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Abstract—Additive manufacturing, also known as 3D print-
ing, has emerged over the past 3 decades as a disruptive
technology for rapid prototyping and manufacturing. Vat
polymerization, powder bed fusion, material extrusion, and
binder jetting are distinct technologies of additive manufac-
turing, which have been used in a wide variety of fields,
including biomedical research and tissue engineering. The
ability to print biocompatible, patient-specific geometries
with controlled macro- and micro-pores, and to incorporate
cells, drugs and proteins has made 3D-printing ideal for
orthopaedic applications, such as bone grafting. Herein, we
performed a systematic review examining the fabrication of
calcium phosphate (CaP) ceramics by 3D printing, their
biocompatibility in vitro, and their bone regenerative poten-
tial in vivo, as well as their use in localized delivery of
bioactive molecules or cells. Understanding the advantages
and limitations of the different 3D printing approaches, CaP
materials, and bioactive additives through critical evaluation
of in vitro and in vivo evidence of efficacy is essential for
developing new classes of bone graft substitutes that can
perform as well as autografts and allografts or even surpass
the performance of these clinical standards.

Keywords—3D printing, Vat polymerization, Powder bed
fusion, Material extrusion, Binder jetting, Bone, Tissue
engineering, Drug delivery.
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INTRODUCTION

Three-dimensional (3D) printing, also known as
additive manufacturing, is a digital fabrication process
in which geometrical data are used to produce 3D
solids by incremental addition of material layers.
Charles Hull pioneered the modern idea of 3D printing
when he first described a vat polymerization method,
known as stereolithography (SL), in a 1984 patent.*!
The advent of this new photopolymer-based fabrica-
tion technique ushered in the era of rapid and eco-
nomical production of physical prototypes directly
from computer-aided designs, with near limitless geo-
metrical complexity. Originally focused on rapid pro-
totyping of preliminary concept models, advances in
materials and technologies are enabling the creation of
functional products; and thus, are transitioning these
fabrication techniques from prototyping to main-
stream manufacturing applications. Beyond vat poly-
merization, other additive technologies including
powder bed fusion, material extrusion, and binder
jetting,® have since been developed, and are discussed
in more detail in the following sections.

3D printing is being adopted in nearly every
industry, including the medical field, with extensive
research pursuits focused on novel materials and
combinations of techniques that could enhance pro-
duct functionality and reduce costs. For example, 3D
printing an object can enable formation of composites
with controlled spatial heterogeneity for superior
structure—function relationships that are unachievable
with traditional strategies such as machining. This vast
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potential has made 3D printing extremely popular in
the fields of biomedical research and tissue engineer-
ing, due to the ability to replicate the intricate archi-
tecture as well as the cellular and constituent
heterogeneity of tissues and organs.®’” Bone, for
example, is a complex composite of minerals (mostly
calcium phosphates (CaP)) and organic matrix (mostly
type I collagen) with exquisite structural organization.
This organization spans multiple size scales, such as
cortical vs. trabecular bone at the macro-scale and
lamellar osteons at the micro-scale. The organization
of bone can in theory be imitated using 3D printing.
Additionally, 3D printing is amenable to producing
patient-specific geometries that are derived from
medical images, such as CT scans. This paper sys-
tematically reviews progress in 3D printing strategies
over the past decade, which have been utilized for bone
repair and tissue engineering, with a specific focus on
3D printed pure or composite CaP ceramic scaffolds.
The review contrasts the advantages and disadvantages
of low-temperature printing vs. high-temperature post-
processing for bone tissue engineering applications. It
also reviews the state-of-the-art in 3D printed scaffolds
for cell and drug delivery in vitro and in vivo in appli-
cations involving bone repair and regeneration as well
as management of infection.

