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Abstract—Atrial fibrillation (AF) is the most common
arrhythmia in clinical practice with an increasing prevalence
of about 15% in the elderly. Despite other alternatives,
catheter ablation is currently considered as the first-line
therapy for the treatment of AF. This strategy relies on
cardiac electrophysiology systems, which use intracardiac
electrograms (EGM) as the basis to determine the cardiac
structures contributing to sustain the arrhythmia. However,
the noise-free acquisition of these recordings is impossible
and they are often contaminated by different perturbations.
Although suppression of nuisance signals without affecting
the original EGM pattern is essential for any other later
analysis, not much attention has been paid to this issue, being
frequently considered as trivial. The present work introduces
the first thorough study on the significant fallout that regular
filtering, aimed at reducing acquisition noise, provokes on
EGM pattern morphology. This approach has been com-
pared with more refined denoising strategies. Performance
has been assessed both in time and frequency by well
established parameters for EGM characterization. The study
comprised synthesized and real EGMs with unipolar and
bipolar recordings. Results reported that regular filtering
altered substantially atrial waveform morphology and was
unable to remove moderate amounts of noise, thus turning
time and spectral characterization of the EGM notably
inaccurate. Methods based on Wavelet transform provided
the highest ability to preserve EGM morphology with
improvements between 20 and beyond 40%, to minimize
dominant atrial frequency estimation error with up to 25%
reduction, as well as to reduce huge levels of noise with up to
10 dB better reduction. Consequently, these algorithms are
recommended as a replacement of regular filtering to avoid
significant alterations in the EGMs. This could lead to more
accurate and truthful analyses of atrial activity dynamics
aimed at understanding and locating the sources of AF.

Keywords—Atrial fibrillation, Electrogram, Filtering, Wave-

let transform, Empirical mode decomposition.

INTRODUCTION

Atrial fibrillation (AF) is currently one of the major
cardiovascular challenges in the developed world.44 It
is the most common supra-ventricular arrhythmia in
clinical practice, affecting approximately 1.5–2% of
the general population.60 More than 33 million indi-
viduals worldwide have AF, and 5 million of new cases
are approximately diagnosed each year.12 Moreover,
its incidence and prevalence increase with age, thus
around 15% of people older than 80 years suffer from
this arrhythmia.60 However, the reasons for the
increasing impact of AF on aged population49 as well
as the underlying electrophysiological mechanisms of
this arrhythmia50 are still topics of intense discussion
due to their incomplete understanding. Indeed, this
aspect hampers effective diagnosis and treatment of the
arrhythmia, thus causing that 15% of the healthcare
budget in cardiac diseases has to be spent on the
management of AF.57

Within this context, the analysis of atrial electrical
activity is of paramount relevance to improve current
knowledge on the mechanisms responsible for initia-
tion, maintenance and perpetuation of AF.23 This
information can be analyzed either from surface
recordings, i.e., from the electrocardiogram (ECG),3,22

or from intracardiac recordings, i.e., from electrograms
(EGM).24 Whereas the ECG records the superposition
of the heart’s electrical activity from the patient’s
thorax, the EGM directly captures local electrical
activity on the cardiac tissue. Therefore, this latter
recording provides more detailed information about
the electrical status of any particular area of the
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myocardium than the ECG, thus being nowadays the
hallmark of cardiac electrophysiology.15 In fact, the
EGM can provide accurate information about the
time, direction and complexity of atrial activations
within the field of view of the recording electrodes.26

As a result of this near-field information, current car-
diac mapping systems are able to provide nonfluoro-
scopic electroanatomic maps which help in determining
the site of arrhythmia origin, its mechanism as well as
the particular cardiac structures sustaining AF.29

Knowledge of the arrhythmia mechanism and circuit is
critical in planning arrhythmia ablation, which is cur-
rently considered as the first-line therapy for the treat-
ment of AF.35

Every single EGM responds to the potential differ-
ences recorded at two separated electrodes. In this re-
gard, two different signals are widely used in clinical
electrophysiology, namely unipolar and bipolar
recordings.53 Unipolar EGMs are obtained by placing
an electrode in the heart’s surface and the second one
distant from it to serve as a reference. This recording
provides information about the impulse propagation
direction, but substantial far-field signals, generated by
depolarization of remote tissues, are also acquired.53

On the contrary, bipolar EGMs are obtained by
attaching closely two electrodes in a specific area of the
cardiac tissue, thus mostly providing information
about local electrical activity.53 The main disadvantage
of this recording is the impossibility of quantifying
wavefront propagation direction.26 Hence, both types
of recordings contain complementary information and,
usually, both are simultaneously acquired to assist
cardiac mapping techniques.26

Although to a lesser extent than for the surface
ECG, noise and other nuisance signals also disturb
EGM acquisition.55 From an electromagnetical point
of view, the electrophysiology laboratory is an
extraordinarily noisy environment,55 where a wide
conglomerate of electrical equipments, some of them
connected to the patient’s body, are simultaneously
operating. These equipments provoke high-frequency
and broadband noises, which are unavoidably
recorded during EGM acquisition.55 Another impor-
tant source of interference is the electrical mains, which
often contaminates EGM recordings with a compo-
nent of 50 or 60 Hz.56 Finally, the EGM can also be
corrupted by high-frequency noise generated from
non-cardiac muscle activity of the patient as well as by
a low-frequency component, such as the baseline
wander, resulting from respiratory or catheter move-
ments and an unstable catheter contact.56

Considering that a signal-to-noise ratio (SNR) of
20 dB has been proposed as a recommended minimum

recording quality to discern small changes in any
EGM,55 the application of an adequate preprocessing
method able to reduce noise and preserve waveform
pattern is of paramount relevance for successful and
reliable further analysis.38 However, this aspect has
been the forgotten issue of cardiac electrophysiology
studies, with very reduced attention in the literature,
thus lacking of thorough validation analysis.38 In fact,
the EGM is regularly filtered during its acquisition to
reduce power-line interference, far-field signals as well
as low- and high-frequency noises, but no alternative
preprocessing is often considered.37,41 Most of the
time, a filtering-based strategy, proposed by Botteron
and Smith more than 20 years ago,8 is used to highlight
atrial activations, thus making their detection easier.
Although this approach has proven to be useful to
facilitate activation detection8 as well as to quantify the
dominant frequency (DF) of AF from the EGM,9 the
resulting waveform morphology as well as the DF
estimation can sometimes be significantly altered, as
will be quantitatively demonstrated in the present
work. Therefore, regular EGM preprocessing should
be used carefully, or even avoided, over applications
relaying on EGM analysis that go beyond considering
exclusively activation times.

On the other hand, although filtering can alter
EGM amplitude, timing and morphology,53 its effect
on parameters widely used to characterize both in time
and frequency the EGM has not been quantified yet.
The goal of the present work is therefore to analyze the
ability of regular preprocessing approaches to preserve
waveform integrity and reduce noise both from
unipolar and bipolar EGM recordings. In addition,
alternative and efficient denoising methods successfully
applied to the ECG will be explored and proposed.28

The manuscript will prove that methods based on the
Wavelet transform (WT) and the empirical mode
decomposition (EMD) are able to provide cleaner and
less morphologically altered EGM recordings, thus
resulting in an optimal starting point for the proper
interpretation of invasive AF recordings and a more
truthful and accurate quantification of atrial activity
dynamics.

