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Abstract—Idiopathic rapid eye movement sleep behavior
disorder (RBD) is a serious risk factor for neurodegenerative
processes such as Parkinson’s disease (PD). We investigate
the use of EEG algorithmic complexity derived metrics for its
prognosis. We analyzed resting state EEG data collected
from 114 idiopathic RBD patients and 83 healthy controls in
a longitudinal study forming a cohort in which several RBD
patients developed PD or dementia with Lewy bodies.
Multichannel data from ~ 3 min recordings was converted
to spectrograms and their algorithmic complexity estimated
using Lempel-Ziv—Welch compression. Complexity measures
and entropy rate displayed statistically significant differences
between groups. Results are compared to those using the
ratio of slow to fast frequency power, which they are seen to
complement by displaying increased sensitivity even when
using a few EEG channels. Poor prognosis in RBD appears
to be associated with decreased complexity of EEG spectro-
grams stemming in part from frequency power imbalances
and cross-frequency amplitude algorithmic coupling. Algo-
rithmic complexity metrics provide a robust, powerful and
complementary way to quantify the dynamics of EEG signals
in RBD with links to emerging theories of brain function
stemming from algorithmic information theory.

Keywords—Parkinson’s disease, Complexity, Algorithmic
complexity, LZW, Lempel-Ziv—Welch compression, RBD,
Time-frequency analysis, Dementia with Lewy bodies, DLB.

INTRODUCTION

Rapid eye movement (REM) behavior disorder
(RBD) is a a male-predominant sleep disorder char-
acterized by vivid dreaming together with dream-en-
acting behaviors. Idiopathic RBD occurs in the absence
of any identified neurological disease or other cause
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and its clinical course is generally chronic progres-
sive.'” Several studies have shown that a majority of
patients diagnosed with idiopathic RBD will eventu-
ally be diagnosed with a neurological disorder such as
Parkinson disease (PD) and dementia with Lewy
bodies (DLB).'%!'%** Because of this, idiopathic RBD
has been suggested as a prodromal factor of the
synucleinopathies PD, DLB and less frequently mul-
tiple system atrophy (MSA).'¢ Indeed, idiopathic RBD
is now considered to be an early stage of a-synucle-
inopathy that can provide an early view of future brain
health.'* On the other hand, RBD has an estimated
prevalence of 15-60% in PD and has been proposed as
characterizing a subtype of PD with relatively poor
prognosis, reflecting a brainstem-dominant route of
pathology progression (see Ref. 20 and references
therein) with a higher risk for dementia or hallucina-
tions. PD with RBD is characterized by more pro-
found and extensive pathology—one not limited to the
brainstem—,with higher synuclein deposition in both
cortical and sub-cortical regions.

The human brain can be modeled as a highly
dimensional complex dynamical system which instan-
tiates electrochemical communication and computa-
tion. Electroencephalographic (EEG) and
magnetoencephalographic (MEG) signals are rich with
information associated with these processes, and are
accessible non-invasively. To a large extent, progress in
the analysis of such signals has been driven by the
study of classical temporal and spectral features in
electrode space, and applied to the study the human
brain in both health and disecase. For example, the
“slowing down” of EEG is known to characterize
neurodegenerative diseases,”?® and the slow to fast
ratio (the ratio of power in delta and theta bands to
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alpha and beta) has shown good discriminatory sen-
sitivity.>!*® However, brain activity measurements ex-
hibit non-linear dynamics and non-stationarity,
limiting the usefulness of classical, linear approaches
and calling for the use of novel methods capable of
exploiting underlying spatiotemporal hierarchical
structures. Deep learning techniques in particular and
neural networks in general are bio-inspired by neural
structure and function—the same biological systems
generating the electric signals we aim to decode—and
should be well suited for the task. In past work, for
example, we studied a particular class of recurrent
neural networks called Echo State Networks (ESNs)
combining the power of networks for classification of
temporal patterns and ease of training, reasoning that
as they implement non-linear dynamics with memory
they may be ideally poised for the classification of
complex EEG time series data. Starting from a dataset
of recordings of resting state EEG from idiopathic
RBD patients who later converted to PD and from
healthy controls (HC), we showed that using such
recurrent networks using temporal series of EEG
power led to a prognosis classification accuracy of
85% in the binary, balanced classification problem.?’
With the goal of developing metrics that capture
non-linear dynamics from EEG signals, here we ex-
plore a different feature extracted from EEG
data—upper bounds on algorithmic complexity. The
notion of ‘““algorithmic information” is mathematically
formalized by the concept of algorithmic complexity or
Kolmogorov complexity (K)*: the Kolmogorov com-
plexity of a string is the length of the shortest program
capable of generating it. The precise length of this
program depends on programming language only up
to a string-independent constant. Algorithmic infor-
mation is notoriously difficult to estimate. Here we rely
on the notion of complexity as measured from Lem-
pel-Ziv—Welch compression (LZW) or entropy rate.
As discussed in Ref. 30 and references therein, the
healthy brain generates apparently complex (entropic)
data. Complexity should be associated to cognitive
health and conscious state, and complexity appears to
decrease with age (see, e.g., Ref. 18 and references
therein). As a universal computer, a brain may produce
many different types of patterns—from simple to
highly entropic. A healthy brain engaging in modeling,
prediction and interaction with the world will more
naturally produce complex-looking, highly entropic
data which can presumably be measured from behav-
ior or directly in brain activity. Entropy and LZW
represent direct measures of apparent complexity and
can be applied to, e.g., electrophysiological or meta-
bolic brain data.*>'>*'2 We hypothesize here that
global apparent EEG algorithmic complexity or en-
tropy rate in our dataset will decrease with worsening