THREE-DIMENSIONAL PRINTING PROCESSES

Vat Polymerization

In the vat polymerization process (e.g., stere-
olithography), a photo-curable liquid polymer is
selectively polymerized at the surface of a vat by a low-
power ultraviolet (UV) light source. As the z-axis is
translated down, a new thin layer of liquid is spread
over the solid surface and this process is repeated until
the build is complete (Fig. 1a). Continuous liquid
interface production (CLIP) 3D printing has recently
been described as an innovative vat polymerization
technique that uses UV laser for photocuring and
oxygen to create a non-polymerized dead zone to en-
able the projection of continuous solid objects without
the lamination typically seen in standard layer by layer
SLA polymerization.** Some polymers that have been
used with vat polymerization for bone tissue engi-
neering applications include poly(propylene fumarate)
(PPF)*” and poly(e-caprolactone fumarate) (PCLF)”°
as well as PPF/PCLF blends®” (Table 1). Supple-
menting these polymers with hydroxyapatite (HA)
nanoparticles has been shown to increase the elastic
modulus and potentially enhance the osteoconductiv-
ity>>3%% Alternatively, vat polymerization has also
been employed to produce complex sacrificial molds
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for HA scaffolds, which are pyrolyzed before or during
sintering of the ceramic.'® The primary advantages of
vat polymerization are: (1) the fine resolution that
enables interconnected pore diameters and wall thick-
nesses as small as 100 ym, (2) the tunability of the
scaffold stiffness due to the variety of polymers that
can be printed and the degree to which crosslinking
can be controlled, and (3) the potential for incorpo-
ration of bioactive molecules within the polymer.>'-°
For bone tissue engineering, vat polymerization is
constrained to photo-curable polymers and can be
limited in terms of the amounts of ceramic additives.

Powder Bed Fusion

Powder bed fusion (e.g., laser sintering) employs a
fine resolution laser or electron beam to achieve
selective thermal binding of materials in a layer-by-
layer fashion, but unlike liquid photopolymers used in
vat polymerization, solid particles from a variety of
materials can be bound together by partial or full
melting (Fig. 1b). New thin layers of powder are then
rolled out over the previous layer and the process is
repeated until the build is complete. Materials that
have been utilized with these fabrication methods for
bone applications include plastics such as poly(e-
caprolactone) (PCL),” biphasic calcium phosphates,’®
polymer/calcium phosphate composites,”***?°> and
titanium alloys® (Table 1). Although these materials
are generally viewed as osteoconductive, they are un-
able to facilitate complete bone healing without the
addition of cells or growth factors. In one study, bone
regeneration was enhanced in a rat segmental femoral
defect by augmentation of porous titanium scaffolds
with growth factor-laden gelatin hydrogels after
printing.®® The primary advantage of powder bed fu-
sion is the production of highly detailed, high strength
porous scaffolds, which could be used in partial or full
load-bearing applications, as in the case of titanium.
However, sintering of plastics, ceramics and metals
produces localized ultra high temperatures, which
preclude the potential for simultaneous incorporation
of cells, proteins, or heat-labile bioactive molecules.

Material Extrusion

Material extrusion encompasses any process in
which materials are deposited as continuous strands
through a nozzle or a dispensing orifice in an incre-
mental layer-by-layer fashion that will yield a 3D
product upon solidification of the extruded material
(Fig. 1c). A wide variety of material extrusion tech-
niques have been devised and are referred to by an
expanding terminology including, but not limited to,
3D (bio)plotting, dispense plotting, or bioprinting
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FIGURE 1. Schematic depiction of the major technologies used in 3D printing of pure or composite calcium phosphate scaffolds

for bone regeneration and drug delivery.

which can be used to print bioadditive- and cell-laden
hydrogels, to be cross-linked once extruded. In addi-
tion extrusion can be achieved by dispensing nearly
molten plastic filament through a nozzle (e.g., thermal
material extrusion). The material then cools and
solidifies into the final 3D form. Material extrusion
techniques are the most widely employed 3D printing
strategies for tissue engineering, which have led to
remarkable progress in the field. This technology has
been recently advanced to enable multi-material
printing that include cell-laden hydrogels, supporting
polymer fibers and sacrificial materials, and has
demonstrated the ability to fabricate human-scale tis-
sues of any form including mandible, calvarial bone,
cartilage and skeletal muscle.*®

With specific focus on bone applications, extrusion-
based systems have employed the widest variety of
materials using multiple deposition techniques. These
materials include synthetic polymers such as
polyesters,”*’*7>77 natural polymers such as algi-
nate,*"® and polymer/ceramic (including bioactive
glass) composites’?:#7-20:34:59:62.73.9497 (T ple 1). While
ceramics that are printed by material extrusion often
require a secondary heat treatment or sintering, some

polymer-based or hybrid scaffolds can be fabricated
under mild conditions that are amenable to simulta-
neous incorporation of growth factors or live
cells.®®’*75 The resolution of these techniques depends
on the diameter of the dispensing nozzles and the
stability of the material after extrusion. Extruded
strands commonly have a diameter of 100-200 mi-
crons. In some cases, which may depend on the
material or geometry, an additional sacrificial support
material might be necessary for the scaffolds to
maintain form until they can be post-processed.