The remainder manuscript is organized as follows.
‘‘Methods’’ section describes the analyzed databases
containing synthesized and real EGMs as well as the
proposed denoising algorithms. In this section the
parameters used to quantify noise reduction and EGM
morphology preservation reached by each algorithm are
also presentedbriefly. ‘‘Results’’ section summarizes the
obtained outcomes, which are then commented in
‘‘Discussion’’ section. Finally, ‘‘Conclusions’’ section
presents the concluding remarks of this study.
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METHODS

Study Population

The proposed denoising algorithms have been first
validated using a database of synthesized unipolar and
bipolar EGM recordings, since these signals allow to
quantify accurately the achieved noise reduction as
well as waveform integrity preservation. To mimic
EGMs as realistic as possible, an approach similar to
the one presented by Oesterlin et al.42 was used. Thus,
atrial activations from a dataset of 40 real EGMs (20
unipolar and 20 bipolar) were manually annotated by
two experts. These signals were acquired with a sam-
pling frequency of 1000 Hz after a band-pass filtering
between 0.5 and 500 Hz and a band-stop filtering
around 50 Hz. Moreover, to avoid far-field ventricular
contamination, they were also recorded under adeno-
sine administration.5 This drug caused a transient
atrioventricular block with a duration between 5.5 and
8.6 s and, therefore, only atrial activations were
recorded during this interval. A window of 90 ms in
length was then centered on each atrial activation, such
that all were aligned in time. Next, sets of 10 single
activations were averaged to generate noise-free tem-
plates. Every activation entered the template just in
case its cross-correlation with the other template
members was higher than 95%. A total of 18 and 26
templates for unipolar and bipolar recordings were
respectively collected and normalized in amplitude. To
synthesize an artificial EGM, a template was randomly
selected and the probability of including others in the
EGM was weighted with a gaussian distribution
adapted to their cross-correlation. The DF for each

recording was randomly chosen between 3 and 12 Hz
and the distance between successive atrial activations
was generated by a normal distribution centered on
that frequency with a standard deviation of 25 ms.
Finally, the amplitude of the atrial activations was also
modulated according to real signals. For that purpose,
the upper and lower envelopes of real EGMs were
extracted by cubic splines interpolation. Sets of 100
unipolar and 100 bipolar realistic, completely clean
and 7 second-length EGMs were generated. This clean
signal will be referred to as x(n) from now on.

To assess the performance of the proposed denoising
algorithms, standard EGM noise had to be added, thus
obtaining noisy recordings referred to as ~xðnÞ:The noise
was generated following the approach described in Ref.
14. Briefly, it was modeled as an autoregressive (AR)
system, whose coefficients were derived by curve fitting
from the gaps between atrial activations of real EGMs.
The optimal order for the AR model was estimated by
the Akaike information criterion, ranging from 10 to 35
for each analyzed EGM interval.7 Thus, choosing ran-
domly an order within this range and the mean coeffi-
cients for all the real signals, different noise sets were
synthesized and normalized in amplitude to generate
EGMswith values of SNRof 30, 25, 20, 15, 10 and 5 dB.
Figure 1 shows an example of unipolar and bipolar
recordings synthesized with different levels of noise.

For the evaluation of the proposed algorithms over
real scenarios, the aforementioned set of 40 real EGMs
was doubled, so that a total of 80 real EGMs (40
unipolar and 40 bipolar) were analyzed. The study
protocol was approved by the Institution’s Research
and Ethics Committee and all the enrolled patients

(a) Unipolar EGM (b) Bipolar EGM

x(n)

SNR of 25 dB

SNR of 15 dB

SNR of 5 dB

x(n)

SNR of 30 dB

SNR of 20 dB

SNR of 10 dB

FIGURE 1. Example of two second-length synthesized recordings of unipolar (a) and bipolar (b) EGMs in AF with increasing
levels of noise. The first row corresponds to clean EGMs, x(n). The amount of added noise is different for unipolar than for bipolar
synthesized recordings just to provide a better graphical idea on the noisy recordings, ~xðnÞ.
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provided informed written consent. All signals were
acquired from 50 different patients undergoing cathe-
ter ablation of AF. The expansion with the second
group of real recordings was included with the aim to
minimize any bias that could arise due to the set of
synthesized recordings.

Studied Denoising Methods for EGM Acquisition

Next subsections describe the filtering approach
regularly applied to EGM recordings. Next, alternative
efficient methods applied to ECG noise reduction will
be described and adapted to the case of intracardiac
unipolar and bipolar EGM recordings.

Regular EGM Denoising

Some atrial structures, such as the pulmonary veins,
can produce very rapid deflections with a substantial
high-frequency content.55 Thus, as an optimal trade-off
between noise reduction and clinical information
preservation, both unipolar and bipolar EGMs are reg-
ularly low-pass filtered with a cut-off frequency around
300 Hz.38,53 Contrarily, both kinds of recordings are
often high-pass filtered with different cut-off frequencies.
Indeed, this lower corner frequency is rarely higher than
3 Hz for unipolar EGMs.26 In this way baseline wander
is removed and some clinical information is preserved.
Moreover, filtering at higher corner frequencies has
proven to alter recording morphology, thus obscuring
the proper detection of the wavefront propagation
direction, which is the typical target in unipolar EGMs.53

Surprisingly, although bipolar EGMs are more robust to
noise than unipolar ones, since the two electrodes cap-
ture a similar far-field contamination which can be easily
reduced by subtraction, a more aggressive high-pass fil-
tering with a higher cut-off frequency of about 30 Hz has
been regularly applied to these recordings.26 In fact, the
main goal of this preprocessing step is to reduce far-field
ventricular contamination. However, the main atrial
component, normally between 3 and 12 Hz in AF,13 is
also strongly reduced. Obviously, this operation distorts
substantially the EGM morphology and reduce its
amplitude, thus turning the recording more complex and
fractionated due to the severe reduction of its main atrial
component.26 Nonetheless, a variety of clinical studies
have reported that some useful information still remains
in the signal.53 With the aim to reproduce the same steps
of regular filtering, the synthesized recordings were pre-
processed by second-order digital Butterworth filters
following a forward/backward filtering strategy, which
avoided the introduction of any phase delay.33 The
bandwidth of the applied filters was 3–300 and 30–
300 Hz for unipolar and bipolar EGM recordings,
respectively.

Wavelet Transform Denoising

Given its interesting ability to deal with non-sta-
tionary signals containing sharp spikes and discontin-
uous intervals, the WT has been widely used for ECG
denoising.51 This transformation allows to decompose
a signal at different time and frequency scales. Indeed,
it can be defined for the continuos signal x(t) as

CaðbÞ ¼
Z 1

�1
xðtÞw�

a;bðtÞdt; ð1Þ

where the asterisk stands for the complex conjugate
operation and wa;bðtÞ represents scaled and translated

versions of the basis function wðtÞ; named mother wa-
velet, such that

wa;bðtÞ ¼ jaj�
1
2w

t� b

a

� �
: ð2Þ

The factors of scale a and translation b have to meet
two conditions, i.e., a; b 2 R and a 6¼ 0: Obviously, the
resulting wavelet coefficients CaðbÞ depend on these
factors, such that if they are discretized for only taking

integer values power of two (i.e., a ¼ 2j and b ¼ k � 2j),
non-redundant information is obtained.34 This discrete
WT (DWT) has been widely used in biomedical
applications,1 since it can be easily implemented by a
bank of low-pass and high-pass finite impulse response
filters followed by decimation stages, such as Fig. 2
displays. The signals obtained from the high-pass and
low-pass filtering processes consist of the detail DCjðkÞ
and approximation wavelet coefficients ACjðkÞ;
respectively.

A generalization of this transformation able to offer
additional information is the Wavelet packet trans-
form (WPT).34 In contrast to the DWT, where only
approximation coefficients are low- and high-pass fil-
tered, both detail and approximation coefficients are
split at each level into finer components. In this case
optimal decomposition can be obtained by minimizing
the entropy during the process.54 Thus, a vector of
wavelet coefficients is only split when the entropy is
reduced. Although several approaches have been pro-
posed to compute entropy from wavelet coefficients,
the common Shannon Entropy (ShEn) has been used
in this work.34 Both DWT and WPT have been applied
to the recordings, so that once the noisy EGM ~xðnÞ
was decomposed into a specific number of scales, the
wavelet coefficients were thresholded and used to
reconstruct back a denoised signal x̂ðnÞ:51

Two thresholding rules, i.e., hard and soft, have
been widely used for ECG denoising.30 In hard
thresholding the wavelet coefficients below a threshold
k are set to zero, whereas in soft thresholding coeffi-
cients lower than k are set to zero and the remaining
ones are reduced by that value.54 Obviously, the
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thresholding rule together with the value of k deter-
mine the resulting signal. Hence, all possible combi-
nations between hard and soft thresholding rules and
the most typical approaches to compute k have been
analyzed both for DWT and WPT.