neurodegenerative disease prognosis or progression, in
a similar manner to that already reported in the PD
literature'? and in the case of Alzheimer’s disease.'*!!
As a starting point, we further assume that algorith-
mically relevant aspects in EEG data are present in
compositional features in the time-frequency spectral
amplitude representation.

METHODS

Participants

The used dataset has been previously described in
Refs. 26 and 27, so an abridged description is provided
here. Idiopathic RBD patients (called henceforth RBD
for data analysis labeling) and healthy controls were
recruited at the Center for Advanced Research in Sleep
Medicine of the Hopital du Sacré-Ceeur de Montral.
All patients with the required full EEG montage for
resting-state EEG recording at baseline and with at
least one follow-up examination (after a mean of 4
years) after the baseline visit were included in the study
(see Table 1 for baseline demographic and clinical
data). The first valid EEG for each patient enrolled in
the study was considered as baseline. Participants also
underwent a complete neurological examination by a
neurologist specialized in movement disorders and a
cognitive assessment by a neuropsychologist. No con-
trols reported abnormal motor activity during sleep or
showed cognitive impairment on neuropsychological
testing. The protocol was approved by the hospital’s
ethics committee, and all participants gave their writ-
ten informed consent to participate. For mode details,
the reader is directed to Ref. 26.

EEG Dataset

The data was collected by the Hopital du Sacré-
Coeur, Montréal as described in Ref. 26, and consisted
of resting-state EEG collected from recently awaken
patients and healthy controls (within 30 min of waking
up) using a subset of 14 scalp electrodes in the 10-20
EEG system (C3, C4, F3, F4, F7, F8, O1, 02, P3, P4,
P7, P8, T7, T8). The recording protocol consisted of
conditions with periods of “‘eyes open” of variable
duration (approximately 2 min) followed by periods of
“eyes closed” in which patients were not given any
particular task. Resting EEG signals were digitized
with 16-bit resolution at a sampling rate of 256 S/s. The
amplification device used a hardware band pass filter
between 0.3 and 100 Hz and a line-noise notch filter at
60 Hz. All recordings were referenced to linked ears.

After quality check with rejection of subjects with
insufficient data or subjects with abnormal cognition at
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the time of acquisition, the dataset (of initially 213
subjects) consisted of eyes-closed resting EEG data
from a total of 114 patients who were diagnosed with
idiopathic RBD at the time of acquisition and 83
healthy controls without sleep complaints in which
RBD was excluded. EEG data was collected in every
patient at baseline, i.e., when they were still diagnosed
with idiopathic RBD. After 1-10 years of clinical fol-
low-up, 19 patients developed Parkinson disease (PD),
12 Lewy body dementia (DLB) and the remaining 83
ones remained idiopathic RBD. Summary demo-
graphic data are provided in Table 1. Group averaged
EEG spectral power density plots for each group are
provided in Fig. 1.

Data Preparation

First, the EEG dataset from each subject was con-
verted into a spectrogram ‘“‘stack’ of “‘frames™ (time
frequency bi-dimensional arrays) (see Fig. 2), with

TABLE 1. Baseline sociodemographic and clinical data for
the four groups.

Group/data HC RBD PD DLB
N (F/M) 83 (30/53) 83 (18/65) 19 (5/14) 12 (2/10)
(age) 66 + 9 67 £7 67 £7 71+6
(follow-up) 1+1 4+£3 4+£2 4+£2

Number of subjects per group with gender breakdown
(female/male), mean and standard deviation for age and follow-
up time (in years).

