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Abstract—Although tremor is the most common movement
disorder, there exist few effective tremor-suppressing devices,
in part because the characteristics of tremor throughout the
upper limb are unknown. To clarify, optimally suppressing
tremor requires a knowledge of the mechanical origin,
propagation, and distribution of tremor throughout the
upper limb. Here we present the first systematic investigation
of how tremor propagates between the shoulder, elbow,
forearm, and wrist. We simulated tremor propagation using a
linear, time-invariant, lumped-parameter model relating joint
torques and the resulting joint displacements. The model
focused on the seven main degrees of freedom from the
shoulder to the wrist and included coupled joint inertia,
damping, and stiffness. We deliberately implemented a
simple model to focus first on the most basic effects.
Simulating tremorogenic joint torque as a sinusoidal input,
we used the model to establish fundamental principles
describing how input parameters (torque location and
frequency) and joint impedance (inertia, damping, and
stiffness) affect tremor propagation. We expect that the
methods and principles presented here will serve as the
groundwork for future refining studies to understand the
origin, propagation, and distribution of tremor throughout
the upper limb in order to enable the future development of
optimal tremor-suppressing devices.

Keywords—Essential tremor, Parkinson’s disease, Tremor

suppression, System dynamics, Frequency response, Impe-

dance.

INTRODUCTION

Tremor is the most common movement disorder2,17

and results from an interaction between pathological
neural control and the frequency response of the
limb.21,28,29 The two leading conditions that cause
tremor in the upper limb are essential tremor and

Parkinson’s disease. Other conditions that can cause
tremor include dystonia, cerebellar ataxia, traumatic
brain injury, stroke, and multiple sclerosis.2 More than
65% of the population with upper limb tremor present
serious difficulties performing daily living activities
such as eating, buttoning a shirt, writing, etc.40

Unfortunately, medication and surgical interven-
tions are only partially effective, and patients have few
non-invasive treatment options. For example, the only
two medications with unequivocal efficacy in treating
essential tremor, propranolol (a beta-blocker) and
primidone (an anti-convulsant), reduce the tremor by
only 50%, and only 50% of patients benefit from one
or both of these medications.16,46 Patients who do not
respond favorably to medication may be eligible for
deep brain stimulation (DBS), which provides 55–90%
tremor reduction46 and is effective in 70–90% of
patients, though its efficacy is gradually lost in some
patients.16 However, despite its efficacy, DBS is by no
means an optimal solution because of its highly inva-
sive nature. Many patients prefer to suffer the debili-
tating consequences of tremor rather than undergo
neurosurgery.

A significant obstacle to developing effective tre-
mor-suppressing devices is that the characteristics of
tremor are not known throughout the upper limb.
Given the challenges associated with medications and
DBS, it is important to give patients non-pharmaco-
logical, non-surgical alternatives. Yet there is a sur-
prising lack of effective tremor-suppressing devices.
Optimally suppressing tremor requires a knowledge of
tremor throughout the upper limb: where in the upper-
limb the tremor originates (mechanically), how it
propagates, and where it manifests most severely.
However, most studies have only investigated tremor
in a single degree of freedom (most often either at the
endpoint of outstretched arms or in wrist flexion–ex-
tension). Therefore, the origin, propagation, and dis-
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tribution of tremor are currently unknown, greatly
limiting our ability to effectively reduce tremor with
tremor-suppressing devices.

Tremor propagates because of the mechanics of the
limb. Whatever the neural origins may be, at the joint
level all types of tremor (pathological or physiologi-
cal) can be reduced to recurring joint torque that
drives the recurring joint motion we call tremor. The
amplitude of the tremor depends on the amplitude of
the joint torque and the mechanics of the limb. Thus
the relationship between torque, limb, and tremor can
be thought of as an input (joint torque) that acts on a
system (limb), producing an output (tremor). In other
words, the limb acts as a filter that attenuates, passes,
or amplifies the effect of the joint torque. Therefore,
limb mechanics play a significant role in shaping
(attenuating, passing, or amplifying) the amplitude of
all types of tremor. Note that amplification occurs
through resonance, which—depending on the
mechanics of the limb and the frequency of the input
torque—can occur in (and increase the amplitude of)
any type of tremor, be it pathological or physiologi-
cal. Importantly, limb mechanics not only shape tre-
mor amplitude at the joint where the recurring joint
torque acts; because movement in one joint affects
movement at other joints through interaction torques,
the mechanics of the limb also spread the tremor to
other joints, causing the tremor to propagate. Thus
tremor propagation is part of the mechanism through
which recurring joint torque creates tremor through-
out the limb, including clinically relevant endpoint
tremor.

The long-term objective of this work is to under-
stand the origin, propagation, and distribution of tre-
mor throughout the upper limb in order to enable the
future development of optimal tremor-suppressing
devices. Here we present basic principles underlying
the propagation of tremor throughout the upper limb.
As this is the first systematic investigation of tremor
propagation of which we are aware, we deliberately
chose a simple model to focus first on the most basic
effects. We simulated tremor propagation using a lin-
ear time-invariant (LTI), lumped-parameter model of
the relationship between joint torques and the resulting
joint displacements. The model included the seven
main degrees of freedom (DOF) from the shoulder to
the wrist and included coupled joint inertia, damping,
and stiffness. We used the model to establish the fun-
damental principles that govern how tremor source
parameters (input torque location and frequency) and
joint impedance (inertia, damping, stiffness) affect
tremor propagation. Because limb mechanics spread
all types of tremor, the principles presented here are
relevant to all types of tremor (pathological or physi-
ological).

METHODS

Model of Upper Limb Dynamics

Model Development

To establish the most fundamental principles of
tremor propagation, we used the arguably simplest
possible model between input torques and output dis-
placements that can capture the phenomenon of tre-
mor propagation. A linear model was used because
tremor consists of relatively small displacements
around an equilibrium point. Prior studies have shown
that linear models can effectively capture the key ele-
ments of the dynamics of small upper limb move-
ments.3,37 In addition, LTI models allow for the use of
principles and tools from linear systems theory,
including frequency response (see below).