Binder Jetting

Similar to powder bed fusion, binder jetting selec-
tively binds particulate materials in a layer-by-layer
fashion. Instead of fusing the particles with lasers or an
electron beam, binder jetting selectively sprays one or
more binding solutions from inkjets to unify the par-
ticles (Fig. 1d). In bone tissue engineering, the powder
phase is most often a CaP, such as tricalcium phos-
phate (TCP) or hydroxyapatite (HA) (Table 1). The
binding solution is usually a sacrificial polymer, which
is pyrolyzed during sintering after printing, or an
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aqueous solution. CaP powders typically require
aqueous binding solutions, such as dilute phosphoric
acid (in a concentration range of 5-30 wt.%). The
acidic binder initiates a dissolution-precipitation reac-
tion within the powder to fuse the particles.”> Typi-
cally, a commercial 3D inkjet printer is minimally
adapted for printing CaP bone graft substitutes. These
printers utilize thermal or piezoelectric inkjet car-
tridges that are identical to those found in common
desktop printers. These ink cartridges can be opened,
cleaned, and refilled with the binder solution or
bioactive ‘inks’.

The solubility of CaP in the aqueous binder is an
important parameter of printability and it depends on
its mineral phase as summarized in Table 1. It should
be noted that the solubility properties of a given CaP
phase can vary depending on synthesis techniques and
environmental conditions.’>** The approximate solu-
bility product constants (K,p) provided in Table 2
indicate equilibrium solubility conditions in a specific
chemical system, which is independent of pH and does
not represent the absolute dissolution. Solubility iso-
therms as a function of pH can be better indicators of
dissolution and such calculations have been performed
for all of the CaP phases listed in Table 1.”*® Fur-
thermore, mixing CaP with more reactive minerals
such as calcium sulfates (CS) has also been shown to
improve solubility and binding using aqueous binders,
independent of pH.5*%

A comprehensive review of CaP for bone regener-
ation using fabrication techniques other than 3D
printing is beyond the scope of this review, but the
interested reader is referred to previous reviews of the
topic.®® 101617 The CaP phase most commonly used in
binder jetting is a-TCP, which is more thermodynam-
ically unstable (and thus more soluble) than g-TCP."!
When TCP is combined with phosphoric acid, the
dissolution-precipitation reaction yields brushite
(CaHPO42H,0). Butscher and colleagues demon-
strated the superior binder jetting quality and geo-
metrical accuracy of a-TCP vs. f-TCP when using 10%
phosphoric acid as the binder solution.'? This study
also examined the effects of particle size on printability

TABLE 2. Calcium phosphates relevant to bone regeneration.

and observed that when the particle size is too small,
flowability is compromised due to agglomeration of
the particles, resulting in surface mottling of the
powder bed. If the particle size is too large, the powder
flows easily but does not pack sufficiently, causing
interlayer instability that compromises binding and
geometrical accuracy. Powder particles in the size

range of 10-50 microns are generally considered opti-
mal 12:43:52.99

SYSTEMATIC REVIEW OF THE LITERATURE:
SEARCH ALGORITHM AND INCLUSION/
EXCLUSION CRITERIA

The PubMed database was searched on January
Sth, 2016 using the string ‘(3D printing OR 3D printed
OR rapid prototyping OR additive manufacturing OR
inkjet OR granular material binding) AND (bone OR
scaffold OR graft) AND (bioceramic OR ceramic OR
calcium phosphate)’ to identify articles that investi-
gated the use of 3D-printing to fabricate CaP scaffolds
for bone graft substitutes. The search was limited to
publications within the last 10 years. Articles in lan-
guages other than English were excluded and all re-
views were omitted. This search returned 103 results.
Studies that utilized 3D-printing, but did not directly
involve calcium phosphate in the printing process or
bone applications were excluded, as were papers that
focused only on optimization or characterization of
chemical or mechanical properties of 3D-printed CaP
scaffolds with no biological or in vivo assessments.
Additional studies that were not returned in the
PubMed search, but were identified to be relevant to
the topic of this review were included. With this search
algorithm and inclusion/exclusion criteria, a total of 45
articles involving in vitro and vivo approaches for bone
tissue engineering or drug delivery were fully reviewed
and discussed herein, as summarized in Tables 3, 4, 5,
6, and 7. The reviewed papers were broadly categorized
into bone regeneration and drug delivery studies in the
context of bone repair and infection, which were then
further classified into low- and high-temperature 3D
printing approaches.

