of differences of 0–12.3 mm were obtained. This over-
estimation of maximum diameter could have resulted
in 20% (12 of 60) patients undergoing AAA repair
based on their size.

The regional distribution of wall thickness has been
shown to affect aneurysm growth rate in finite element
models21 and is hypothesized to be a marker of rupture
risk.5 Conlisk et al.1 concluded that upon inclusion of
patient specific wall thickness, their rupture potential
index increased by a factor of 2 in a study of 8 AAA.
Wall thickness has also been known to affect
mechanical wall stress and hence has the potential to
influence rupture risk.16 Thus, it is imperative to obtain
accurate, non-invasive wall thickness measurements on
an individual basis. Di Martino et al.3 observed that
ruptured aneurysm specimens had thicker walls than
unruptured aneurysms. Our work corroborates these

TABLE 3. The 16 diameter- and wall thickness-related
indices calculated with respect to the medial axis and AAA

centerline for Group 1.

Geometric index

Group 1 (n = 75)

Medial axis Centerline

Mean SD Mean SD

Dmax 53.084 11.368 50.600 11.763

dc 5.563 4.750 5.054 3.969

DDr 1.900 0.482 1.809 0.492

b 0.902 0.071 0.999 0.939

tw,ave 1.838 0.547 1.699 0.504

tw,max 3.942 1.719 3.158 1.126

tw,min 0.629 0.234 0.486 0.226

tw,Dmax 1.829 0.602 1.655 0.529

tw,mode 1.721 0.652 0.524 0.227

tw,median 1.822 0.583 1.704 0.534

tw,minVar 0.046 0.049 0.053 0.063

tw,MaxVar 0.672 1.482 1.122 0.771

tw,meanVar 0.173 0.181 0.417 0.292

tw,medianVar 0.133 0.142 0.331 0.287

PercentAbove 42.874 8.907 49.049 9.121

PercentBelow 57.127 8.907 49.625 4.2185

The statistical significance of the differences is assessed in

Table 1.

TABLE 4. The 16 diameter- and wall thickness-related
indices calculated with respect to the medial axis and AAA

centerline for Group 2.

Geometric index

Group 2 (n = 75)

Medial axis Centerline

Mean SD Mean SD

Dmax 68.777 17.825 64.600 11.763

dc 7.362 6.025 7.218 5.473

DDr 2.222 0.589 2.130 0.660

b 0.897 0.074 0.887 0.115

tw,ave 2.034 0.603 1.852 0.537

tw,max 4.973 2.511 3.963 1.362

tw,min 0.645 0.318 0.403 0.369

tw,Dmax 2.161 0.801 1.804 0.566

tw,mode 1.904 0.632 0.474 0.273

tw,median 2.005 0.624 1.829 0.570

tw,minVar 0.051 0.031 0.068 0.159

tw,MaxVar 0.923 1.769 1.346 0.731

tw,meanVar 0.177 0.113 0.534 0.312

tw,medianVar 0.138 0.088 0.448 0.345

PercentAbove 43.713 7.248 49.255 4.819

PercentBelow 55.839 7.084 50.375 4.517

The statistical significance of the differences is assessed in

Table 1.
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findings, which are independent of the axis used for the
orthogonal planes.

In a classification study conducted by Lee et al.13

with 190 patient specific AAA, the efficacy of surface
curvatures was evaluated in classifying the AAA into
unruptured and ruptured AAA. Their results indicate
that the L2-norm of the Gaussian and Mean curva-
tures (GLN and MLN) yielded the highest classifica-
tion accuracy (85.5%) using a k-nearest neighbors
classification algorithm. The decision trees obtained in
our study yielded GLN as the significant surface cur-
vature index. Therefore, the present work supports the
notion that surface curvature may also be used to
classify an AAA as either electively or emergently re-
paired.

Our analysis of the four classification problems
shows that the best average decision tree performance
was achieved when only diameter-related indices cal-
culated with respect to the AAA centerline are in-
cluded in the classifier [i.e., classification problem (II)],
as reflected by the highest values of average classifi-
cation accuracy, j and AUC. These average statistics
were reported by using the decision tree classifier with
1000 different training sets (of 105 AAA each) and
1000 different testing sets (of 45 AAA each). However,
the maximum accuracy for any of the iterations exe-
cuted for all classification problems was found when all
16 diameter- and wall thickness-related indices were
calculated with respect to the AAA centerline [i.e.,
classification problem (IV)], yielding a classification

FIGURE 4. Exemplary C5.0 decision tree model obtained from the application of the machine learning algorithm. This model is
based on the entire dataset for classification problem (I), indicating that the centerline length of the AAA (L) is the feature with the
highest information gain and the root of the tree. The correctly classified and misclassified instances at a particular node are
indicated by the (/) sign.

TABLE 5. C5.0 decision tree model statistics for all classification problems; averaged over 1000 iterations and the maximum of all
iterations.