HC healthy controls, RBD idiopathic RBDs who remained
idiopathic RBD on follow-up, PD idiopathic RBD who converted
to PD on follow-up, DLB idiopathic RBD who converted to DLB on
follow-up.

each stack representing about 3 min of eyes-closed
resting EEG. Each multichannel spectrogram frame
was generated from 20 s long artifact free sequences
(with an artifact threshold of 100 uV after detrending
of each 20 s segment) from each of the 14 EEG
channels using a sliding window of 1 s between frames.
This length of time was chosen to capture dynamic
aspects of the power envelopes of the signals, but using
shorter windows (10 s) did not change the results very
much. To generate the spectrogram stack frames, EEG
data for each channel was processed using a Fast
Fourier Transform (FFT) after detrending 1-s data
blocks with a Hann window (50% overlap). The FFT
with resolution was thus of 1Hz, and we kept the fre-
quencies in the range 1-50 Hz.

The resulting data frames are ““tensors” of the form
[channels (14)] x [FFT bins (50)] x [Time bins (39)],
and the full stack is four dimensional, with the fourth
dimension indexing frame number or epoch. The exact
temporal span of each stack varies, as we fixed the
number of frames in each stack as a tradeoff between
quantity and exclusion of subjects. Fixing the number
of frames in each subject stack is important, since
measures that estimate complexity are sensitive to data
length.'?-%¢

Starting from the spectrogram frame stack dataset
we carried out an analysis of the complexity for each
subject, as we discuss next.

Lempel-Ziv—Welch Complexity and Entropy Rate

As discussed above, in order to provide an upper
bound to description length or algorithmic complexity
we use LZW compression. The LZW algorithm secks
increasingly long reappearing patterns in the data, and
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FIGURE 1. Group PSDs. Average power Spectral Density (all channels) for each group with standard error of the mean (SEM),
displaying the characteristic “slowing” of EEG with more power at low frequencies.
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FIGURE 2. Computation of description length and entropy metrics from subject spectrogram frame stack. To compute a global
measure of complexity for each subject, the frame stack S(t, f, ch, F) is flattened and binarized prior compression or entropy
computation, where t denotes time in each spectrogram, f frequency, ch channel, and F frame number.

compresses information by reusing them: instead of
rewriting a previously seen sequence, it will refer to the
identifier of the one seen last.>>>> After applying LZW
to a string of length n, we are provided with a set of
words (or phrases, as they are sometimes called) that
form a dictionary of length ¢(n), which can be thought
of as a complexity counter.’® The length of the com-
pressed string will, in general, be /;zypn. We note that
LZW can be used to obtain an upper bound on algo-
rithmic complexity, but, given its reduced program-
ming repertoire (LZW is the Kolmogorov complexity
computed with a limited set of programs that only
allow copy and insertion in strings'®), it will fail to
compress random-looking data generated by simple,
but highly recursive programs, e.g., the sequence of
binary digits of =, with more sophisticated regularities
than sequence repetition (deep programs®’). As an
example of how LZW or entropy rate are limited tools
for compression, and therefore coarse approximations
to algorithmic complexity, consider a string and its bit-
flipped version, or a “‘time-reversed” version in a file
with the ordering of symbols temporally inverted, or a
string and ““time-dilated” string where each symbol is
repeated, say twice. Such simple algorithmic manipu-
lations will not be detected and exploited by LZW.
Despite these limitations, such compression algorithms
can be useful, as we shall see below.

Let Hy(p) = —plogp — (1 — p)log(l — p) denote
the univariate or zero order entropy, with p the prob-
ability of a Bernoulli (binary) process (Markov chain
of order zero). By the entropy rate of the stochastic
process {X;}, we will mean

H(X) = lim ~H(X),..., X)),
n—oon
when this limit exists, with H denoting the usual
multivariate entropy of X, H(X) = —Ey[log(P(X)]. We
note that entropy rate of a stochastic processes is non-
increasing as a function of order, that is,
0<HL---<H,<---<Hy<1. A fundamental
relation is that description length computed from an

algorithm closely related to LZW (LZ77, see Ref. 7 for
a brief review of the Lempel-Ziv variants) is related to
entropy rate, that is,

lrzw = c(n)log, c(n) — nH.

(sce Refs. 7 and 29). Thus, we expect that the
description length of the sequence encoded by LZW
can be approximated by the number of phrases times
the number of bits needed to identify a seen phrase. In
order to apply LZW we need first to digitize the data.
Here we binarize the data to reduce the length of
strings needed for LZW to stabilize. A reasonable
strategy in analysis of algorithmic information of EEG
data is to preserve as much information as possible in
the resulting transformed string. In this sense, using
methods that maximize the entropy of the resulting
series are recommended, such as using the median for
thresholding (this is guaranteed to yield Hy =1 and
makes the result independent of overall scale).