Model Structure

The musculoskeletal dynamics of the upper limb
were modeled as I€qþD _qþ Kq ¼ s, where q ¼ ½q1 q2
q3 q4 q5 q6 q7�T represents angular displacement in each
DOF, positive in shoulder flexion (q1), shoulder
adduction (q2), shoulder internal rotation (q3), elbow
flexion (q4), forearm pronation (q5), wrist flexion (q6),
and wrist ulnar deviation (q7) (Fig. 1); I, D, and K are
7-by-7 impedance matrices representing the coupled
inertia, damping, and stiffness in these DOF, respec-

tively; and s ¼ s1 s2 s3 s4 s5 s6 s7½ �T represents the input
torque (arising from muscle activity) acting on each
DOF.

The diagonal elements of the impedance matrices (I,
D, and K) specify the relationship between torque and
displacement in the same DOF, whereas the off-diag-
onal elements represent the relationship between tor-
que and displacement in different DOF. Therefore, the
off-diagonal elements specify how the DOF of the
upper limb are coupled to each other, which is
important to this study since coupling enables tremor
propagation. Which off-diagonal elements of the
inertia matrix are non-zero (and therefore facilitate
coupling) is not easily predicted, so we used software
that implemented the iterative Newton–Euler method7

in conjunction with prior measurements of inertia of
individual segments (details below). Stiffness and
damping in non-extreme joint postures are due to
muscle stretch, and the off-diagonal elements, which
couple the DOF, represent multi-articular muscles.24

Therefore, which off-diagonal elements of the stiffness
and damping matrices are non-zero is easily predicted
from a knowledge of muscle origin and insertion
points. However, some DOF share multi-articular
muscles but may experience weak or even negligible
coupling, for example because the muscle moment
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arms are small. We determined the degree of coupling
from prior measurements, if available, or tested a wide
variety of plausible values (details below).

Model Parameters

The full 7-by-7 inertia, damping, and stiffness
matrices are not available in the literature, so we
assembled them from prior studies that measured
portions of the matrices (Table 1). Although we esti-
mated values as accurately as possible, the exact values
are not critical because we also performed a thorough
sensitivity analysis to determine the effect of uncer-
tainty in our values.

Inertia: Prior measurements of inertial values for
individual body segments were used in conjunction
with the Robotics Vision and Control (RVC) toolbox6

to calculate the full inertia matrix, including coupling
between segments. The RVC toolbox is a toolbox for
Matlab (Mathworks, Natick, MA) that is freely
available6 and thoroughly documented.6 The body-
segment inertial parameters were taken from Ref. 8
using values for a 50th percentile male. The coupled
inertia matrix was calculated for different postures (see
below) via Denavit–Hartenberg (DH) parameters44

using the RVC toolbox, which implemented the itera-
tive Newton–Euler method7 (Fig. 2; Table 2).

Stiffness: We started with purely passive stiffness
(no muscle activity) but later added active stiffness to
model co-contraction (see below). The diagonal and
off-diagonal values corresponding to planar shoulder–
elbow movements were taken from the torque-depen-
dent regression by Ref. 19, with zero torque for passive
stiffness. To estimate the remaining diagonal and off-
diagonal elements of the sub-matrix for the shoulder
and elbow, we scaled a recent measurement of passive
stiffness in the 3 DOF of the shoulder31 to match the
values from Ref. 19. The 3-by-3 sub-matrix repre-
senting wrist and forearm stiffness was taken from Ref.
14. The unknown off-diagonal stiffness representing
coupling between the shoulder–elbow and the fore-
arm–wrist systems were initially assumed zero but then
changed to a variety of non-zero values in the sensi-
tivity analysis. Many studies have shown joint stiffness
to be nearly symmetric.14,24,36 To simplify the analysis,
we used in our simulations only the symmetric part of
the stiffness matrix, calculated as the average of the
matrix and its transpose.

Damping: Only few elements of the 7-by-7 damping
matrix have been measured. However, several past
shoulder–elbow studies have found the shape and
orientation of the damping and stiffness ellipses to be
similar,13,39,45 indicating that the matrices are roughly
proportional. Therefore, some past studies involving
few DOF have approximated the damping matrix to be
proportional to the stiffness matrix, the proportional-
ity constant chosen so the new matrix would match
past measurements of individual matrix elements or
damping ratios.4,41 However, our 7-by-7 matrix
involves different sets of multi-articular muscles, and it
became clear that a single constant of proportionality
was unable to match previously measured damping
ratios. Therefore, we used one constant of propor-
tionality (0.07 s) for the 4-by-4 submatrix representing
the shoulder–elbow system, and a different constant of
proportionality (0.028 s) for the 3-by-3 submatrix
representing the forearm–wrist system. The other off-
diagonal values are unknown and were initially
assumed zero but later varied through a range of non-

Posture 1

Posture 4Posture 3Posture 2

1. Sho flex-ext 
2. Sho abd-add
3. Sho int-ext rot 6. Wrist flex-ext

7. Wrist rad-uln dev

4. Elbow flex-ext
5. Forearm pro-sup

FIGURE 1. Degrees of freedom (DOF) and postures included
in our study. Our model of the upper limb included seven
DOF, designated by their like-colored axes of rotation:
Shoulder flexion–extension, shoulder abduction–adduction,
shoulder internal–external rotation, elbow flexion–extension,
forearm pronation–supination, wrist flexion–extension, and
wrist radial–ulnar deviation. Posture 1 is the default posture,
and postures 2–4 were used to test the effect of changing
posture on tremor propagation. Posture 2 places the hand in
front of the mouth and represents feeding and grooming
activities. In Posture 3 the hand is in the workspace in front of
the abdomen and represents many activities of daily living
requiring fine manipulation. Posture 4 represents reaching
tasks. Joint angles for each posture are given in Table 2.
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zero values in the sensitivity analysis. Using two dif-
ferent constants of proportionality allowed shoulder–
elbow damping and forearm–wrist damping to be
proportional to shoulder–elbow stiffness and forearm–
wrist stiffness, respectively, and for the range of the
resulting single-DOF damping ratios (0.18–0.42) to
match the range measured previously (0.14–
0.48).20,27,39,43