8,10,16,17

Name Formula Ca:P ratio Solubility (~Ksp)
Hydroxyapatite (HA) Cao(PO4)(OH), 1.67 107120
Tricalcium phosphate (TCP) Caz(PO,)2 1.5 «.5 cal 1072°
p25 cal 1072°
Tetracalcium phosphate (TTCP) Cay(P0O,4),0 2.0 10~ 4410738
Dicalcium phosphate dihydrate (DCPD; Brushite) CaHPO42H,0 1.0 1066
Dicalcium phosphate anhydrous (DCPA; Monetite) CaHPO, 1.0 1069
Octacalcium phosphate (OCP) CagH,(PO.4)s'5H.0 1.33 10°%
Calcium pyrophosphate (CPP) CayP,0, 1.0 10718
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continued

TABLE 6.

Primary findings

3D printing technology Printed material(s) Post-processing Drug/growth factor Cells/animal model

Reference

Co-delivery of rifampin and

Femoral OM defect

Vancomycin,

Select scaffolds coated

CaP Powder: «-TCP
Binder: 8.75%

Binder jetting

Inzana, 2015

significantly

vancomycin

in mice

Rifampin

with PLGA

improved outcomes of OM
compared to the clinical

HsP04 + 0.25%
Tween 80

standard of PMMA spacers.
PLGA coating prolonged

drug delivery and enhanced
antimicrobial outcome®**

3D Printing of CaP Ceramics for Bone Tissue Engineering 35

CaP calcium phosphate, VEGF vascular endothelial growth factor, BSA bovine serum albumin, AMSCs human mesenchymal stem cells, HDMEC human dermal microvascular endothelial

cells, TTCP tetracalcium phosphate, TCP tricalcium phosphate, HA hydroxyapatite, PLGA poly(lactic-co-glycolic acid), OM osteomyelitis, PMMA poly(methyl methacrylate).

3D PRINTING FOR BONE REGENERATION

Low Temperature 3D Printing of CaP Scaffolds for
Bone Regeneration

Of the papers reviewed in Table 3, the majority used
binder jetting approaches, and two studies investigated
material extrusion approaches. As described earlier,
acidic binder solutions applied to CaP powders in
binder jetting enable low temperature binding of the
particles in a dissolution-precipitation reaction. In
material extrusion, CaP slurries or cements are typi-
cally extruded through a non-heated print-head or
nozzle under mild conditions, and the extruded mate-
rials are then solidified in a variety of ways based on
their chemical composition. For example, extruded
CaP (composed primarily of a-TCP) paste in a carrier
liquid composed of short-chain triglyceride are solidi-
fied by placement in water to initiate the cement-setting
reaction in just a few minutes, and can be further
hardened by incubation at 37 °C for several hours.®'
Photocurable hydrogels (poly(ethylene gly-
col)dimethacrylate (PEGDMA)) with suspended
MSC:s, bioactive glass (BG), and hydroxyapatite (HA)
particles are photo polymerized by UV light.*
Poly(lactic acid) (PLA) (with 5% PEG) polymer blend
with BG are cross-linked with NaOH (8% w/v) in 70%
ethanol deposited during the 3D printing process and
then set by evaporation of the solvent chloroform.?

Regardless of the fabrication method or material,
for regenerative applications it is necessary to deter-
mine the biocompatibility of the 3D printed scaffold.
This is commonly accomplished by seeding cells onto
the scaffold and assessing cell viability and prolifera-
tion, among a variety of other biological
responses.15’32’43’61 Indeed, seeded cells have been
shown to attach to a variety of 3D printed scaffolds
and achieve a normal cell morphology.****"”® In binder
jetting, additives to either the binder solution or CaP
powder have been shown to affect cell behavior.'>*
For example, Inzana et al. (2014) added solubilized
collagen to a phosphoric acid binder solution and
observed a significant improvement in relative cell
viability (normalized to tissue culture plastic) of C3H/
10T1/2 cells seeded onto CaP scaffolds.** Additionally,
Castilho et al. (2015) demonstrated that mixing CaP
powder with alginate, enhanced both cell viability and
cell proliferation, while vacuum infiltration of alginate
into the printed scaffold reduced both cell viability and
cell proliferation of the osteoblastic cell line MG63."°
For material extrusion, Lode et al. (2014) showed that
human mesenchymal stem cells (hMSCs) attached to a
CaP cement scaffold, and the attachment was im-
proved by inducing osteogenic differentiation of