Two associated metrics are commonly used in the
field: ¢(n) and I;zy. Of the two, the latter is more
closely related to Kolmogorov complexity or descrip-
tion length. Both contain similar information (in fact
one is a monotonic function of the other). A natural
manner to normalize this metric is to divide description
length by the original string length n, py = l;zw/n —
‘H, with units of bits per character. This is the LZW
compression ratio metric we will use here. For details
and code used to compute LZW complexity see
Ref. 29.

Data Flattening and Binarization

LZW and entropy rate can be sensitive to inherent
choices in data flattening (that is, how the multidi-
mensional 4D arrays are ‘flattened” into a one
dimensional string). Here we have focused on the
search for temporal patterns. For this purpose, the
stack data tensor for each subject was converted to a
one-dimensional array maintaining temporal adja-
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cency in each frame (with flattening in this order: time
in each frame, epoch, channel, frequency). The spec-
trogram hypercube flattened arrays for each subject
were then binarized using the median as a threshold.
We note here that binarization will produce sequences
with information related to burst or “bump’ events in
each band—including non-stationary aspects of the
dynamics. Moreover, these sequences are independent
of the overall scale (or units) of the data, since we used
the median for binarization. Using the median also
produces maximal entropy (H) strings (since by defi-
nition there are the same number of ones and zeros in
the binarized string). We computed p, and the entropy
rate for orders 0 (Hy)-5 (Hs, there are 2° = 64 cases or
bins in the associated histogram, which is a reasonable
number given the length of the strings analyzed). Since
complexity estimators can be sensitive to data string
length,'”¢ for the computation of global complexity
we chose a fixed stack string length for all subjects data
prior compression. As a reasonable tradeoff between
number of subjects and data quantity we generated the
binarized strings from the first 169 frames in each
subject stack, so each string was of length
n=14 x50 x 39 x 169 = 4.6 x 10°. In another analy-
sis variant, we carried out the complexity analysis
frame by frame, producing an estimate for each frame
and then an average of frame complexity across epochs
per subject. In this case, we could use all the available
data per subject, since string length equality in LZW
was then guaranteed regardless of number of epochs
used for averaging.

Mutual Information and Derived Graph Theoretic
Metrics

A measure such as p, applied to multi-channel,
multi-epoch spectrograms reflects any detectable regu-

larities across time, channels and frequencies in the
frame stacks, and exploit, in that sense, the integration
of multichannel, multifrequency EEG data. We can
apply it in a global sense by compressing the entire
dataset, that is, all channels and frequencies and
epochs forming a single input data string. Or, we can
study different data subsets to further dissect the
driving elements of integration (compression) of the
global dataset. We can ask, for example, how much is
to be gained in the compression of a spectrogram stack
by feeding all the stack (channels and frequencies) into
the compression engine, compared to what can be
achieved compressing, for example, each frequency
independently and then adding the results. The more
“integrated” the data is, the more is to be gained by
global compression. If there is mutual algorithmic
information across frequency bands, for, example,
LZW may be able to use it, making a better job than
compressing one channel at the time. In this vein, we
can define several compression ‘“integration” mea-
sures, depending along what axis we want to segment
spectrogram stack data, for example channel or fre-
quency.

To do this we start from the mutual algorithmic
information (MAI) between two strings,”” the algo-
rithmic analog of Shannon mutual information. Let
K(x) denote the description length of a string x, which
we approximate by the LZW description length. The
MALI between two strings is then

I (x:y) =K(y) + K(x) — K(x,»)
%ZLZW(X) + ILZW(y) - ILZW(x7y)

where K(x, y) denotes the complexity of the concate-
nated strings, and where we again approximate Kol-
mogorov complexity by LZW description length (see
Ref. 30, annotated version). We now define the mutual

Entropy rate for HC (blue), RBD (green), PD (orange), and DLB (red)

1.0

o
©

Entropy rate (bits/sample)
o o
~ o

0.6

0 1 2

3 4 5

Entropy rate Order

FIGURE 3. Entropy rate H, as a function of order. Entropy rate plot with error bar (standard error of the mean) as a function of
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FIGURE 4. Complexity and (log) slow-to-fast scores per subject using full-band spectrograms. Top: Complexity metric (p, — 1 is
shown for convenience) per subject for each class (HCs in blue, RBDs in green, PDs in orange and DLBs in red). Middle: log of
slow-to-fast metric. Bottom: scatterplot of p, vs. log of the slow-to-fast (line fit: slope: slope: — 3.03 = 3.91, r — 0.06, p value:

p<0.44), displaying no correlation.