Input–Output Relationships

Our model has seven inputs (a torque in each DOF)
and seven outputs (a displacement in each DOF). In
such a multiple-input–multiple-output model, every
input has the potential to affect every output. The
relationships between inputs and outputs are given by
transfer functions, derived using basic linear systems
theory35 as follows. Our model I€qþD _qþ Kq ¼ s can
be transformed into the Laplace domain as

ðIs2 þDsþ KÞQ sð Þ ¼ TðsÞ, where Q and T are the
Laplace transforms of q and s, respectively, and s is the
Laplace variable. Summarizing Is2 + Ds + K as Z(s)

and solving for Q yields Q ¼ Z�1T. Defining the
transfer function matrix G(s) as Z21 yields Q ¼ GT. G
is a 7-by-7 matrix with 49 transfer functions, one for
each input–output relationship, i.e. Qi/k = GikTk,

x1=z2  

x3=x4  

x5 =z6 x6  

y3=z4  

y1=x2  

y6  

y4  

y5  

z5  

z3  

z1=y2  

(c)(a) (b)

FIGURE 2. Kinematic description of the upper limb using the
Denavit–Hartenberg (DH) convention. To calculate the full,
coupled inertia matrix, we modeled the seven main degrees of
freedom of the shoulder, elbow, forearm, and wrist as revolute
joints (a, b) and converted the model to DH parameters
(Table 2) using the intermediate coordinate frames defined in
(c). Adapted from Ref. 12.

TABLE 1. Joint inertia, damping, and stiffness matrices used for basic simulations involving posture 1 (other values were tested
in the sensitivity analysis).

SFE SAA SIER EFE FPS WFE WRUD

Inertia (kg m2)

SFE 0.269 0 0 0.076 0 0 20.014

SAA 0 0.196 0.083 0 20.002 0.009 0

SIER 0 0.083 0.079 0 0 0.011 0

EFE 0.076 0 0 0.076 0 0 20.012

FPS 0 20.002 0 0 0.002 0 0

WFE 0 0.009 0.011 0 0 0.003 0

WRUD 20.014 0 0 20.012 0 0 0.003

Damping (Nms/rad)

SFE 0.756 0.184 0.020 0.187 0 0 0

SAA 0.184 0.383 0.267 0 0 0 0

SIER 0.020 0.267 0.524 0 0 0 0

EFE 0.187 0 0 0.607 0 0 0

FPS 0 0 0 0 0.021 0.001 0.008

WFE 0 0 0 0 0.001 0.028 20.003

WRUD 0 0 0 0 0.008 20.003 0.082

Stiffness (Nm/rad)

SFE 10.80 2.626 0.279 2.670 0 0 0

SAA 2.626 5.468 3.821 0 0 0 0

SIER 0.279 3.821 7.486 0 0 0 0

EFE 2.670 0 0 8.670 0 0 0

FPS 0 0 0 0 0.756 0.018 0.291

WFE 0 0 0 0 0.018 0.992 20.099

WRUD 0 0 0 0 0.291 20.099 2.920

For each matrix, element ij (row, column) represents the change in torque in DOF i associated with a change in acceleration, velocity, or

position (for inertia, damping, or stiffness, respectively) in DOF j. The abbreviations represent shoulder flexion–extension (SFE), shoulder

abduction–adduction (SAA), shoulder internal–external rotation (SEIR), elbow flexion–extension (EFE), forearm pronation–supination (FPS),

wrist flexion–extension (WFE), and wrist radial–ulnar deviation (WRUD).
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where Qi/k is the output in DOF i due to an input in
DOF k. Each transfer function has the same 14th order
denominator, but generally different numerators. The
total output at each DOF is a linear combination of
the inputs at each DOF, the weights of the linear
combination being the transfer functions associated

with that output: Qi ¼
P7

k¼1 GikTk.

Note that because our impedance matrices are
symmetric, the transfer function matrix is symmetric.
Human joint impedance is roughly symmetric; inertia
is symmetric by definition,18 and many studies have
shown joint stiffness to be nearly symmetric.14,24,36 In
our model, I, D, and K are perfectly symmetric, so Z is
symmetric, and consequently G as well (the inverse of a
symmetric matrix is symmetric). Therefore, Gik = Gki,

or
Qi=kðsÞ
TkðsÞ ¼ Qk=iðsÞ

TiðsÞ . If the inputs are equal, qi/k(t) = qk/i(t).

In other words, the response in DOF i to an input in
DOF k is the same as the response in DOF k to an
equal input in DOF i. As a corollary, the responses in
all DOF due to an input in DOF i are the same as the
individual responses in DOF i due to equal inputs in all
DOF.

Frequency Response

According to basic linear systems theory,35 if the
inputs are sinusoidal, the relationships between inputs
and outputs can be specified in terms of magnitude
ratios and phase shifts. If the input in DOF k is
sk(t) = Ak sin (xkt + /k), it can be shown35 that the
steady-state output in DOF i is also sinusoidal:
qi=k tð Þ ¼ MikAk sin xktþ /k þ /ikð Þ, with the same

frequency (xk) but amplitude MikAk and phase shift
/ik relative to the input. Mik is the ratio of the output
magnitude over the input magnitude (called magnitude
ratio) and can be calculated from the transfer function
as a function of the input frequency: Mik(xk) =

|Gik(jxk)|, where j ¼
ffiffiffiffiffiffiffi
�1

p
. Likewise, the phase shift /ik

can be computed from the transfer function as a
function of the input frequency: /ik xkð Þ ¼ ffGikðjxkÞ.35
The total output in DOF i is a linear combination of

the individual outputs: qi tð Þ ¼
P7

k¼1

MikAk sin xktþð

/k þ /ikÞ.30
If the sinusoidal inputs are equal, the relationships

between inputs and outputs can be specified in terms of
a single magnitude ratio and phase shift. To simplify
and place all DOF on equal footing (see ‘‘Discussion’’
section), we assumed equal input torques in all DOF:
sk(t) = A sin (xt) for all k. The output then becomes

qi tð Þ ¼ A
P7

k¼1 Miksin xtþ /ikð Þ; which is itself a

sinusoid: qi(t) = AMi sin (xt + /i). The magnitude
ratio Mi and phase shift /i can be calculated as the
magnitude and direction of the vector sum of the k
individual vectors (phasors) of magnitude Mik and
direction /ik. In practice, Mi and /i are more easily
calculated from the transfer function matrix as follows.
Since all inputs are equal, the expression for Qi above

can be written as Qi ¼
P7

k¼1 Gik

h i
T ¼ GiT. The mag-

nitude ratio and phase shift can be calculated from Gi

as Mi(x) = |Gi(jx)| and /i xð Þ ¼ ffGiðjxÞ. Thus the
output qi due to multiple inputs of equal frequency,
amplitude, and phase is specified by the magnitude

TABLE 2. DH parameters for each posture.