To this last respect, considering jointly all the wa-
velet coefficients from a decomposition, thus produc-
ing a vector of S samples in length, two different values
of k have been first defined following16

kFIX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � lnðSÞ

p
; ð3Þ

which stands for a fixed thresholding rule for all the
wavelet scales, and

kMMX ¼ 0:3936þ 0:1829 � logðSÞ; ð4Þ

which performs a minimax estimation of the thresh-
olding rule for every decomposition level. In addition,
an adaptive threshold for each vector of wavelet
coefficients has also been computed from the Stein’s
unbiased risk estimate (SURE), i.e.,

kSURE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðSC � log2ðSCÞÞ

p
; ð5Þ

where SC is the length of the analyzed vector.17 Finally,
a variant of this approach (named heuristic SURE,
kHSURE) where kSURE was replaced by kFIX in very
noisy conditions, has also been considered following
the recommendations in Ref. 17. For a more effective
denoising, these thresholds were rescaled by the stan-
dard deviation of the noise estimated from the highest
frequency vector of wavelet coefficients.16 The stan-
dard deviation was computed as

r̂ ¼ mediank¼1...;SC1
fjC1ðkÞjg=0:6745: ð6Þ

Finally, it has to be noted that no systematic
approach exists for optimal selection of the mother
wavelet, even though the use of different functions to
analyze the same signal can sometimes produce no-

tably different results.45 In denoising applications, the
mother wavelet is normally determined by its similarity
with the fundamental signal pattern under analysis. In
this way the highest wavelet coefficients are obtained in
the decomposition, thus turning thresholding of con-
taminant signals easier.51 In the present study, all the
functions from the most common orthogonal and
biorthogonal wavelet families, including Daubechies,
Biorthogonal, Coiflets, Symlets, Reverse Biorthogonal
and Discrete Approximation of Meyer, were tested. A
total of 54 functions were then studied. Note that, only
when orthogonal functions are used, the information
stored in each vector of wavelet coefficients is not re-
peated elsewhere and the original signal can be accu-
rately reconstructed. On the other hand, the number of
decomposition levels is also a key parameter to achieve
satisfactory results. The maximum level depends on the
length of both the signal and the decomposition fil-
ter.45 In this case, that value was 8 and, hence,
decomposition levels between 3 and 8 were analyzed.

Empirical Mode Decomposition Denoising

In contrast to WT, EMD does not require any a
priori known basis to decompose a signal into a set of
oscillatory components ranging from high to low fre-
quencies, which are named intrinsic mode functions
(IMFs).25 Hence, this transform also behaves as a filter
bank, but without a predefined cut-off frequency.20

This property makes EMD especially useful for the
processing of nonlinear and non-stationary signals.
Indeed, it has been widely used for denoising of ECG
as well as other physiological signals.6,32

Every IMF must have the same number of extrema
and zero-crossings or differ at most by one and,
additionally, it must be symmetric with respect to local
zero mean.25 Thus, for a successful decomposition into
IMFs, the signal must have at least two extrema, i.e.,

2

AC1

2HP

2LP

x(n)
2HP

2LP

2HP

2LP

2HP

2LP
LPHP

Downsampling

High-pass filtering Low-pass filtering

DC1
DC2

DC3
DC4

AC4

AC2

AC3

FIGURE 2. Detail of the filter bank structure for DWT computation.
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one maximum and one minimum. Given that any noisy
recording ~xðnÞ in the present study met this condition,
the decomposition process started with the identifica-
tion of all local maxima and minima in the signal.
Next, these points were interpolated by a cubic spline
curve to reconstruct the upper euðnÞ and lower elðnÞ
envelopes, respectively. The mean envelope was
obtained as a simple average, i.e.,

mðnÞ ¼ euðnÞ þ elðnÞ
2

; ð7Þ

and, it was then subtracted from the contaminated
signal to obtain

h1ðnÞ ¼ ~xðnÞ �mðnÞ: ð8Þ

The same process was iteratively repeated on the
resulting signal hkðnÞ until the following condition was
satisfied

jhk�1ðnÞ � hkðnÞj2

hk�1ðnÞ2
� 0:3; ð9Þ

thus hkðnÞ being the first IMF, named c1ðnÞ: The re-
sidue r1ðnÞ ¼ ~xðnÞ � c1ðnÞ still contained useful infor-
mation and, hence, the process was repeated on this
signal to obtain c2ðnÞ: In the same way c3ðnÞ; . . . ; c10ðnÞ
were computed, such that the original signal could be
reconstructed as

~xðnÞ ¼
X10
k¼1

ckðnÞ þ r10ðnÞ: ð10Þ

Bearing in mind that IMFs from the lower levels
present higher frequency components and vice versa,
previous works have proven that high-frequency noise
can be successfully removed from some physiological
signals by reconstructing the recording without the first
functions.10 Consequently, the present work has ana-
lyzed EMD-based denoising performance by discard-
ing up to 5 IMFs, such that

x̂ðnÞ ¼
X10
k¼K

ckðnÞ þ r10ðnÞ; for K ¼ 2; . . . ; 5: ð11Þ

Waveform Integrity and Noise Reduction Assessment

The ability to reduce noise and preserve waveform
integrity of the proposed algorithms was validated in
terms of time and frequency parameters widely accepted
to characterize both unipolar and bipolar EGMs.
Firstly, morphological alterations caused by the
denoising methods were quantified by computing the
cross-correlation and the root mean square error
(RMSE) between every pair of denoised recording x̂ðnÞ

and its corresponding original signal x(n). Since the
common Pearson’s correlation coefficient does not
account for amplitude differences between signals, an
adaptive signed correlation index (ASCI) was used for a
more accurate morphological comparison.31 Consider-
ing N sample-length signals, the ASCI was defined as

ASCIðxðnÞ; x̂ðnÞÞ ¼ 1

N

XN
k¼1

xðkÞ � x̂ðkÞ; ð12Þ

where � denotes the signed product of two dichot-
omized scalars as

xðnÞ � x̂ðnÞ ¼ 1 if jxðnÞ � x̂ðnÞj � b;
�1 if jxðnÞ � x̂ðnÞj>b:

�
ð13Þ

The thresholdbwas experimentally selected as 5%of the
standard deviation of x(n). Also, note that the RMSE
was normalized to the root mean square of x(n), i.e.,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1ðxðkÞ � x̂ðkÞÞ2PN

k¼1 xðkÞ
2

s
: ð14Þ

A metric proposed to quantify the whole EGM
morphology and, thus, to discern between fractionated
and non-fractionated signals, is ShEn.37 Hence, this
parameter was also computed to assess morphological
variations after denoising. In brief, the EGM was
quantified using L uniform and equal-size amplitude
levels. Then, the occurrence probability of the ith level
(pi) was estimated from its repetition rate and ShEn
was computed as

ShEn ¼ �1

logL

XL
k¼1

pk � log pk: ð15Þ

Moreover, the morphological comparison between
atrial activations has been widely used as a measure of
AF organization, which has proven to be useful in a
variety of clinical scenarios.46 In contrast to the above
defined indices ASCI, RMSE and ShEn, this mor-
phological comparison only considers atrial activa-
tions themselves, thus discarding the remaining EGM
content in between.19 Given that this methodology
requires an accurate identification of every single
activation, the algorithm introduced by Ng et al.40 has
been used in this study. More precisely, the EGM was
first processed with the approach proposed by Bot-
teron and Smith,8 i.e., the signal was band-pass filtered
between 40 and 250 Hz, then rectified and, finally, low-
pass filtered with a cut-off frequency of 20 Hz. Zero-
phase third-order Butterworth filters were used. The
peak with the highest amplitude in the resulting signal
was marked as the first atrial activation. Next, peaks
with decreasing amplitudes were identified considering
a blanking period of 50 ms around each one. The
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process finished when the mean distance between suc-
cessive peaks was lower than 275 ms and, moreover,
that distance was also lower than its median plus 5 ms
or the detected peak magnitude was 20% less than the
previous one.40 Finally, activations within intervals 1.5
times greater than the median distance between suc-
cessive peaks were also searched. The peaks detected
from clean and denoised signals, x(n) and x̂ðnÞ; were
compared in terms of sensitivity (Se), positive predic-

tivity (PþÞ and location error (LE). Thus, Se was de-
fined as the rate of atrial activations properly

identified, whereas Pþ was the proportion of true
activations from all detected. Lastly, the LE was de-
fined as the time difference between activation loca-
tions in the clean signal with respect to the noisy one
for every pair of x(n) and x̂ðnÞ considered.