Classification problem

Classification accuracy

(%)—average/maximum

Kappa statistic

(j)—average/maximum

Area under ROC curve

(AUC)—average/maximum

(I) 80.6 ± 6.0 0.61 ± 0.12 0.81 ± 0.06

95.5 0.91 0.96

(II) 81.0 ± 5.7 0.68 ± 0.11 0.84 ± 0.06

95.5 0.91 0.95

(III) 80.1 ± 5.2 0.59 ± 0.10 0.82 ± 0.05

93.3 0.87 0.94

(IV) 80.2 ± 5.8 0.60 ± 0.12 0.80 ± 0.06

95.6 0.91 0.96
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accuracy of 95.6%. While the average classification
accuracy of problem (II) is only marginally higher than
that of problems (I), (III) and (IV), the j and AUC

statistics showed differences that are more significant.
Nevertheless, we cannot conclusively state that the
inclusion of diameter-related indices calculated with

TABLE 6. Relative importance of attributes in the C5.0 decision tree models for classification problems (I)–(IV).

Classification problem (I) Classification problem (II)

Geometric index 
(attribute)

Frequency of 
inclusion (%)

Geometric index 
(attribute)

Frequency of 
inclusion (%)

L 100.00 L 100.00

GLN 60.67 GLN 60.67

S 48.00 S 48.00

DDr 45.33 DDr 45.33

,
39.33

,
39.33

Cave 12.67 Cave 12.67

Lsac 11.33 Lsac 11.33

,
6.67

,
6.67

Classification problem (III) Classification problem (IV)

Geometric index 
(attribute)

Frequency of 
inclusion (%)

Geometric index 
(attribute)

Frequency of 
inclusion (%)

L 100.00 L 100.00

GLN 60.67 GLN 60.67

S 48.00 S 48.00

,
46.00 DDr 45.33

DDr 45.33 Cave 12.67

Cave 12.67 Lsac 11.33

Lsac 11.33
,

5.33

The top three most important geometrics indices in the classifiers were, in order, L, GLN, and S.
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respect to the AAA centerline are necessary to obtain
an accurate decision tree. Since the majority of the 16
diameter- and wall thickness-related indices were sta-
tistically significant for Groups 1 and 2 depending on
the axis used for their calculation, we recommend the
use of planes orthogonal to the AAA centerline to
derive such indices.

The decision trees built for all classification prob-
lems had the following in common: (i) the top three
most important geometrics indices in the classifiers
were, in order, L, GLN, and S; and (ii) the maximum
aneurysm diameter was not an attribute used in any of
the classifiers. Therefore, the AAA centerline length,
the L2-norm of the Gaussian curvature, and the sur-
face area of the AAA wall are the geometric measures
that can best discriminate between an electively re-
paired and an emergently repaired AAA, based on
these having the highest information gain in the
application of the decision tree classifier. The use of
geometric indices in a clinical setting is advantageous
because of their ease of interpretation by physicians in
rupture risk assessment. Using decision tress yields
threshold values for the indices that have the highest
classification accuracy where tree branching takes
place. This is an evident advantage of decision tress
compared to other machine learning algorithms such
as support vector machines, K-nearest neighbors, and
Naı̈ve-Bayes. The model trained by Shum et al.24 had a
classification accuracy of 86.6%; however, due to the
skewed nature of their sample size, j was relatively low
(0.37). In the present work, an equal number of AAA
were used for Groups 1 and 2, leading to a more robust
classifier with an average j in the range 0.59–0.68. This
yields a machine learning classifier that can accurately
discriminate AAA based on retrospectively acquired
training data and assess rupture risk with a prospective
testing dataset.

The present work is subject to some important
limitations. As the algorithm used to calculate planes
orthogonal to the centerline considers two consecutive
points at a time, a plane is not found for the last point
of the centerline. In addition, there was variability in
the image slice spacing (0.25–3 mm) of the dataset.
This led to variability in the number of binary masks
resulting from the image segmentation step and the
need for interpolation and smoothing to be performed
in those cases with large slice spacing. There is sus-
pected intra-observer variability in the segmentation of
the clinical images, although its effect on the classifiers
was not quantified. There is also variability in the pixel
size of the images. In this regard, the wall thickness
calculation is limited by the pixel size and the intensity
gradient across the vascular wall; the larger the pixels,
the less precise the wall thickness prediction. The use of
mathematical formulations for the quantification of 47

geometric indices a priori is another limiting aspect of
our geometry quantification approach. There could be
shape measures important for differentiation amongst
individual AAA that are not taken into account by our
methodology and could be predicted by using tech-
niques that quantify cylindrical harmonics. Moreover,
the classification analyses were limited to the use of
measures of geometry. These can be improved in a
future study by including additional measures such as
wall mechanics and/or tissue composition metrics
(such as those obtained from immunohistochemistry).
Wall mechanics is dependent on the choice of the
constitutive material model used to predict the arterial
mechanical behavior. In addition, tissue composition is
subject to the availability of AAA wall specimens for
subsequent histological analysis. Therefore, the inclu-
sion of non-geometric measures in a classification
analysis may be limited by the accessibility to indi-
vidual clinical data.
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