DH parameters

hi di ai ai

Link 1 h1 � p=2 0 0 p/2
Link 2 h2 þ p=2 0 0 p/2
Link 3 h3 þ p=2 2Lua 0 p/2
Link 4 h4 0 0 2p/2
Link 5 h5 2Lfa 0 p/2
Link 6 h6 � p=2 0 0 2p/2
Link 7 h7 0 2Lh 0

Posture 1 Posture 2 Posture 3 Posture 4

h1 0 p/4 p/16 p/5
h2 0 0 2p/16 p/8
h3 0 p/4 p/3 p/8
h4 p/2 3p/4 p/2 p/3
h5 p/2 p/4 p/2 p/4
h6 0 0 0 0

h7 0 0 0 0

Together with Fig. 2c, the angle value (hi), link offset (di), link length (ai), and link twist (ai) fully define each posture. Parameters Lua, Lfa, and

Lh refer to the lengths of the upper arm, forearm, and hand, respectively.
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ratio and phase shift of the sum of the transfer func-
tions Gik associated with output i.

Simulation Protocol

To investigate how tremor propagates, we calcu-
lated from the transfer function matrix the magnitude
ratios and phase shifts of all input–output relation-
ships (see below). This is equivalent to injecting sinu-
soidal torque inputs into all combinations of DOF,
observing the resulting displacement amplitude and
phase in each DOF, and calculating from the inputs
and outputs the magnitude ratios and phase shifts. To
simplify and place all DOF on equal footing, we
assumed torque inputs in all DOF had equal frequency
and phase (see ‘‘Discussion’’ section).

Using this approach, we investigated the following
six questions. (1) Where do tremor frequencies fall on
the frequency response of the upper limb? Tremors
occur most frequently at frequencies between 4 and
12 Hz,11 which we called the tremor band (see
‘‘Discussion’’ section). As an underdamped low-pass
filter, the upper limb passes input torques of low
frequency, amplifies torques of intermediate fre-
quency, and reduces torques of high frequency. To
understand what it does to input torques in the tre-
mor band, we investigated the frequency response of
the upper limb in the tremor band, focusing in par-
ticular on 4, 8, and 12 Hz as frequencies representing
the tremor band. (2) Does tremor propagate mostly
because of inertial, damping, or stiffness coupling?
Tremor propagates because the off-diagonal elements
of the inertia, damping, and stiffness matrices couple
the DOF. Does one of these matrices cause most of
the coupling? To answer this question, we ran simu-
lations with and without the diagonal elements of
these matrices. (3) Does tremor spread to all DOF, or
does it focus in certain DOF? The coupling between
DOF spreads the tremor, but the spreading may be
narrow or broad (i.e. to few or many DOF, respec-
tively). (4) Does tremor propagation change from
proximal to distal? Prior studies have found proxi-
mal–distal differences in movement characteristics due
to differences in impedance.4,41 Do these differences
in impedance cause differences in tremor propagation
as well?

Prior experimental studies have investigated the ef-
fect of increasing impedance on tremor.1,15,17,22,23,32,34

We simulated these effects with the following ques-
tions. (5) How does inertial loading affect tremor
propagation? We simulated inertial loading by scaling
the entire inertia matrix by a factor ranging from 1.0 to
3.0, in increments of 0.2. (6) How does viscoelastic
loading affect tremor propagation? Increasing the vis-
coelasticity of the limb can occur through bracing or

muscle contraction. Bracing the upper limb may increase
stiffness, damping, or both. Common commercially
available wrist braces increase wrist stiffness by a factor
of roughly 1.8,42 but custom-made braces could be sig-
nificantly stiffer. To represent a range of possible braces,
we increased only stiffness, only damping, and both
stiffness and damping, all by factors ranging from 1.0 to
10.0, in increments of 0.5. Muscle contraction increases
stiffness in proportion to muscle torque, but it increases
damping in proportion to the square root of muscle
torque, leaving the damping ratio approximately con-
stant.19,39 We simulated co-contraction by increasing the
stiffness matrix by a factor of 1–10 (in increments of 0.5)
and the damping matrix by the square root of that factor.
Prior measurements of stiffness in wrist flexion–extension
during torque production have found that a 1–10 in-
crease in stiffness are associated with torques from 0 to
2.1 Nm,9,10,26 which is about 27% of the maximum
voluntary torque in wrist FE.5

Data Processing and Analysis

To calculate the magnitude ratios and phase shifts
for all input–output combinations, we first trans-
formed our model (I€qþD _qþ Kq ¼ s) into state space
form Ref. 35:

_x ¼ Asxþ Bss and y ¼ CsxþDss

where x ¼ q
_q

� �

, As ¼
F E

�I�1K �I�1D

� �

, Bs ¼
F
I�1

� �

,

Cs ¼ E F½ �, and Ds = F.