algorithmic information coefficient between to strings
to be

. M ~1 _ lLZW(xay)
Holx, ) = KO»)+Kx) " lzw(x) + lzw(y)

This metric is closely related to the Normalized Com-
pression Distance.®*

Using yy(x,y), we can build the adjacency matrix of
a graph defined by a set of nodes, where a node rep-
resents a given frequency band, and with a links across
nodes if y,(x, y) for the stack frequency band binarized
strings x and y is above a chosen threshold. In this
way, we can associate a mutual information graph for
each subject spectrogram stack. We can then analyze

these graphs using standard graph theory metrics such
as the average degree (the average number of links per
node) or average clustering index C (a measure of the
extent to which nodes in a graph tend to cluster
together),>*> thus defining new metrics for each stack.
This analysis can also help understand how compres-
sion of the data is actually taking place, as we discuss
below.

Slow to Fast Ratio

For comparison with earlier work, we have also
computed the slow-to-fast frequency power ratio,
normally defined as [(6 + 0)/(«+ )], with ¢ [0.5, 4
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TABLE 2. Mean complexity (p,), entropy rate (Hs), frequency mutual algorithmic information mean clustering coefficient (C;) (for

a threshold of 0.0425) and slow-to-fast metrics for each group, with standard error of the mean (SEM).

Group (N) 0o Hs (Cr) Slow-to-fast
HC (70) 0.81 £ 0.02 0.71 £ 0.01 0.13 £ 0.01 0.21 + 0.02
RBD (78) 0.78 + 0.03 0.69 + 0.02 0.18 + 0.03 1.16 £ 0.96
PD (18) 0.68 £+ 0.02 0.61 £+ 0.02 0.28 + 0.02 1.21 + 0.36
DLB (12) 0.69 + 0.02 0.62 £+ 0.02 0.23 + 0.03 1.20 + 0.38
Kruskal-Wallis p value 1x104 3x10~* 8x 1077 1x10°*

In the last row, the four-group Kruskal-Wallis p value for each metric is provided.

Hz), 0 [4, 8 Hz), o [8,13 Hz), and f [13, 32 Hz).*' Here
we calculated it as the ratio of power in the interval [4,
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canonical one probably due to low frequency artifacts
in the data.

RESULTS

Entropy rate estimates as a function of order for
each group are shown in Fig. 3, displaying clear dif-
ferences across two super-groups (HC + RBD vs. PD
+ DLB) and also a flattening out with increasing or-
der. LZW complexity metrics per subject are shown,
sorted, in Fig. 4 together with the slow-to-fast ratio
(further discussed below), and summarized in Fig. 5.
In terms of statistical performance, the related com-
plexity related metrics we tested (p,, entropy rate and
log-log entropy rate slope) produced similar results.
Statistical results for the main metrics are summarized
in Table 2 (mean with standard error of the mean and
four-way Kruskal-Wallis test). Since Hs entropy rate
or power law slope led to very similar results to those
using p, (which is much faster to compute), we will
drop them in what follows. Table 3 provides the two-
way Wilkoxon ranksum statistic test for several com-
parisons of the three main metrics.

For completeness, we explored complexity applied
on an epoch by epoch basis, which allowed us to use all
the data from every subject (string length prior com-
pression not being dependent on number of epochs).
Complexity per epoch was averaged, leading to an
overall increase in complexity but slightly improved
statistical performance (p<3 x 10~ four group
Kruskal-Wallis).

The slow-to-fast frequency power ratio, computed
as the ratio of power in the interval [4, 8) Hz (0) fre-
quencies vs. [8, 32) Hz (a+ f), also provided good
discrimination (see Tables 2 and 3). This frequency
range choice gave much better performance than the
canonical one (which produced barely significant four-

FIGURE 6. Graph analysis using connectivity fromp
algorithmic mutual information (MAI, p,) across frequency
bands. Top: clustering coefficient as a function of threshold
for the different groups. Middle: corresponding scatter plots.
Bottom. Average graphs (threshold = 0.0425), with each node
representing a frequency bin (label in Hz). Note the increasing
MAI within low and within high bands in the second
supergroup (PD + DLB).

group p < 0.05 Kruskal-Wallis statistical test results),
probably due to low frequency noise in the data.
Finally, we studied the impact of using a few
channels instead of the full set of 14. Complexity
metrics remained robust, indicating that relevant
information for statistical discrimination is available in
each channel. For example, using p, with stacks gen-
erated from channels P4 and P7 led to a statistically
significant results in the four-group Kruskal-Wallis
analysis (p<2 x 107#). The same analysis using the
slow-to-fast ratio metric was not significant.