Once the atrial activations were detected, morpho-
logical similarity among them was quantified through
the algorithm presented by Faes et al.19 In brief, the
barycenter for every atrial activation was identified
using a moving average noncausal filter with 90 coef-
ficients. Centered on this point, which divides the
activation into two equal parts, a window of 90 ms was
defined. To prevent morphological alterations from
factors unrelated to the arrhythmia, each activation
was normalized by the Euclidean norm of all atrial
activations in the recording.19 Finally, a repetition rate
of M activations was defined by computing the relative
number of similar atrial activation pairs, so that

qðnÞ ¼ 2

M � ðM� 1Þ
XM
i¼1

XM
j¼iþ1

Hðn� dijÞ; ð16Þ

where HðxÞ is the Heaviside function and dij is the
distance between ith and jth activations, defined as the
arc cosine of their scalar product.19 The threshold n
was chosen as p=3 radians.19

The proposed denoising algorithms have been also
validated from the spectral domain through the use of
two indices. In fact, the goal of most frequency-domain
techniques applied to EGMs in AF is to estimate the
local atrial rate, i.e., the DF.39 For that purpose, the
preprocessing introduced by Botteron and Smith has
been widely used and is applied by default in many
recording systems.39 Indeed, it has been proven that this
approach removes detailed features of the atrial acti-
vations with the aim to emphasize their timing.9 In the
present work, the resulting signal from every denoising
method was spectrally characterized through the Welch
Periodogramwith aHammingwindowof 4096 points in
length, 50% overlapping and 10240-point FFT.18 These
computational parameters provided a frequency reso-
lution of 0.1 Hz.Next, theDFwas computed as the peak
with the highest spectral energy. Finally, to estimate
spectral preservation, the regularity index (RI) was

computed due to its wide use as an estimator of AF
organization in clinical studies.48 TheRI is defined as the
power spectral density ratio of the 2 Hz band centered
on the DF with respect to the physiological frequency
range of AF, i.e., 3–20 Hz.

On the other hand, given that a completely clean
signal is unavailable in real scenarios, the parameters
introduced above cannot assess the performance of the
denoising algorithms over real EGMs. For this case, the
yielded noise reduction is assessed through the SNR
estimated as the power ratio between the denoised signal
and the corresponding extracted noise,52 i.e.,

dSNR ¼ 10 � log
PN

k¼1 x̂ðkÞ
2

PN
k¼1 n̂ðkÞ

2

 !
; ð17Þ

where the noise power is estimated as the power dif-
ference between the noisy and denoised recordings, so
that

XN
k¼1

n̂ðkÞ2 ¼
XN
k¼1

ð~xðkÞ � x̂ðkÞÞ2: ð18Þ

A perfect denoising stage will extract all the noise and
only the noise. Thus, yielding the same result in esti-

mated dSNR than the real SNR of the recording. On the
contrary, a poor denoising stage will not remove all the
noise, or even potentially will consider part of the signal

as noise. Hence, dSNR will be far away from the real
SNR, indicating that noise still remains or that part of
the signal has been considered as noise and removed. As

a consequence, the ratio between dSNRand SNRwill not
be one to one. For synthesized EGM recordings and

with the aim to validate the index, dSNRhas been directly
compared to the generated SNR. For real EGM
recordings and each denoising methodology, the esti-

mated dSNR has been compared with the optimally

estimated dSNRO; that was provided by the denoising
approach with best results in the synthesized signals.

Finally, note that all the described algorithms have
been developed under Matlab 8.6, which is a popular
mathematical programming platform from The Math-
Works, Inc. Moreover, they have been run on a desktop
computer with 3.2 GHz Intel Core i5 processor under
Mac OS X 10.11.6, thus providing the results that will
be presented in the forthcoming section.

RESULTS

Synthesized EGM Recordings

The effect of noise on the synthesized recordings is
quantified in Table 1. Some of the parameters are
preceded by a D thus representing normalized relative
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variations between clean and noisy recordings. As can
be observed, the defined indices are able to reflect
accurately how the presence of increasing levels of
noise degrade the EGM waveform morphology and
alter its time and frequency features. Although this
finding applies both to unipolar and bipolar EGM
signals, a slightly different behavior between both
kinds of recordings was observed in some cases, as for
DShEn and DDF. Thus, the bipolar signals were more
sensitive to noise in terms of DShEn, while an opposite
trend was noticed for DDF. Another interesting finding

is that Pþ decreased notably as the noise increased,
thus highlighting a substantial rise in the number of
falsely detected atrial activations under noisy condi-
tions.

Regarding how atrial waveform integrity is pre-
served by the analyzed denoising methods, the main
outcomes are summarized in Fig. 3 for synthesized
unipolar EGMs. This figure only displays the best re-
sults for DWT-, WPT- and EMD-based denoising
algorithms. Additional results obtained from a wider
variety of tested parameters for each denoising strategy
can be found in the online section of Supplementary
Materials. No significant differences were noticed both
for DWT and WPT from the analyzed wavelet func-
tions, wavelet levels of decomposition, thresholds and
thresholding rules. Nonetheless, for DWT the highest
degree of waveform morphology preservation and
noise reduction was achieved with the second-order
Coiflet function with 8 decomposition levels and soft
thresholding using kSURE:With these parameters, WPT
also provided good results, however its highest per-
formance was obtained with the second-order Daube-
chies function selecting 5 decomposition levels and soft

thresholding using kHSURE: Finally, the EMD-based
technique provided the highest waveform integrity by
discarding the first IMFs, i.e., for K ¼ 2:

Coherently, most of the tested methods provided
more altered features of signal morphology and fre-
quency content as the SNR decreased. However, the
two WT-based algorithms provided the cleanest and
most unaltered unipolar recordings. Their performance
was superior to that of regular filtering in any analyzed
case and they provided especially good results for
moderate or high levels of noise. Observe in Fig. 3 how
regular filtering alters waveform morphology and how
EMD provided poorer results than WT-based meth-
ods. Thus, even for the most favorable case with a
clean recording of 30 dB in SNR, the gap in waveform
integrity preservation between regular filtering and
WT-based methods was significantly large. Metrics
such as ASCI or RMSE provided improvements in
waveform preservation of about 20% (ASCI of 79.2%
vs. 99.9%). Furthermore, in noisy cases, such as SNR
of 5 dB, the waveform alteration introduced by regular
filtering was extremely high compared to WT-based
methods (ASCI of 26.8 vs. 60.4%). Other interesting
observation refers to DDF because the detected dom-
inant frequency variation has been always notably
higher for regular filtering, thus involving deviations of
up to 37.2%. Taking into consideration the relevance
that tiny differences in dominant atrial frequency maps
have reached in recent works as a tool for guiding
catheter ablation,4 this finding is of great interest.