E and F are 7-by-7 identity and zero matrices,
respectively. We implemented this state-space model in
Matlab using the ss function: sys ss ¼ ssðAs;Bs;
Cs;DsÞ. We then used the tf function to derive the
transfer function matrix: G = tf(sys_ss). Finally, we
determined the magnitude ratios and phase shifts from
G using the bode function. Magnitude ratio and phase
shift were plotted as functions of frequency. Please
note that the magnitude ratio vs. frequency plot is not
a power spectrum plot of the tremor; rather, it
demonstrates how the limb filters (attenuates, passes,
or amplifies) joint torque at each frequency. As stated
above, the denominator of each transfer function is a
14th order polynomial in the Laplace variable s, indi-
cating that our system has 14 poles. The system is
underdamped; there are seven pairs of complex poles,
each with a natural frequency and damping ratio. Note
that these natural frequencies and damping ratios be-
long to the system as a whole and cannot be assigned
to individual DOF. The natural frequencies and
damping ratios of the system were determined from G
using Matlab’s damp function. The resonance fre-
quency of each pole was calculated as xr ¼ xn

A. D. DAVIDSON AND S. K. CHARLES1138



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2f2

p
, where xn and f represent the natural fre-

quency and damping ratio associated with that pole.35

Sensitivity Analysis

To determine the effect of uncertainty in our model
parameters and test the robustness of our results, we
repeated the simulations with variations in inertia,
damping, and stiffness. First, we tested inertia, damping,
and stiffness matrices at half and twice their original
values, scaled individually and in combinations. Second,
we tested the sensitivity of our results to individual ma-
trix elements by calculating at 4, 8, and 12 Hz the slope
of the magnitude ratio with respect to each element of
each impedance matrix. The slope was computed as the
difference derivative from 0.9 to 1.1 times the original
value of the matrix element. We identified the most
sensitive matrix elements as those with a slope magnitude
greater than 0.1 (meaning that multiplying or dividing
this matrix element by x increased or decreased the
magnitude ratio by 0.1x or more), and we repeated
simulations at half and twice the original value of these
individual matrix elements. Third, we replaced the un-
known off-diagonal values of the stiffness matrix (ini-
tially assumed zero) with values ranging from small
(0.01) to very large (the average of the two corresponding
diagonal values), including both positive and negative
versions of these values. Since the off-diagonal values of
the stiffness matrix are usually considerably smaller than
the diagonal values, this range in off-diagonal values is
likely larger than the actual range. The damping matrix
was calculated by scaling the stiffness matrix, as de-
scribed above. To determine the off-diagonal values of
the damping matrix that did not belong to the shoulder–
elbow system or the forearm–wrist system, we scaled
using an average of the two constants of proportionality.
Fourth, to ensure that any proximal–distal differences
were not caused by calculating the damping matrix using
different constants of proportionality for the shoulder–
elbow and forearm–wrist systems, we repeated our sim-
ulations using only one constant (either 0.07 or 0.028) for
the whole matrix.

To determine the effect of posture on our results, we
also repeated our simulations at a variety of postures
(Fig. 1). Changes in posture only affected the inertia
matrix. Adjustments to the inertia matrix were calcu-
lated by adjusting the DH parameter joint angle values
(h) of eachDOF for each posture (Table 2). The stiffness
and damping matrices were modeled as posture-inde-
pendent since past measurements of postural stiffness
have found short-range stiffness to be largely indepen-
dent of joint angle.25,38 The postures in Fig. 1 were
chosen as a sample of the most common postures
encountered in activities of daily living. We deliberately

avoided postures near the limit of the range of motion,
where stiffness and damping change significantly. At
each posture, we also tested neighboring postures by
varying the angle of eachDOF through a range of±15�.

RESULTS

Simulations

Findings are presented as answers to the six ques-
tions posed above (see ‘‘Simulation Protocol’’ section).

Where do tremor frequencies fall on the frequency
response of the upper limb? The full, coupled 7-DOF
system can be characterized by its natural frequencies,
damping ratios, and resonance frequencies (which be-
long to the system as a whole and cannot be assigned
to individual DOF). The natural frequencies lay below
or in the tremor band: 0.67, 1.08, 1.63, 1.90, 3.22, 4.77,
and 6.98 Hz. The associated damping ratios (listed in
the same order) were 0.15, 0.24, 0.31, 0.40, 0.29, 0.56,
and 0.68 (the range mentioned in ‘‘Methods’’ section
refers to the damping ratios of individual DOF in
isolation, similar to how they were measured). All

damping ratios were below 1=
ffiffiffi
2

p
, resulting in reso-

nance at the following frequencies (also listed in the
same order): 0.65, 1.02, 1.46, 1.57, 2.94, 2.90, and
1.75 Hz. Due to superposition and some relatively high
damping ratios (0.56 and 0.68), Fig. 3a exhibits clearly
identifiable peaks at only some of these frequencies.

Note that most of the changes in magnitude ratio
between DOF occurred at frequencies below the tre-
mor band. Although the magnitude ratio continues to
change in the tremor band, lines rarely cross in the
tremor band, indicating that the order of output
magnitudes is stable in the tremor band. In other
words, statements about which DOF have the greatest
magnitude ratios are relatively robust for any fre-
quency in the tremor band. How the individual
responses combine in a given DOF depends on the
phase shift (Fig. 3b) as well, since responses may add
constructively or destructively (Fig. 3c).

Does tremor propagate mostly because of inertial,
damping, or stiffness coupling? Most of the coupling is
inertial—removing the off-diagonal elements of the
stiffness and damping matrices only had a minor effect
(Fig. 3d). Because the coupling is mostly inertial, it is
somewhat predictable; DOF with parallel axes are cou-
pled (assuming centers of mass are located off-axis). For
example, input in shoulder internal rotation affects wrist
flexion–extension because their axes are parallel. How-
ever, DOF do not need to have parallel axes to affect
each other; input in shoulder adduction produces tremor
in shoulder internal rotation and wrist flexion, neither of
which have axes parallel to shoulder adduction.
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FIGURE 3. Frequency response of all input–output relationships. Row i presents the frequency response for an input in DOF i
(row label) and output in DOF k (color—see legend). Because the transfer function matrix is symmetric, row i also presents the
frequency response for an input in DOF k (color) and output in DOF i (row label). (a) Magnitude ratio, i.e. the ratio of the output
(tremor) over the input (torque). The tremor band (4–12 Hz) is emphasized in white. (b) Phase shift of the output relative to the
input. (c) Phasor plots for an input frequency of 8 Hz. The magnitude and phase of each phasor is the same as the magnitude ratio
and phase shift of the like-colored lines (on the same row), evaluated at 8 Hz. (d) Magnitude ratio at 8 Hz vs. DOF. Each plot shows
the magnitude ratios for an input in DOF i (row label) and output in DOF k (x-axis), which is the same as the magnitude ratios for an
input in DOF k (x-axis) and output in DOF i (row label). Red and orange circles were calculated using the full (coupled) and diagonal
(uncoupled) stiffness and damping matrices, respectively.
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Does tremor spread to all DOF, or does it focus in
certain DOF? Tremor spreads in a relatively narrow
manner: an input torque in a given DOF propagates
mostly to a small subset of DOF (Fig. 3d). Since the
transfer matrix is symmetric (see ‘‘Methods’’ section),
the converse is also true: inputs in only some DOF
significantly affect a given DOF. Consequently, simu-
lations with x inputs are not x times more complicated
than the single-input case. In fact, many of the
responses are dominated by a single input, so for many
DOF the response to inputs in all DOF is almost
identical to the response to an input in the dominant
DOF.