The Role of Frequency in Complexity
and Compressibility

To better understand changes in compressibility in
PD and DLB converter subject group data, we inves-
tigated the role of high vs. low frequency bands in
complexity. Shortly, if only low frequency data (f< 14
Hz) is used to produce binarized strings, complexity
metrics fail to discriminate the subject classes well.
Similarly, restricting binarization and analysis to either
the f or y band alone eliminated statistical differences
in p, across the groups. If only high frequency data is
retained (f>12 Hz), statistical performance (separa-
bility) was partially maintained (p<2 x 10~2 four-
group Kruskal-Wallis).

Next, using the concept of mutual algorithmic
information described above, we studied differences
across groups from graphs constructed using the MAI

TABLE 3. Statistics for comparisons between groups for selected metrics: Wilkoxon rank-sum statistic significance two sided
pvalue and the Area Under the Curve (AUC, in parenthesis).

Comparison 0o (Cr) Slow-to-fast

HC vs. RBD 1 x 107" (57%) 2x 1073 (61%) 5x 1072 (63%)
HC vs. PD 1 x 107 (80%) 2 x 1076 (87%) 2 x 1072 (68%)
HC vs. DLB 3 x 1073 (77%) 4 x 1073 (75%) 9 x 1075 (85%)
RBD vs. PD 2 x 1073 (73%) 3x 107* (77%) 5x 107" (55%)
RBD vs. DLB 3 x 1072 (69%) 2x 107" (63%) 8 x 1073 (74%)
PD vs. DLB 6 x 107" (56%) 2x 107" (64%) 4 x 107" (59%)
HC vs. PD + DLB 7><106(8%) 3x107(2%) 6x105(5%)
HC vs. rest 3 x 1073 (63%) 1% 1075 (69%) 2 x 107* (67%)
HC+RBD vs. PD + DLB 2 x 107% (75%) 4 %1076 (77%) 1 x 1073 (69%)
RBD vs. PD + DLB 5x 107 (72%) 5x 1074 (72%) 5x 1072 (62%)
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MAI-derived clustering coefficient index as a function of threshold
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index across frequency bands (y,) using complex net-
work theory,” reasoning that there may be an increase
in mutual information across bands that partly ex-
plains changes in compressibility of spectrograms (as
discussed further below). Table 2 provides the main
statistics for the mean frequency clustering coeffi-
cient—the clustering coefficient (Cy) derived from the
thresholded mutual algorithmic information adjacency
matrix—, and Fig. 6 provides the average degree and
clustering coefficient as a function of threshold and the
associated graph for a representative threshold.

DISCUSSION

Using a few minutes of eyes-closed resting EEG
data to generate spectrogram stacks, we have seen here
that RBD patients who later developed PD or DLB
display diminished complexity compared to HCs or to
RBD patients who remained disease-free. The results
of our statistical analysis are compelling, displaying
significant differences between two main super-groups:
HCs and RBDs vs. PDs and DLBs (see Tables 2 and
3). Data from subjects in the latter super-group display
lower complexity and lower entropy rates with
increased cross-frequency algorithmic amplitude cou-
pling. We have also seen that as expected, LZW and
entropy rate provide very similar metrics (although
LZW is much faster to compute). The clustering
coefficient at an appropriately chosen threshold gave
very good discrimination across all four groups, but in
general it separated robustly the two supergroups
across many thresholds (see Fig. 6).

These differences are remarkable as they reflect
brain state at the moment of idiopathic RBD diagno-
sis, years before conversion to PD or DLB. The per-
formance of these metrics is slightly superior and
complementary to those from power analysis,?!*® with
which they are well aligned. Unlike in previous studies
in neurodegenerative diseases,*®!'' power ratio and
complexity metrics were not correlated here (see
Fig. 4). We note that correlation of power metrics such
as slow-to-fast ratio and LZW or entropic complexity
would not be entirely surprising, since complexity
analysis is based on compression of spectrograms and
EEG power imbalances that can lead to more com-
pressible spectrograms after binarization). In addition
to improving statistical separability, the global algo-
rithmic complexity metrics discussed here provide a
rather general detection mechanism of regularities in
the data. For example, imbalances in power ratio
across arbitrary different bands can lead to lower
complexity after data binarization. Complexity metrics
can detect such regularities in the data without the
need to define a priori which specific aspects to use

(e.g., which bands to use for a ratio computation). In
this sense, they provide a rather assumption-free
analysis of the data which can then be further dis-
sected. Moreover, we saw they remained robust even if
applied (and then averaged) epoch by epoch or using a
few channels, which could be useful for screening in
clinical practice.