hMSCs prior to seeding.®!
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Low temperature extrusion 3D printing of CaP
scaffolds enables direct printing of living cells sus-
pended in ‘bioinks’.* Investigating the composition of
a variety of bioinks consisting of poly(ethylene glycol)
dimethacrylate (PEGDMA), BG, HA, and hMSCs
Gao et al. (2014) found that cell viability of directly
printed hMSCs was highest in pure PEGDMA and
PEGDMA-HA bioinks, while PEGDMA-BG had a
significantly lower cell viability. The presence of HA in
the bioink also led to differentiation towards the
osteoblastic lineage. The high resolution (ink
drops <0.03 mm diameter) achieved by this material
extrusion approach enables precise patterning of cells
within the CaP scaffold, which overcomes limitations
of post-printing seeding of cells, including reduced cell
attachment and inhomogeneous cellular distribution
within the porous scaffolds. Mehrban er al. (2013)
showed that preconditioning 3D printed CaP scaffolds
in acellular and cellular in vitro conditions can help
obtain desired physical characteristics for in vivo
implementation.> Morphological changes of 3D
printed CaP scaffolds occurred when immersed in
culture media over a 28-day period. These changes
included an increase in porosity and fluctuations in
surface roughness suggesting degradation of the exte-
rior layer of the CaP scaffold. However, the seeding of
cells (tenocytes) and the production of ECM on the
CaP scaffolds inhibited dissolution and morphological
changes.®® Thus, it is important to recognize that not
only does the scaffold affect cell function, but the
seeded cells can also play an important role in stabi-
lizing the scaffold and controlling its degradation.

When implanted in vivo, scaffolds can elicit a host
inflammatory response, but it is not fully understood
how this might affect regeneration since inflammation
is an important stage in bone repair.*****® Almeida
et al. (2014) demonstrated that the immune response of
macrophages to 3D printed CaP scaffolds in vitro is
sensitive not only to surface properties (i.e., surface
chemistry) but also to scaffold geometry (porosity and
pore size).? More research is needed to determine the
ideal response and cytokine environment for favorable
scaffold-initiated bone regeneration.

3D printed CaP bone graft substitutes fabricated at
low temperatures have been shown to be osteocon-
ductive in vivo in a variety of orthotopic implantation
models.****%333 Inzana er al. (2014) showed that bin-
der jetting (inkjet) 3D printed CaP scaffolds with and
without incorporated collagen stimulated bone in-
growth and served as osteoconductive spacers in a
critically sized murine femoral defect.** However, CaP-
collagen composites did not improve in vivo bone
regeneration and complete bridging of the defect. The
osteoconductivity of the binder jetting 3D printed TCP
scaffolds has been shown to be better than that of HA

scaffolds.*? Interestingly, while the size of macropores
in 3D printed CaP scaffolds has been shown to affect
osteoconductivity and bone regeneration in vivo,*
Habibiovic et al. (2008) reported that pore morphol-
ogy (open vs. closed macropores of comparable size of
1.3 mm) had no effect on new bone formation in a goat
decorticated lumbar implant.*

High Temperature 3D Printing of CaP Scaffolds for
Bone Regeneration

The production of CaP scaffolds at high tempera-
tures is necessary for certain 3D printing techniques
(i.e., powder bed fusion or thermal material extrusion).
Moreover, high temperature post-processing tech-
niques (i.e., heat sintering) applied to 3D printed CaP
scaffolds have the primary benefit of enhancing
mechanical strength. However, these high temperature
limit the ability to incorporate heat-labile biofactors or
cells during the fabrication process. This section
examines 3D printed CaP scaffolds fabricated or post-
processed at high temperatures without incorporated
drugs or growth factors. The studies reviewed in Ta-
bles 4 and 5 mostly used material extrusion or binder
jetting to fabricate pure or composite CaP scaffolds,
and assessed their osteogenic potential in vitro or
in vivo, and far fewer studies used powder bed fusion or
vat polymerization.