Does tremor propagation change from proximal to dis-
tal? There is a clear proximal–distal increase in the mag-
nitude ratio (Fig. 3d). Inputs in proximal DOF affect
distal DOF equally or more (often much more) than
proximal DOF. While the magnitude does not necessarily
increase from DOF 5 to 7, one of these DOF always has
the greatest magnitude ratio. In summary, there is more
forward propagation than backward propagation. That
said, note two caveats. First, even though there is more
forward propagation than backward propagation, a distal
input creates a bigger distal response than a proximal
input of equal magnitude (compare scales in Fig. 3d).
Second, a distal input creates a bigger proximal response
than a proximal input of equal magnitude. For example,
an input in DOF 6 creates a bigger response in DOF 3
than an (equal) input in DOF 3.

How does inertial loading affect tremor propagation?
Increasing inertia produces competing trends (Table 3); it
decreases the natural frequency, shifting the magnitude
ratio curve to the left, but it also decreases the damping
ratio, raising the resonance peaks (Fig. 4a). The end ef-

fect depends on frequency, but in the tremor band it
usually decreases the magnitude ratio.

How does viscoelastic loading affect tremor propa-
gation? Increasing the damping, stiffness, or stiffness
and damping together either decreased or increased the
magnitude ratio, depending on the amount of increase
and the tremor frequency (Table 3). Because increasing
damping alone increased the damping ratio but had no
effect on the natural frequency, it always decreased the
magnitude ratio (Fig. 4b). Increasing stiffness alone
increased the natural frequency and decreased the
damping ratio, shifting higher resonance peaks toward
or into the tremor band, which raised the magnitude
ratio (Fig. 4c). However, increasing stiffness also
decreased the DC-gain, which lowered the magnitude
ratio. The end effect depended on the amount of in-
crease in stiffness and the tremor frequency. Increasing
both damping and stiffness by the same factor almost
always decreased the magnitude ratio in the tremor
band, especially for factors greater than 2.5 (Fig. 4d).
Likewise, increasing stiffness more than damping (by a
factor and the square root of the factor, respectively,
similar to co-contraction) usually decreased the mag-
nitude ratio, but less robustly than increasing stiffness
and damping by the same factor.

Sensitivity Analysis

Errors in inertia, damping, and stiffness produce
errors in the exact magnitude ratios, but the pattern of
propagation remains relatively unchanged (Figs. 5a–
5c). Multiplying inertia, damping, or stiffness matrices
by factors ranging from 0.5 to 2 can have large effects
on the magnitude ratios in individual DOF (as de-
scribed above). However, for frequencies in the tremor
band, the relative size of the magnitude ratios is quite
unaffected. In particular, the statement that the three
distal DOF exhibited the greatest magnitude ratios
remained valid. The same is true for errors in the most
sensitive elements of the matrices (I55;D55;K55;
D66;K66; I66;K77;D77, all at 4 Hz). Multiplying these
elements by 0.5 or 2 did not significantly alter the re-
sults because they affect the three distal DOF (5–7),
each of which is dominated by a single phasor. Like-
wise, replacing the unknown off-diagonal values of the
stiffness matrix (initially assumed zero) by non-zero
values changed the magnitude ratios but not the pat-
tern of coupling (Fig. 5d). Finally, calculating the en-
tire damping matrix using a single constant of
proportionality did not significantly change the prop-
agation pattern.

Changing postures affected the coupling between
DOF but not the proximal–distal increase in magni-
tude ratio (Fig. 5e). Because coupling is mostly iner-

TABLE 3. Trends illustrating the effects of inertial and vis-
coelastic loading on the magnitude ratio.

Simulation I D K −

Inertia ↑ − − ↓ ↓ − ↑↓

Damping − ↑ − ↑ − − ↓

Stiffness − − ↑ ↓ ↑ ↓ ↑↓

Stiffness and 
Damping − ↑ ↑ ↑ ↑ ↓ ↑↓

Co-contraction − ↑ ↑ − ↑ ↓ ↑↓

Increasing inertia (I), damping (D), and stiffness (K) directly affects

the damping ratios (f), natural frequencies (xn), and DC gains

(magnitude ratios at very low input frequencies). Increasing the

damping ratios, natural frequencies, and DC gains alone generally

decreases, increases, and decreases, respectively, the magnitude

ratios. The combination of these competing effects dictate whether

the magnitude ratio in the tremor band (M4�12 Hz) increases (›),
decreases (fl), or does either depending on the amount of increase

and the input frequency (›fl). ‘‘Stiffness and damping’’ refers to

increasing both by the same factor, whereas ‘‘Co-contraction’’ re-

fers to increasing stiffness by a factor and damping by the square

root of that factor, similar to what occurs in co-contraction.
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tial, and because the inertia matrix is a function of
posture, the coupling pattern greatly depends on pos-
ture. For example, in posture 1, DOF 4 and 7 have
parallel axes and are therefore coupled, but pronating
the forearm by 90� rotates the axes of DOF 6 and 7 in
a way that couples DOF 4 and 6 (instead of 4 and 7).
The changes between postures 1–4 did not involve
rotations of exactly 90�, so coupling did not generally
shift completely from one DOF to another. Never-
theless, the changes were large enough to significantly
change the coupling pattern. That said, changes in
posture that uncoupled some DOF usually coupled
others, resulting in relatively little change in the total
response in each DOF due to inputs in all DOF. In
particular, the proximal–distal increase in magnitude
ratio held true for all four postures.