Regarding synthesized bipolar recordings, Fig. 4
summarizes the obtained results. As before, only the
best denoising results are included, so that the
remaining additional outcomes can be found in the
online section of Supplementary Materials. As in the

TABLE 1. Morphological alteration results caused by noise addition on the synthesized recordings as a function of the signal-to-
noise ratio (SNR).

EGMs SNR (dB) ASCI (%) RMSE (%) DShEn (%) Dq (%) Se (%) Pþ (%) LE (ms) DDF (%) DRI (%)

Unipolar 30 99.9 0.1 0.2 1.1 99.2 99.7 0.053 0.8 4.1

25 98.2 0.3 0.5 3.0 97.9 98.9 0.085 1.0 7.6

20 84.7 0.9 1.0 7.9 97.9 94.6 0.155 2.4 13.5

15 58.9 3.1 2.4 12.2 98.8 91.1 0.288 10.0 23.7

10 35.7 9.9 5.1 19.9 94.2 85.2 0.505 29.2 39.8

5 20.7 31.6 9.5 47.0 93.0 63.5 0.889 50.2 60.9

Bipolar 30 99.9 0.1 0.7 1.8 99.9 99.6 0.052 2.9 4.0

25 95.6 0.3 1.7 6.1 99.3 97.3 0.099 2.8 6.7

20 78.4 1.0 3.8 11.6 98.9 92.7 0.176 4.7 11.7

15 53.8 3.1 7.5 17.0 98.6 89.1 0.298 7.6 19.4

10 32.9 9.9 13.0 25.7 96.9 88.1 0.538 10.0 32.4

5 19.0 31.6 21.1 56.3 95.1 68.1 0.899 13.9 53.0

Displayed results stand for adaptive signed correlation index (ASCI), root mean square error (RMSE), Shanon entropy variation (DShEn),
variation of similarity between atrial activations (Dq), sensitivity, positive predictivity and location error of atrial activation detection (Se, Pþ;
LE), dominant frequency variation (DDF) and regularity index variation (DRI). In the case of DShEn, Dq; DDF and DRI the variation has been

computed as the difference between clean, x(n), and noisy signals, ~xðnÞ; normalized by x(n) and expressed in percentage.
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unipolar case, most of the methods provided poorer
results as noise increased. The exception to this rule
was regular filtering, in which a significant high degree
of waveform distortion was introduced for any SNR.
More concretely, in the most favorable case with SNR
of 30 dB, regular filtering distorted notably the atrial
waveform in comparison to WT-based methods (ASCI
of 39.6 vs. 99.8%). In fact, the presence of such a low
level of noise did not distort the atrial waveform, but
regular filtering provoked considerable distortion le-
vels by itself. Bearing in mind that such a kind of fil-
tering is the most extended procedure in routine

analysis of bipolar EGMs, this result is also specially
significant. Furthermore, it has to be highlighted the
poor outcomes provided by EMD which, in some
cases, were below regular filtering as Se, LE or DDF.

Finally, the relation between average values of

estimated dSNR and generated SNR for synthesized
recordings is graphically sketched in Fig. 5. As has
been detailed back in ‘‘Waveform Integrity and Noise

Reduction Assessment’’ section, the dSNR has been
defined to estimate noise reduction performance on
real EGMs. However, its application to synthesized

51015202530
20

30

40

50

60

70

80

90

100 ASCI (%)

51015202530
0

5

10

15

20

25

30 RMSE (%)

SNR (dB) SNR (dB) SNR (dB)

SNR (dB) SNR (dB) SNR (dB)

SNR (dB) SNR (dB) SNR (dB)

51015202530
0
1
2
3
4
5
6
7
8
9 ∆ShEn (%) 

∆ρ (%) 

51015202530
0

5
10

15

20

25
30

35

40

45

51015202530
86

88

90

92

94

96

98

100 Se (%)

51015202530
60

65

70

75

80

85

90

95

100 P+ (%)

51015202530
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 LE

51015202530
0
5

10
15
20
25
30
35
40
45
50 ∆DF

51015202530
0

10

20

30

40

50

60 ∆RI

Regular filt.
DWT
PWT
EMD

Regular filt.
DWT
PWT
EMD

Regular filt.
DWT
PWT
EMD

Regular filt.
DWT
PWT
EMD

Regular filt.
DWT
PWT
EMD

Regular filt.
DWT
PWT
EMD

Regular filt.
DWT
PWT
EMD

Regular filt.
DWT
PWT
EMD

Regular filt.
DWT
PWT
EMD
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EGMs is also of interest in order to verify its validity
and robustness. Two main considerations can be done
in view of the results for synthesized EGMs. Firstly,
WT-based methods present a clearly linear and pro-

gressive relation between dSNR and SNR, thus indi-
cating that they are quite close to an ideal denoising
approach. In fact, these strategies are able to remove
most part of the noise in the recording and only the
noise. Secondly, EMD and especially regular filtering
do not present a one-to-one ratio between estimated
and generated SNRs. Therefore, these methods are
unable to remove a significant part of the noise in the

signal or, even worse, they also remove part of the
signal which is mistakenly considered as noise.

Real EGM Recordings

The only parameter that can be used to assess noise
reduction performance as well as waveform preserva-
tion when dealing with real recordings is the estimated
dSNR: To this respect, Fig. 6 shows the ratio between

dSNR and optimally estimated dSNRO; as described
back in ‘‘Waveform Integrity and Noise Reduction
Assessment’’ section. This last index was computed
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making use of the DWT-based denoising strategy to
obtain results for regular filtering, PWT-based and
EMD-based methods because DWT yielded the best
noise reduction and waveform preservation results
with synthesized recordings. In the case of DWT-based

denoising, the dSNRO was provided by the WPT-based
approach, which also provided excellent results. In
view of the results for real recordings in the figure, the
WT-based methods offered a denoising and waveform
preservation behavior with outstanding performance.

Thus, the estimated dSNR followed a clear line very

close to the one-to-one ratio with dSNRO: This is
indicative of the great ability that these methods pro-

vide for removing most part of the noise and only the
noise, both in unipolar and bipolar recordings. On the
contrary, EMD and especially regular filtering, pre-
sented a significantly limited ability of noise reduction
and waveform preservation even in the most favorable
cases of very low noise with SNR of 30 dB.

Finally, with the aim to provide a wide overview on
the performance of the analyzed denoising strategies
over real EGMs, Figs. 7 and 8 show a set of examples
for unipolar and bipolar real EGMs, respectively, with
different morphologies and levels of noise, together
with the corresponding result provided by each
methodology. As can be observed, even for reduced
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FIGURE 5. Relation between estimated dSNR and generated
SNR achieved by every denoising algorithm in the case of (a)
synthesized unipolar EGMs and (b) synthesized bipolar
EGMs. Note that second-order Coiflet and second-order
Daubechies wavelet functions were used for DWT and PWT,
respectively.
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noise (Figs. 7a, 7b and 8a, 8b), regular filtering per-
forms extremely poor in EGM denoising compared to
WT-based methods, whereas EMD performs quite
better that regular filtering but poorer that DWT or
WPT. Furthermore, waveform integrity is completely
reduced and altered in bipolar EGMs processed by
regular filtering. On the other hand, when the EGM is
relatively noisy (Figs. 7c, 7d and 8c, 8d) WT-based
methods still behave with outstanding performance,
while EMD is unable to remove noise with similar

efficiency but does not seem to provoke significant
waveform distortion. In contrast, regular filtering
performs extremely bad both in EGM denoising and
waveform integrity preservation, especially in the
bipolar case. Observe how resulting amplitudes are
notably reduced, even provoking the masking of some
atrial activations inside the noise. Obviously, ampli-
tude reduction as well as activation timing lost are the
potential source of significant variations in voltage
cartography, activation maps, rotor maps or any other
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FIGURE 7. Example of waveform integrity preservation and denoising performance of the analyzed methods for real unipolar
EGMs under different noisy conditions. The noisy recording ~xðnÞ is filtered out by the different methodologies to provide the
denoised resulting EGM x̂ðnÞ: The estimated dSNR in every case is (a) 20 dB, (b) 17 dB, (c) 13 dB and (d) 10 dB, respectively.
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operation performed with bipolar EGMs in cardiac
mapping systems.