CaP scaffolds printed at high temperatures were
characterized in vitro to assess biocompatability (Ta-
ble 4). A wide variety of cells have been used for such
characterization, including osteoblasts, ! 4-20-24.71.91
preosteoblastic cells,'”** stromal cells,?>”"*® osteo-
clasts,>' mesenchymal stem cells (MSCs),*®7* epithelial
cells,* and Schwan cells.®® Cell Viability,14"21’22’24"71’80"98
proliferation, 14 19-21:224.3240.68.71.72.8091 ;04 cvtotoxi-
city'””! assays all show a general consensus of favor-
able biocompatibility regardless of the 3D printing
method using different biomaterials. Furthermore
differentiation of MSCs seeded on 3D printed CaP
scaffolds into the osteoblastic lineage was only evident
when culturing with osteogenic media®"**®"! or an
osteoinductive element (e.g., mesoporous glass’®). Yet
one study demonstrated the ability of HA/TCP scaf-
folds fabricated by vat polymerization to induce seeded
MSCs to differentiate into osteoblast-like cells without
osteogenic media as determined by expression of os-
teogenic markers in vitro and improved calvaria defect
repair in vivo.”* Cells not directly involved in the pro-
duction or resorption of bone have also been seeded
and characterized on 3D printed CaP scaffolds to
indirectly enhance bone regeneration by supporting
innervation and angiogenesis. Sweet et al. (2015)
demonstrated that extruding patterned S-TCP com-
posite scaffolds can support the growth of viable
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Schwann (SC) cells and develop normal nerve-related
cell phenotypes and morphologies.®

Castilho et al. (2014) investigated how the compo-
sition of CaP (Ca/P ratio) affects biocompatibility, and
concluded that biphasic TCP and HA scaffolds pro-
duced by binder jetting'* enhanced seeded osteoblasts’
cellular response (viability and proliferation), com-
pared to pure TCP scaffolds. However, Seol et al.
(2014) reported that 3D printed HA scaffolds pro-
duced from a slurry mixture of ceramic powder with
photocurable resin (FA1260T; a urethane acrylate
monomer) by vat polymerization, and suggested that
these scaffolds promote proliferation of osteoblasts
and MSCs, while HA-TCP scaffolds fabricated simi-
larly promote osteoblastic differentiation in vitro.

Almost half of the studies utilizing high temperature
3D printing of CaP scaffolds investigated bone regen-
eration in vivo (Table 5). The enhanced mechanical
properties of CaP scaffolds produced at high temper-
atures enable them to be structurally sound when
orthotopically implanted, especially in load bearing
models. Results of these studies showed varying de-
grees of osteoconductivity for 3D printed CaP scaf-
folds and collectively conclude that 3D printed CaP
scaffolds alone generally do not stimulate bone healing
and regeneration compared to autologous bone
grafts.®!

Osteoinductive dopants or surface modifications
were often incorporated pre- or post-fabrication to
better enhance the bone regenerative potential of 3D
printed CaP scaffolds. Doping 3D printed CaP scaf-
folds with metal oxides or incorporating additional
bioactive materials have been shown to enhance
osteoinductivity.”>*® For example, doping raw CaP
powder with both SiO, and ZnO, prior to 3D printing
(binder jetting) of CaP scaffolds and post-fabrication
sintering at 1250 °C, have been reported to enhance
both osteogenic differentiation, as well as neovascu-
larization in a load-bearing rat femoral defect recon-
structed with the printed scaffolds.?’ CaP scaffolds
prepared by material extrusion of f-TCP-PVA slurry
and subsequently surface coated with a nanolayer of
mesoporous BG and annealed at 650 °C enhanced
bone regeneration and angiogenesis in a rabbit calvaria
defect model compared to non-coated S-TCP-PVA
scaffolds.”® Wang et al. (2014) performed unique post-
fabrication modifications to extruded CaP scaffolds,
by creating a ‘‘virus activated matrix or VAM”
wherein RGD-phage nanofibers act as a mimetic ECM
for enhanced attachment of endothelial and osteo-
progenitor cells, and demonstrated that this approach
leads to enhanced vascularization and bone regenera-
tion in a load bearing rat radius defect.®

Cell seeding on 3D printed scaffolds has also been
investigated as a strategy for enhancing bone regener-
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ative potential in vivo. For example, Barboni et al.
(2013) demonstrated the osteogenic potential of ovine
amniotic epithelial cells (0AEC) seeded on a CaP
scaffold fabricated by material extrusion of a paste-like
aqueous ceramic slurry of HA/S-TCP.* When im-
planted in sheep to augment maxillary sinus defects,
0AEC-seeding of the 3D printed CaP scaffolds signif-
icantly increased bone ingrowth into the defect and
accelerated angiogenesis when compared to scaffolds
without cells.