In our approach, we have introduced a global
complexity analysis of the data, where information
redundancies across epochs, channels and frequency
bands can be exploited for compression and studied to
understand what features lead to simpler data streams.
This limits also the multiple comparisons problem.

Analysis of Sources of Compressibility

As suggested above, even if complexity metrics de-
tect differences across groups, it is interesting to
investigate where specifically the relevant regularities
lie in the data. They may lie in the temporal series
within bands and across epochs, similarities across
bands or across channels—that is, in frequency, time
and space. Where is the loss of complexity taking place
in patients with poor prognosis?

To find out in detail, we carried out tests reordering
and randomizing the data in different ways to detect
which lead to a loss of discrimination between the
groups using complexity metrics (see Fig. 8 for a visual
representation of the different data re-shuffling meth-
ods). In general, all such tests led to an overall increase
in complexity, highlighting the fact that compression
exploits regularities across channels, across time
(within and across frames), across frequency and
across epochs, and that by randomizing the data it
becomes harder to compress (more complex). How-
ever, interestingly, not all the above reshuffling meth-
ods led to a loss of discrimination across groups.

We first randomized the frequency index at each
time point within each frame independently across
frames. As expected, this shuffling destroyed the dis-
crimination performance of both complexity and
power ratio metrics. However, if the frequency ran-
domization was held constant within each spectrogram
frame (but randomized across frames), only the per-
formance of the power ratio metric (slow-to-fast) was
severely affected. Similarly, applying the same ran-
domization procedure across the temporal dimension
(reshuffling time within each frame, which leaves
power ratio metrics unaffected, as they rely on un-
ordered time averages) increased overall complexity
but did not affect the discriminability of the complexity
metric. Thus, complexity metrics appear to rely on
within-frame temporal regularities across some fre-
quencies (similar patterns appearing in several fre-
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DLB vs. RBD (log10(p-value)), thresholded at 0.005

DLB vs. RBD (difference)

*

3
o

B

5

FIGURE 7. Statistics of MAI graphs (u,) across frequency bands. Left: statistical differences between two groups at the edge level
using per band binarization to remove amplitude scale differences. Right. Associated graph displaying links with increased (red) or
decreased (blue) scale-independent MAI connectivity in the first group with respect to the second. In this particular case, we
observe an increase in connectivity, especially in the « + 0 to y bands.

quencies or at several time points in a frame), with
highest complexity for HC and RBD, then PD and
finally DLB—irrespective of the actual shape of the
spectrum. Poor prognosis in RBD appears to be
associated with a decrease in cross-frequency, within-
frame temporal regularities in spectrograms. A partial
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explanation of the above rests on the observation that
binarization by the median of the global stack can lead
to simple sequences in some frequencies bands which
naturally tend to be far away from the global median,
i.e., low and high frequencies, which have power typ-
ically either above or below the median. Frequency
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bands whose values lie far from the median will tend to (amplitude) temporal regularities in the data (typically
look simpler (producing mostly chains of 0’s or 1’s). an increase in regularity with disease progression).
Thus, our complexity metric applied to global stacks in Our results with regard to the role of high fre-
which either frequencies or channels lie far from the quencies in changes in complexity can be related to
median produces lower complexity estimates. The those in Ref. 4, where multiscale entropy was em-
complexity metric is insensitive as to where these reg- ployed as complexity metric to study the differences in
ularities are (in which frequency or channel)—it detects brain signal variability in PD patients who developed
events of similar symbol aggregation—chains of 0’s or dementia at follow-up with respect who did not. The
of I’s. authors found significant changes, with lower signal
A further test we carried out was to binarize each variability at timescales sensitive to higher frequencies
band independently, which in essence removes differ- (i.e., more compressibility at higher frequencies) in
ences in power scale across bands since binarization patients that developed dementia than those who did
then uses each band’s median. This resulted in a loss of not or in controls. We do note, however, that multi-
discriminability using p,, indicating that imbalances in scale entropy and LZW (or entropy rate) estimate
power across bands are an important element in p, complexity in different ways.
complexity. However, as discussed above, we observed Finally, one can ask how much does stack com-
that cross-frequeny MAI differences across groups pression benefit from having access to all frames from
remained significant and discriminative despite this a subject as opposed to compressing each frame inde-
manipulation (see, as an example, Fig. 7). This implies pendently. The answer is that PD and DLB data
that there exist scale-independent cross-frequency benefit the most (with a ratio of per frame vs. per stack
Original t-shuffled f-shuffled

fully-shuffled

50 50

40 40

30 30

20 20

Frequency [Hz]