DISCUSSION

The surface ECG, although highly sensitive to noise,
still is the most widely used recording for cardiac
diagnosis.33 Indeed, noise reduction strategies applied
to the ECG have been widely addressed in the last

years to improve its characterization and interpreta-
tion.33 As a result, a broad variety of denoising
methods are available in the literature, including filter
banks, adaptive filtering, independent component
analysis, neural networks, WT and EMD.28 Contrar-
ily, noise reduction applied to EGMs has received poor
attention. Although intracardiac recordings are often
less disturbed by noise than the surface ECG, nuisance
interferences are still present during its acquisition55
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FIGURE 8. Example of waveform integrity preservation and denoising performance of the analyzed methods for real bipolar
EGMs under different noisy conditions. The noisy recording ~xðnÞ is filtered out by the different methodologies to provide the
denoised resulting EGM x̂ðnÞ: The estimated dSNR in every case is (a) 20 dB, (b) 18 dB, (c) 12 dB and (d) 9 dB, respectively.
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and, therefore, this issue has to be properly addressed.
Thus, the exploration of new algorithms to reduce
noise in the EGM but, at the same time, preserving
waveform integrity still is an unsolved challenge. In
fact, most of the EGM recording systems regularly
filter quite aggressively the acquired signal,26 even
though this preprocessing has proven to alter its
morphology. Within this context, the present work has
introduced the first systematic and thorough compar-
ison between regular filtering and more refined algo-
rithms, successfully used in ECG denoising, applied to
the EGM. The coherence between the results obtained
both from synthesized and real EGMs allows us to
present some remarkable observations as well as useful
recommendations about EGM preprocessing, which
will be next picked out.

Comparison Among EGM Denoising Algorithms

To begin with, regular filtering has provided very
poor performance in waveform integrity preservation
as well as in noise reduction compared to WT-based
methodologies. Thus, under low noise conditions,
variations of about 20% in waveform preservation
were noticed for unipolar EGM recordings between
regular filtering and WT-based denoising (see Fig. 3).
Furthermore, the bipolar case was even worse, and
variations of about 60% in ASCI or RMSE were
observed (see Fig. 4). In fact, parameters like DShEn
and Dq behaved very poorly with regular filtering
regardless of the SNR. For noisy cases the situation
remained the same for some indices and even worse for
many others. Thus, for unipolar EGM recordings

parameters like Dq; Pþ; DDF and DRI increased the
gap between regular filtering and WT-based methods,
whereas in the case of bipolar recordings indices like

Pþ or DRI also performed poorer than for low noise
conditions. The significant and high-amplitude com-
ponents between 1 and 30 Hz eliminated by the
aggressive regular filtering clearly justify these out-
comes. Moreover, this fact also explains the notably

low estimated dSNR by this filtering than the remaining
denoising algorithms, as Figs. 5 and 6 show for
unipolar and bipolar EGM recordings, respectively.
This indicates that, in addition to noise, regular fil-
tering is mistakenly removing significant components
of the EGM, as Figs. 7 and 8 display for several
examples.

On the other hand, it is interesting to note that re-
sults for DWT- and PWT-based methods were quite
similar, although both made use of different wavelet
decomposition strategies.54 Slightly better outcomes
were only observed for bipolar EGMs with the DWT
and for unipolar recordings with the WPT-based

approach (see Figs. 3 and 4). Moreover, the experi-
mentally obtained optimal wavelet parameters were
also greatly different in both methods, especially
regarding decomposition levels and denoising thresh-
olds. A similar behavior was also observed in most of
the tested wavelet functions. This wide variety of re-
sults with respect to levels, thresholds and decompo-
sition strategies could be justified by the fact that
notably different morphologies can be found among
the analyzed signals and even, sometimes, within the
same signal. Nonetheless, the obtained results still
confirm the high versatility of the WT. This is an
important advantage, since its adaptability allows to
remove efficiently noise in a wide variety of recordings,
including other cardiac signals such as the ECG28 and
the transmembrane fluorescence optical recording
from voltage-dependent dyes.59 According to these
previous works, WT-based methods have also proven
here top performance in EGM waveform preservation
and denoising, both under clean or very noisy condi-
tions. To this respect, variations between the synthe-
sized x(n) and denoised x̂ðnÞ signals lower than 1%
were noticed under low noise conditions for the vast
majority of indices related to time and frequency
morphological preservation (see Figs. 3 and 4). Fur-
thermore, the increasing presence of noise degraded
WT-based method performance, but in a significantly
lower amount than for regular filtering. Another
interesting point was that the rate of falsely detected
atrial activations from the denoised signals with these
algorithms was drastically reduced even in the presence

of high noise contamination. Thus, Pþ still remained
around 90% for a SNR of 5 dB, while this rate
decreased around 70 and 65% for regular filtering and
EMD, respectively.

From the noise reduction point of view, the superior
performance of WT-based methods compared with the
other ones has also been demonstrated in Figs. 5, 6, 7,
and 8. WT-based algorithms provided recordings with
the lowest levels of noise, also preserving substantially
waveform morphology, high-frequencies and abrupt
atrial activations, their only drawback being a slight
reduction in signal amplitude provoked by the soft
thresholding.51 This alteration could explain the varia-
tions ofDq;DDFandDRIhigher than 10%observed for
very noisy cases with SNR of 5 dB in Figs. 3 and 4.
Nonetheless, given the promising results obtained for
values of SNR>5 dB, the design of more advanced
thresholding rules to mitigate this problem does not
seem a prime issue. In any case, future works could ad-
dress this topic in a similarway aswithECGdenoising.51

As can also be observed in Figs. 7 and 8, the EMD-
based approach resulted in a noisier signal than theWT-
based algorithms. This outcome could justify the rela-
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tively high variations observed between synthesized x(n)
and recovered x̂ðnÞ recordings in most of the analyzed
parameters both for unipolar and bipolar EGM
recordings with values of SNR £ 15 dB (see Figs.
3 and 4), thus provoking more distorted atrial activa-
tions in comparison with the WT-based methods. This
poor performance could be explained by the fact that
IMFs from lower levels can still contain high-frequency
information from the atrial activations which is disre-
garded when these levels are considered as noise. Given
that the present study made use of the most popular
EMD-based denoising, which discards complete
IMFs,10 the best trade-off between noise reduction and
waveform preservation was reached by selecting K ¼ 2;
thus the reconstructed signal x̂ðnÞ presented the noise
mainly contained by c2ðnÞ and c3ðnÞ: A similar finding
has also been reported by previous works dealing with
EMD-based ECG denoising, which have revealed that
high-frequency IMFs contain information from the
QRS complexes in addition to noise.28

Finally, the increase of computational load associ-
ated to the proposed EGM denoising algorithms de-
serves a comment. Thus, in average for the synthesized
and real EGM recordings, the computational time per
sample was about 50 ns, 0.8 ls, 5 ls and 1 ms for
regular filtering, DWT-, WPT- and EMD-based
approaches, respectively. Note that both WT-based
algorithms provided a notably better EGM waveform
preservation than the regular approach at the cost of
increasing computational load. Nonetheless, bearing in
mind that computational time limitations can be easily
avoided by using specific digital signal processors or
complex programmable logic devices, such as
FPGAs,21 the WT-based algorithms could be easily
run in real-time under current commercial devices,
which typically use a comfortable EGM sampling rate
of about 1 kHz. Indeed, some recent works have pro-
ven that the DWT-based denoising of different physi-
ological signals, even with extensive additional
processing, can be successfully run online.11,21 Con-
trarily, some extra difficulties could arise in the case of
EMD due to its significantly high computational load.
Nonetheless, in view of its poor results compared with
the WT-based methods, its integration into commer-
cial devices does not seem to deserve much attention.