3D PRINTING FOR DRUG DELIVERY

Low Temperature 3D Printing of CaP Scaffolds for
Drug and Growth Factor Delivery

CaP scaffolds produced by binder jetting at low
temperature (<37 °C) are theoretically amenable to
incorporation of heat-labile bioactive molecules for
localized and controlled delivery. These molecules in-
clude growth factors to promote angiogenesis and
bone regeneration or antibiotics to combat bone
infections (Table 6). While it is possible to adsorb
growth factors and drugs onto the 3D printed CaP
scaffolds after post-processing,”>*?’ the amount of
drug adsorption and kinetics of release vary depending
on the CaP phase used and the method of drug load-
ing. Regardless, this approach results in burst release
of the surface-adsorbed drug within hours and almost
consistently fails to sustain release beyond 24 h in vitro.
The potential to enable homogeneous volumetric drug
loading and to create spatial gradients or site-specific
drug localization within a scaffold using 3D printing
may offer significant functional advantages over sur-
face adsorption and could dramatically enhance the
therapeutic potential of these 3D printed scaffolds.
Yet, few studies investigated this approach using low
temperature 3D printing and pure CaP scaffolds. In a
study by Inzana et al. (2015), volumetric incorporation
of antibiotics within 3D printed CaP scaffolds was
evaluated as a treatment strategy for implant associ-
ated bone infection (osteomyelitis). Cylindrical CaP
scaffolds produced by binder jetting incorporated
antibiotics either by mixing vancomycin and rifampin
directly with phase-pure o-TCP or direct jetting as
“bioink™ from the color inkjets along with the phos-
phoric acid binder from the black inkjet cartridge.**
Strategies to control the release kinetics by post-
printing coating of the CaP scaffolds with poly (D,L-
lactide- co-glycolide) (PLGA) achieved first-order re-
lease kinetics, sustained the release over 14 days
in vitro and in vivo, and improved flexural biome-
chanics to values reaching those of dense cancellous
bone.** Interestingly, these CaP scaffolds with incor-
porated antibiotics significantly reduced the bacterial
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burden in a mouse model of established femoral
osteomyelitis.**

Material extrusion can be more versatile than binder
jetting, and when performed under low temperature
and mild post-processing conditions it can be amen-
able to generating drug- or growth factor-loaded
composite CaP scaffolds. Mineralized slurry or paste
compositions, which can be extruded at physiologic
temperature are especially suited for this approach.
Martinez-Vazquez et al. (2015) demonstrated the fea-
sibility of 3D printing of porous silicon-doped
hydroxyapatite and gelatin (HASi/G) composite scaf-
folds for delivery of vancomycin.®* These scaffolds
behaved as hydrogels, but displayed compressive
strength-mineral density relationships that were closer
to cancellous than cortical bone, and in general showed
a favorable biocompatibility profile in vitro. When
loaded with vancomycin, the HASi/G scaffolds
achieved first-order diffusive release kinetics, but did
not sustain release beyond 10 h in vitro. Furthermore,
the incorporation of the antibiotic under the mild
scaffold fabrication conditions maintained the drug’s
antimicrobial activity in standard in vitro assays.®*
Akkineni et al. (2015) described a similar approach of
extruding o-TCP-based CaP cement (CPC) premixed
with chitosan/dextran sulphate microparticles encap-
sulating vascular endothelial growth factor (VEGF) or
bovine serum albumin (BSA) in a liquid carrier con-
sisting of a biocompatible oil.! The extruded CPC
scaffolds had compressive strength and moduli in the
range of the compressive properties of trabecular bone.
The bioocompatibility of the scaffolds was demon-
strated by the wviability and alkaline phosphatase
activity of mesenchymal stem cells cultivated on the
scaffolds for up 21 days.