10 10

0 5 10 15 0 5 10 15

0 5 10 15
[sec] [sec] [sec] [sec]

FIGURE 8. Frame (intra-epoch) spectrogram shuffling. From left to right: original, temporally shuffled, frequency and fully
shuffled spectrograms. A horizontal and a vertical line has been added for reference.
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FIGURE 9. ROC analysis for the HC vs. PD + DLB problem. From left to right, ROC curves using p,, (Cr) and slow-to-fast metrics,
accuracy (ACC), area under-the-curve (AUC), and with Sensitivity and Specificity (%) at the optimal point (shown in red).
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po of 1.26). That is, using the full stack data improves
compression by 26% in these groups, compared to 22
and 23% in HC and RBDs (£ 1%, p < 6 x 107> four
group Kruskal-Wallis). There are longer term persis-
tent regularities in the PD and DLB groups than in HC
or RBD.

Sensitivity, Specificity and Machine Learning Analysis

We have also explored the potential of these metrics
for classification, focusing on the problem of differ-
entiating HC (n = 70) vs. PD + DLB (n = 30).

First, we have computed the accuracy, sensitivity
and specificity of the metrics at the optimal point. In
Fig. 9 we provide receiver operating characteristic
curves (ROC) for p, (Cr) and slow-to-fast metrics.

Next, using the three metrics as a combined set of
features, we have trained a random forest classifier and
evaluated it using leave-pair-out (test-set) cross-fold
validation. This results in an accuracy of 73% and an
AUC of 84%, with a specificity of 75% and sensitivity
of 72%. Using one feature at the time results in poor
results, (AUC of 75, 79 and 70% respectively for p,,
(Cy) and slow-to-fast metrics), highlighting the com-
plementarity of these metrics.

CONCLUSION

In Ref. 30 it is hypothesized that while a system
capable of universal computation may produce many
different types of patterns, both simple (e.g., constant
or repetitive) and complex, a healthy brain engaging in
modeling and prediction of complex input-output
strings will produce complex-looking, highly entropic
data. Such apparent complexity is what we actually
measure when using entropy rate and LZW compres-
sion of eclectrophysiological or metabolic brain
data.>>'>3132 First order entropy, entropy rate or
LZW provide (poor) upper bounds on algorithmic
complexity.

From our results with this dataset we conclude that
LZW and, equivalently, entropy rate highlight losses of
estimated algorithmic complexity in spectrograms of
RBD patients likely to evolve into PD or DLB com-
pared to those that remained in RBD or to healthy
controls. Similar findings have been reported in earlier
related work comparing healthy controls and PD
patients.'? The loss of complexity takes place both in
low and high frequencies, and is partly due to
increased mutual information within and across bands.
These results indicate that information differentiation
(global complexity) is a potentially relevant metric for
the prognosis of RBD, and are in line with current
views of the brain stemming from information theory
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connecting theories of cognition and consciousness
with the phenomenology of brain health, and in par-
ticular, neurodegeneration.>®*

Our full band complexity scores are generally more
discriminative than spectral ratios,”® do not require a
pre-selection of the spectral bands to study, and remain
robust even when using a few channels. However, we
believe it is more interesting to view complexity and
spectral ratio metrics as complementary, as they dis-
play low correlation and hence can be combined using
machine learning.

Although we have focused here on a particular
biomarker, we note that the use of EEG for prognosis
of idiopathic RBD represents a practical technology of
clinical interest. It could be used, for example, as a pre-
screening tool for more expensive and invasive tech-
nologies, such as positron emission tomography (PET)
or single-photon emission computed tomography
(SPECT), which require the injection of radio tracers.
Indeed, the method studied here can be carried out
with a relatively simple EEG system and very light
protocol—we found it could be implemented with a
few channels, requiring an acquisition of a few minutes
of data that can easily be collected as an add-on to
RBD polysomnographic studies (as in Ref. 26), or even
during routine visits to the neurologist.

Finally, one of the limitations in this study is the
limited availability of data associated to the problem at
hand, including deeper longitudinal studies that could
shed light on the power of EEG biomarkers for pre-
diction of early conversion of RBD.'* With the cre-
ation of larger databases, the method proposed
here—possibly in combination with other algorithms
and machine learning'”**®3* should become of
increasing practical interest.
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