Clinical Implications

Despite the fact that regular filtering provokes sig-
nificant EGM waveform alteration and poor noise
reduction, such aggressive filtering between 30 and
300 Hz is currently a routine practice in electrophysi-
ology studies.26 Although previous clinical studies
suggest that useful information still remains in the
EGMs filtered by this approach,53 undoubtedly an-

other not yet quantified amount of information is
being disregarded when producing such a significantly
different resulting signal. Indeed, when a signal is no-
tably distorted, two relevant hazards occur. On the one
hand, the association between altered morphological
features in the resulting signal and their underlying
clinical implications can be unclear. Thus, when mor-
phological and spectral variations higher than 40 and
10%, respectively, between original and preprocessed
bipolar EGMs are provoked (even for a SNR as high
as 20 dB) on features such as q RI or DF (see Fig. 4),
the clinical validity of these metrics is completely
doubtful. On the other hand, when a preprocessing
approach is too aggressive, interesting information
from the original signal may be lost, as Figs. 7 and 8
have shown. That information may, or may not, be
useful to improve clinical diagnosis or treatment of
AF, but clearly it can lead to different clinical results in
later stages. In fact, a less distorted signal will allow the
obtention of a more realistic view about the atrial
activity dynamics through different atrial mapping
representations, such as voltage cartography, atrial
activation maps, rotor maps or dominant frequency
maps.36 Hence, only when preprocessing is able to
preserve the original morphology of the EGM, one can
be completely sure that the obtained results are totally
reliable and in accordance with reality.

Precisely, the current widespread use of the regular
approach for EGM filtering could be one of the many
reasons explaining inconclusive results provided by a
variety of electrophysiological studies. For instance, a
standardized ablation protocol for persistent AF has
not been achieved yet.58 To this respect, catheter
ablation based on targeting areas with high DF has
been proposed as an alternative for patients with per-
sistent AF.4,48 Thus, in addition to the common pul-
monary vein isolation, atrial sites showing a DF at least
20% higher than their surrounding points are targeted
in this protocol.4 However, given the relevant differ-
ences observed between DF values obtained from the
original and regularly preprocessed EGMs, it is
impossible to assure that proper atrial sites are being
currently ablated. This aspect may turn the validation
of this protocol clinically questionable. The same
comment also applies to ablation based on targeting
atrial points with complex fractionated EGMs.2 In this
case, the presence of high levels of noise after EGM
preprocessing can make the successful identification of
that fractionated areas very difficult. Obviously, a
completely successful ablation guided procedure is
unreachable through the sole use of improved EGM
preprocessing, however, this stage might be undoubt-
edly helpful in providing truthful signals aimed at
reaching novel insights about AF mechanisms which
are unknown to date.
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Limitations

Only mid and high-frequency noise reduction has
been detachedly analyzed in the present work. Although
this is not a realistic scenario, since EGMs also present
baseline wandering, power-line interference and far-
field ventricular contamination, a more accurate per-
formance assessment of the proposed denoising
algorithms is achieved in this way.10 Nonetheless, given
that these nuisance interferences could also be removed
by using WT-based approaches,27,43,47 the development
of an unified methodology to obtain a compact, simple
and computationally light preprocessing approach both
for unipolar and bipolar EGMs will be explored in fu-
ture works. Similarly, other alternative denoising
algorithms, such as adaptive noise cancellation, will
also be assessed within this context.

CONCLUSIONS

Regular filtering applied both to unipolar and bipolar
EGMs has altered substantially atrial waveform mor-
phology and spectral properties, thus providing dis-
torted information to later analysis as well as stages of
cardiac electrophysiology systems. Moreover, it has
proven reduced ability to remove moderate levels of
noise. Contrarily, denoising algorithms based on Wa-
velet transform have shown a great capability to reduce
huge levels of noise preserving EGM time morphology
and spectral distribution. Hence, the use of an adequate
preprocessing is recommended in routine EGM acqui-
sition. In this way, undistorted informationmay provide
new insights about the mechanisms triggering and
maintainingAF, thus improving current understanding,
management and treatment of the arrhythmia.

ELECTRONIC SUPPLEMENTARY MATERIAL

The online version of this article (doi:10.1007/s10439-
017-1832-6) contains supplementary material, which is
available to authorized users.

ACKNOWLEDGMENTS

This work was supported by the projects TEC2014-
52250-R from the Spanish Ministry of Economy and
Competitiveness and PPII-2014-026-P from Junta de
Comunidades de Castilla–La Mancha.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

1Addison, P. S. Wavelet transforms and the ECG: a review.
Physiol. Meas. 26(5):R155–R199, 2005.
2Aksu, T., T. E. Guler, K. Yalin, and A. Oto. Unanswered
questions in complex fractionated atrial electrogram abla-
tion. Pacing Clin. Electrophysiol. 39(11):1269–1278, 2016.
3Alcaraz, R., F. Hornero, and J. J. Rieta. Assessment of
non-invasive time and frequency atrial fibrillation organi-
zation markers with unipolar atrial electrograms. Physiol.
Meas. 32(1):99–114, 2011.
4Atienza, F., J. Almendral, J. Jalife, S. Zlochiver, R. Ploutz-
Snyder, E. G. Torrecilla, A. Arenal, J. Kalifa, F. Fernán-
dez-Avilés, and O. Berenfeld. Real-time dominant fre-
quency mapping and ablation of dominant frequency sites
in atrial fibrillation with left-to-right frequency gradients
predicts long-term maintenance of sinus rhythm. Heart
Rhythm 6(1):33–40, 2009.
5Atienza, F., J. Almendral, J. Moreno, R. Vaidyanathan, A.
Talkachou, J. Kalifa, A. Arenal, J. P. Villacastı́n, E. G.
Torrecilla, A. Sánchez, R. Ploutz-Snyder, J. Jalife, and O.
Berenfeld. Activation of inward rectifier potassium chan-
nels accelerates atrial fibrillation in humans: evidence for a
reentrant mechanism. Circulation 114(23):2434–2442, 2006.
6Blanco-Velasco, M., B. Weng, and K. E. Barner. ECG
signal denoising and baseline wander correction based on
the empirical mode decomposition. Comput. Biol. Med.
38(1):1–13, 2008.
7Boardman, A., F. S. Schlindwein, A. P. Rocha, and A.
Leite. A study on the optimum order of autoregressive
models for heart rate variability. Physiol. Meas. 23(2):325–
336, 2002.
8Botteron, G. W. and J. M. Smith. A technique for mea-
surement of the extent of spatial organization of atrial
activation during atrial fibrillation in the intact human
heart. IEEE Trans. Biomed. Eng. 42(6):579–586, 1995.
9Castells, F., R. Cervigón, and J. Millet. On the prepro-
cessing of atrial electrograms in atrial fibrillation: under-
standing Botteron’s approach. Pacing Clin. Electrophysiol.
37(2):133–143, 2014.

10Chang, K.-M. Ensemble empirical mode decomposition for
high frequency ECG noise reduction. Biomed. Tech. (Berl.)
55(4):193–201, 2010.

11Chen, S.-W. and Y.-H. Chen. Hardware design and
implementation of a wavelet de-noising procedure for
medical signal preprocessing. Sensors (Basel) 15(10):
26396–26414, 2015.

12Chugh, S. S., R. Havmoeller, K. Narayanan, D. Singh, M.
Rienstra, E. J. Benjamin, R. F. Gillum, Y.-H. Kim, J. H.
McAnulty, Jr, Z.-J. Zheng, M. H. Forouzanfar, M. Na-
ghavi, G. A. Mensah, M. Ezzati, and C. J. L. Murray.
Worldwide epidemiology of atrial fibrillation: a Global
Burden of Disease 2010 Study. Circulation 129(8):837–847,
2014.