DISCUSSION

Here we present a basic analysis of tremor propa-
gation to inform the future development of tremor
suppressing devices. Optimally suppressing tremor
requires a knowledge of the origin, propagation, and
distribution of tremor throughout the upper limb. We
present the first systematic investigation of how tremor
propagates between the shoulder and the wrist. We

deliberately implemented a simple model to focus first
on the most basic effects. From these effects we have
identified the following basic principles describing the
propagation of tremor in the upper limb. Note that
these principles were observed under specific simula-
tion conditions (see ‘‘Limitations’’ section below), and
more research would be required to generalize outside
of these conditions.

Principles of Simulated Tremor Propagation

Principle 1: Tremor amplitude is significantly af-
fected by limb mechanics. The mechanical origin of all
tremor is recurring muscle activity, which produces
recurring joint torque. Although limb mechanics do
not originate tremor, they nonetheless play a signifi-
cant role in shaping the amplitude of the tremor. As
explained above, the amplitude of tremor (the output)
is the product of the magnitude of the joint torque (the
input) and the magnitude ratio. The magnitude ratio,
which reflects limb mechanics, determines if the effect
of the input torque is attenuated, passed, or amplified.
The damping ratios of the upper limb are generally less

than 1=
ffiffiffi
2

p
(see also Refs. 39,43), resulting in reso-

nance.35 Although according to our model the fre-
quencies of the resonance peaks (0.65–2.94 Hz) were
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below the tremor band, the effect of resonance ex-
tended into the tremor band for some input–output
relationships (Fig. 3a). In other words, some of the

magnitude ratios were larger in the tremor band than
they would be without resonance.28,29 In summary, the
mechanics of the upper limb shape (and in some cases
favor) the expression and propagation of tremor.

Principle 2: Tremor propagates mostly because of
inertial coupling. Tremor propagates because the off-
diagonal elements of the inertia, damping, and stiffness
matrices couple the DOF. Most of this coupling is
inertial, not viscoelastic; ignoring the off-diagonal
elements of the stiffness and damping matrices has a
minimal effect on the propagation pattern (Fig. 3d).
Note that this statement refers specifically to coupling,
not whether inertial effects dominate the dynamics in
general. To clarify, prior research showed a proximal–
distal shift in the dominating impedance: whereas the
dynamics of proximal joints (shoulder and elbow) are
thought to be dominated by inertial effects, the
dynamics of distal joints (wrist and forearm) are
dominated by stiffness effects.37 However, this prior
finding referred to the torques required to overcome
the inertia, damping, and stiffness in a given DOF, not
coupling between DOF. In addition, it referred to
voluntary movements, which occupy a lower frequency
band (mostly <5 Hz)33 than tremor (4–12 Hz), where
inertial effects play a smaller role.

Principle 3: Tremor spreads narrowly. Although the
inertia, damping, and stiffness matrices couple DOF to
each other, some DOF are coupled only weakly or not
at all. Consequently, input torque in a DOF signifi-
cantly affects only a relatively small number of DOF.
Because the transfer function matrix is symmetric, this
also means that the vast majority of the tremor in a
given DOF is due to inputs in a relatively small num-
ber of DOF (assuming equal input torques in all
DOF). As stated in Principle 2, most of this coupling is
inertial, which depends on posture—therefore, the
pattern of coupling changes with posture (see ‘‘Sensi-
tivity Analysis’’ section).

Principle 4: Given equal amounts of input torque, the
distal DOF have the greatest tremor magnitude. There is
a clear increase in tremor magnitude from proximal to
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distal DOF of the upper limb; one of the three distal
joints always has the largest magnitude ratio (Figs. 3c
and 3d). It appears this whip effect is caused by
proximal–distal differences in impedance. Going from
proximal to distal, inertia decreases more rapidly than
stiffness (Fig. 6). This creates a proximal–distal in-
crease in the natural frequency, which pushes the res-
onance band to higher frequencies, elevating the
magnitude ratios in the tremor band. Although the
shoulder and elbow can have higher magnitude ratios
than the forearm and wrist DOF (Fig. 3), their peaks
are below the tremor band.

Principle 5: Increasing inertia can decrease or in-
crease tremor. According to our simulations, increas-
ing inertia usually decreases the magnitude ratio in the
tremor band (Fig. 4a), but not always. Most past
experiments investigating inertial loading have mea-
sured a decrease in tremor,15,23 and there exist a
number of commercially available products (e.g.
weighted utensils) that claim to mitigate tremor
through weighting. However, recent studies have
found that inertial loading does not always decrease
tremor,32,34 similar to our simulations. Note that these
changes in magnitude ratio with inertial loading do not
refer to the decrease in tremor frequency that can oc-
cur with inertial loading15—that phenomenon cannot
be replicated by an LTI model with sinusoidal inputs,
because in such a model the output frequency is always
equal to the input frequency.

Principle 6: Increasing viscoelasticity can decrease or
increase tremor. Increasing damping alone always
decreased the magnitude ratio (Fig. 4b), but increasing
stiffness alone decreased or increased the magnitude
ratio depending on the increase in stiffness and the

frequency of the input (Fig. 4c). Increasing stiffness
and damping by the same factor almost always
decreased tremor (Fig. 4d). Therefore, efforts to de-
velop braces (orthoses) that suppress tremor must
discern between stiffening schemes that do and those
that do not decrease tremor. That said, effective braces
could include properly designed increases in stiffness
and/or inertia and do not need to rely solely on
damping. Increasing stiffness and damping with no
change in the damping ratio (similar to co-contraction)
also usually decreased tremor. Prior experiments sim-
ilarly found that voluntary or artificially elicited mus-
cle contractions attenuate the severity of tremor.17,22

Robustness of Principles

We focused here on the frequency band between 4
and 12 Hz, which we called the tremor band. Because
our investigation is relevant to all types of tremor (see
‘‘Introduction’’ section), we defined this band rela-
tively wide to be inclusive of most types of tremor.11