13Ciaccio, E. J., A. B. Biviano, and H. Garan. Computa-
tional method for high resolution spectral analysis of
fractionated atrial electrograms. Comput. Biol. Med.
43(10):1573–1582, 2013.

14Corino, V. D. A., M. W. Rivolta, R. Sassi, F. Lombardi,
and L. T. Mainardi. Ventricular activity cancellation in
electrograms during atrial fibrillation with constraints on
residuals’ power. Med. Eng. Phys. 35(12):1770–1777, 2013.

15de Bakker, J. M. T. and F. H. M. Wittkampf. The
pathophysiologic basis of fractionated and complex elec-
trograms and the impact of recording techniques on their

Waveform Integrity in Atrial Fibrillation 1905

http://dx.doi.org/10.1007/s10439-017-1832-6
http://dx.doi.org/10.1007/s10439-017-1832-6


detection and interpretation. Circ. Arrhythm. Electrophys-
iol. 3(2):204–213, 2010.

16Donoho, D. and I. Johnstone. Ideal spatial adaptation by
wavelet shrinkage. Biometrika 81:425–455, 1994.

17Donoho, D. and I. Johnstone. Adapting to unknown
smoothness via wavelet shrinkage. J. Am. Stat. Assoc.
90:1200–1224, 1995.

18Everett, IV, T. H., L. C. Kok, R. H. Vaughn, J. R.
Moorman, and D. E. Haines. Frequency domain algorithm
for quantifying atrial fibrillation organization to increase
defibrillation efficacy. IEEE Trans. Biomed. Eng. 48(9):
969–978, 2001.

19Faes, L., G. Nollo, R. Antolini, F. Gaita, and F. Ravelli. A
method for quantifying atrial fibrillation organization
based on wave-morphology similarity. IEEE Trans.
Biomed. Eng. 49(12 Pt 2):1504–1513, 2002.

20Flandrin, P., G. Rilling, and P. Goncalves. Empirical mode
decomposition as a filter bank. IEE Signal Process. Lett.
11:112–114, 2004.

21Gutiérrez-Gnecchi, J. A., R. Morfin-Magana, D. Lorias-
Espinoza, A. C. Tellez-Anguiano, E. Reyes-Archundia, A.
Méndez-Patino, and R. Castaneda-Miranda. DSP-based
arrhythmia classification using wavelet transform and
probabilistic neural network. Biomed. Signal Process.
Control 32:44–56, 2017.

22Haı̈ssaguerre, M., M. Hocini, A. Denis, A. J. Shah, Y.
Komatsu, S. Yamashita, M. Daly, S. Amraoui, S. Zeller-
hoff, M.-Q. Picat, A. Quotb, L. Jesel, H. Lim, S. Ploux, P.
Bordachar, G. Attuel, V. Meillet, P. Ritter, N. Derval, F.
Sacher, O. Bernus, H. Cochet, P. Jaı̈s, and R. Dubois.
Driver domains in persistent atrial fibrillation. Circulation
130(7):530–538, 2014.

23Heijman, J., V. Algalarrondo, N. Voigt, J. Melka, X. H. T.
Wehrens, D. Dobrev, and S. Nattel. The value of basic
research insights into atrial fibrillation mechanisms as a
guide to therapeutic innovation: a critical analysis. Car-
diovasc. Res. 109(4):467–479, 2016.

24Houben, R. P. M. and M. A. Allessie. Processing of
intracardiac electrograms in atrial fibrillation. Diagnosis of
electropathological substrate of AF. IEEE Eng. Med. Biol.
Mag. 25(6):40–51, 2006.

25Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih,
Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu. The
empirical mode decomposition and the Hilbert spectrum
for nonlinear and non-stationary time series analysis. Proc.
R. Soc. Lond. A 454:903–995, 1998.

26Issa, Z. F., J. W. Miller, and D. P. Zipes. Clinical Arrhyth-
mology and Electrophysiology: A Comparison to Braunwald’s
Heart Disease, 2nd ed. Amsterdam: Elsevier, 2012.

27Jenkal, W., R. Latif, A. Toumanari, et al. An efficient
algorithm of ECG signal denoising using the adaptive dual
threshold filter and the discrete wavelet transform. Biocy-
bern. Biomed. Eng. 36(3):499–508, 2016.

28Kabir, M. A. and C. Shahnaz. Denoising ECG signals
based on noise reduction algorithms in EMD and wavelet
domains. Biomed. Signal Process. Control 7:481–489, 2012.

29Koutalas, E., S. Rolf, B. Dinov, S. Richter, A. Arya, A.
Bollmann, G. Hindricks, and P. Sommer. Contemporary
mapping techniques of complex cardiac arrhythmias–
identifying and modifying the arrhythmogenic substrate.
Arrhythm. Electrophysiol. Rev. 4(1):19–27, 2015.

30Lahmiri, S. Comparative study of ECG signal denoising by
wavelet thresholding in empirical and variational mode
decomposition domains. Healthc. Technol. Lett. 1(3):104–
109, 2014.

31Lian, J., G. Garner, D. Muessing, and V. Lang. A simple
method to quantify the morphological similarity between
signals. Signal Process. 90:684–688, 2010.

32Liang, H., Q.-H. Lin, and J. D. Z. Chen. Application of the
empirical mode decomposition to the analysis of esopha-
geal manometric data in gastroesophageal reflux disease.
IEEE Trans. Biomed. Eng. 52(10):1692–1701, 2005.

33Luo, S. and P. Johnston. A review of electrocardiogram
filtering. J. Electrocardiol. 43(6):486–496, 2010.

34Mallat, S. AWavelet Tour of Signal Processing. Burlington:
Academic Press, 1999.

35Narayan, S. M. and J. A. B. Zaman. Mechanistically based
mapping of human cardiac fibrillation. J. Physiol.
594(9):2399–2415, 2016.

36Nedios, S., P. Sommer, A. Bollmann, and G. Hindricks.
Advanced mapping systems to guide atrial fibrillation
ablation: electrical information that matters. J. Atr. Fib-
rillation 8(6):1337, 2016.

37Ng, J., A. I. Borodyanskiy, E. T. Chang, R. Villuendas, S.
Dibs, A. H. Kadish, and J. J. Goldberger. Measuring the
complexity of atrial fibrillation electrograms. J. Cardiovasc.
Electrophysiol. 21(6):649–655, 2010.

38Ng, J. and J. J. Goldberger, eds. Intracardiac electrograms.
In Practical Signal and Image Processing in Clinical Car-
diology. London: Springer, 2010, pp. 319–348.

39Ng, J., A. H. Kadish, and J. J. Goldberger. Technical
considerations for dominant frequency analysis. J. Car-
diovasc. Electrophysiol. 18(7):757–764, 2007.

40Ng, J., V. Sehgal, J. K. Ng, D. Gordon, and J. J. Gold-
berger. Iterative method to detect atrial activations and
measure cycle length from electrograms during atrial fib-
rillation. IEEE Trans. Biomed. Eng. 61(2):273–278, 2014.

41Nollo, G., M. Marconcini, L. Faes, F. Bovolo, F. Ravelli,
and L. Bruzzone. An automatic system for the analysis and
classification of human atrial fibrillation patterns from
intracardiac electrograms. IEEE Trans. Biomed. Eng.
55(9):2275–2285, 2008.

42Oesterlein, T. G., G. Lenis, D.-T. Rudolph, A. Luik, B.
Verma, C. Schmitt, and O. Dössel. Removing ventricular
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46Ravelli, F., M. Masè, A. Cristoforetti, M. Marini, and M.
Disertori. The logical operator map identifies novel candi-
date markers for critical sites in patients with atrial fibril-
lation. Prog. Biophys. Mol. Biol. 115(2–3):186–197, 2014.

47Sanchez, C., J. J. Rieta, F. Castells, J. Ródenas, and J.
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