How do the principles relate to tremors that occupy
only a narrow range of frequencies within the tremor
band? Principle 1, which states that the limb mechanics
affect the tremor amplitude, is a fundamental property
of system dynamics and is true at any frequency.
Principle 2 was found to be true at frequencies across
the tremor band (not shown). Principles 3 and 4 were
derived from the comparison of magnitude ratios
between DOF. Although the magnitude ratios often
decrease significantly within the tremor band, the rel-
ative sizes of the magnitude ratios remains relatively
unaffected, as demonstrated by the low number of
curves crossing in the tremor band in Fig. 3a (as op-
posed to the high occurrence of crossing at frequencies
below the tremor band). Therefore, principles 3 and 4
are true at any frequency in the tremor band. Princi-
ples 5 and 6 explore the effect of increasing inertia or
viscoelasticity on the magnitude ratios. Figures 4a and
4c show that increasing inertia or viscoelasticity can
increase or decrease the magnitude ratio, depending on
the particular tremor frequency and the limb im-
pedance. Therefore, these last two principles serve as a
warning that the effect of inertia and viscoelasticity
must be evaluated for each specific case. In summary,
the principles are reasonably independent of tremor
frequency as long as it is between 4 and 12 Hz.

We characterized the relationship between joint tor-
que and joint displacement, but most of the literature
describes tremor in terms of acceleration, not displace-
ment. How do the principles relate to acceleration? If
G(s) is the transfer function from joint torque to joint
displacement (see ‘‘Methods’’ section), then the transfer
function from joint torque to joint acceleration is
H(s) = s2G(s) since differentiating twice with respect to
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time is equivalent to multiplying by s2 in the Laplace
domain. The magnitude ratio from torque to accelera-
tion is then |H(jx)| = |(jx)2G(jx)| = x2|G(jx)|. In other
words, the magnitude ratio from torque to accelera-
tion is a scaled version of the magnitude ratio from
torque to displacement, where the scaling factor
increases with frequency. This scaling is independent
of DOF, so the relative proportions between DOF
remain completely unchanged. In other words, what
increases or decreases the amplitude of displacement
in a DOF will also increase or decrease the amplitude
of acceleration in that DOF. Consequently, all of the
principles are as true for acceleration as they are for
displacement.

The principles are also robust against physiologi-
cally plausible changes in impedance parameters.
Although the tremor magnitudes depend on im-
pedance parameters (Principles 6–7), the sensitivity
analysis revealed that the principles were quite
insensitive to relatively large changes in inertia,
damping, or stiffness (Figs. 5a–5d). Furthermore,
while variations in posture can change which DOF
are coupled to each other, the principles are robust
against the relatively large changes in postures tested
here (Fig. 5e). In addition, since most DOF have a
dominant phasor that is much larger than the others,
the principles are insensitive to transmission delays.
Rotating the dominant phasor would not significantly
change the magnitude of the vector sum, no matter
how large the phase shift is.

Limitations

As mentioned above, we deliberately chose a simple
model to establish the most basic, first-order effects.
Our model is an LTI model of joint dynamics with
realistic values of coupled inertia, damping, and stiff-
ness. To analyze tremor propagation, we used the tools
of frequency response, which focus on the steady-state
response to sinusoidal inputs. We simulated tremor in
a variety of postures away from the limits of the limb’s
range of motion (ROM). Therefore, our model ignores
the following effects: non-sinusoidal torque inputs,
non-linear dynamics, time-varying impedance param-
eters, reflexes, gravity, kinetic tremor (tremor during
movement), transient responses, and effects that occur
close to the end of the ROM (e.g. when the arm is fully
extended). Future studies should characterize how
these factors affect tremor propagation, especially the
basic principles established here.

By approximating joint torques as sinusoidal inputs,
the system was constrained to oscillate at the fre-
quencies of the input torques. In reality, joint torques
are not perfectly smooth and may result—in addition
to oscillations at the input frequency—in transient

oscillations at the damped natural frequencies of the
system.

For the multiple-input case, we assumed the torque
inputs in different DOF had equal amplitude, fre-
quency, and phase. The amplitudes are most likely not
equal, but assuming equal amplitudes allows compar-
ison on an equal footing. The assumption of equal
frequency is reasonable—there is no evidence of dif-
ferent frequencies in different DOF. Likewise, the
assumption of equal phase is reasonable since the effect
of delay between DOF is small because most DOF
have a dominant phasor.

Our model focuses on tremor propagation through
mechanical coupling but ignores propagation that may
occur through neural coupling. Such coupling may
result from neuronal entrainment via sensory feedback
to central oscillatory networks, causing tremor to
spread to other DOF, including DOF that are not
mechanically coupled.

Finally, our principles are based on simulations and
were not validated by comparison to experimentally
observed tremor propagation patterns. To the best of
our knowledge, there do not exist prior measurements
of how tremor propagates throughout the upper limb.
The availability of in vivo measurements of tremor
propagation patterns would allow one to identify ele-
ments of actual tremor reproduced by our simple
model (and therefore likely caused by one of the first-
order effects included in our model), and those that
were not reproduced by our simple model (and there-
fore likely caused by higher-order effects). Unfortu-
nately, directly measuring tremor propagation between
joint torque and joint displacement is not currently
possible because it would require in vivo measurements
of joint torque in each DOF, which are not currently
available. However, because muscle activity is easily
measured, it should be possible to validate tremor
propagation from muscle activity to joint displacement
(via joint torque). The model presented here could be
expanded to include the transformation from muscle
activity to muscle force (excitation-coupling dynamics)
and the transformation from muscle force to joint
torque, yielding a total model from muscle activity to
tremor (joint displacement). Real measurements of
muscle activity and tremor throughout the upper limb
would provide both the input and output and should
allow one to test the validity of the model.

CONCLUSION

Using a simple model of upper-limb dynamics, we
have established six basic principles describing the
propagation of tremor in the upper limb. Our princi-
ples agree with prior experimental studies investigating
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the effects of inertial loading and co-contraction on
tremor magnitude. The principles were shown to be
stable over the frequency band of most tremors and
quite robust against many physiologically plausible
variations in joint impedance. We expect that these
principles will serve as a foundation for more sophis-
ticated models of tremor propagation and for the
development of tremor-suppressing devices.
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