While extrusion of CaP composite pastes and
hydrogels has the advantage of permitting premixing
with drugs and growth factors, this usually means
lower printing resolution due to viscosity of these
flowable mineralized slurries, which requires large
nozzle diameters (> 500 microns). The liquid carriers
can be organic hydrogels or inorganic carriers, and
both require post-processing to allow them to set and
harden. Few studies have investigated the performance
of 3D printed CaP composites in vivo. Poldervaart
et al. (2013) used material extrusion to fabricate com-
posite macroporous alginate scaffolds, which were la-
den with gelatin microparticles (GMPs) and
mesenchymal stem cells.”” The resulting scaffolds had a
uniformly distributed array of pores on the order of
500 microns with alginate struts as wide as 2 mm. Due
to the viscosity of the composite alginate suspension,
concentrations greater than 3% w/v alginate could not
be extruded, and this seemed to affect the stability of
the printed scaffolds. While this study demonstrates

the feasibility of bioprinting CaP composites, and
provides one of few examples of in vivo proof of con-
cept, it also highlights the limitations of extrusion
based bioprinting; namely the low resolution and the
effects of the flowable polymer viscosity on printabil-

1ty.

High Temperature 3D Printing of CaP Scaffolds for
Drug and Growth Factor Delivery

High temperature fabrication methods or high
temperature post-processing techniques have the pri-
mary benefit of enabling CaP ceramics to achieve en-
hanced mechanical properties. Yet, this methodology
hinders the ability to uniformly print cells and/or
bioactive molecules. To circumvent this limitation,
additional post-processing techniques can be utilized
to incorporate biofactors and cells onto the printed
construct including surface adsorption or surface
modifications, irrespective of the 3D printing technol-
ogy (Table 7). The most commons additive is BMP-2,
which is typically incorporated during the post-pro-
cessing steps to add an osteoinductive element. For
example, Duan et al. (2010) utilized a modified com-
mercial laser sintering (powder bed fusion) system to
fabricate composite scaffolds from CaP/poly(hydrox-
ybutyrate-co-hydroxyvalerate) (PHBYV) micro-
spheres.”” Rectangular scaffolds with designed
macropores of 2 mm evenly patterned throughout the
scaffold were fabricated with layer thickness (resolu-
tion) of 0.1 mm. This study demonstrated the favor-
able in vitro biocompatibility of the laser-sintered CaP
scaffolds with heparin surface modifications and BMP-
2 adsorption, but lacked characterization of drug re-
lease release kinetics.

El-Ghannam ez al. (2013) adsorbed rhBMP-2 onto
sintered silicon doped CaP (SCaP) scaffolds produced
by binder jetting and then implanted these scaffolds
into a 10 mm rabbit ulna defect.”’ Silicon doped CaP
has been shown to enhance both the bioactivity and
mechanical properties of CaP scaffolds and in combi-
nation with thBMP-2 these CaP scaffolds enabled
bone ingrowth, osseointegration, and vasculariza-
tion.?”?® Strobel et al. (2014) fabricated CaP scaffolds
composed of HA, -TCP, and of an acid-hydrolytic
modified potato starch (dextrin) powder using a com-
mercial inkjet 3D-printer with water-glycerol as a
binder solution.”® When coated with fibrin premixed
with BMP-2 or seeded with osteoblasts, and implanted
in subcutaneous pockets in rats, significant ectopic
bone formation was observed. One study demon-
strated that osteoinductive elements, other than BMP-
2 or cells, can be incorporated into 3D-printed CaP
scaffolds for enhancing bone formation. Ishack et al.
(2015) extruded biphasic CaP (15% HA and 85% f-
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TCP) in in a colloidal gel ink, and then loaded these
scaffolds with either BMP-2 or dipyridamole, a drug
that upregulates extracellular adenosine.*> When im-
planted into a mouse calvarial defect, both BMP-2 and
dipyridamole loaded scaffolds promoted bone regen-
eration 8 weeks post-operatively.

CONCLUSIONS

In summary, CaP scaffolds produced using
approaches involving low- or high-temperature 3D
printing processes or post-processing steps have been
shown to be osteoconductive in a variety of animal
models; however, complete bone regeneration is typi-
cally not achieved without the addition of osteoin-
ductive elements such as cells or biofactors. Future
work must focus on refining the right combination of
cell populations, growth factors, or other osteoinduc-
tive elements needed for complete bone regeneration in
orthotopic models of bone regeneration. It is also not
known precisely what porosity and pore size distribu-
tion are ideal for supporting and enabling bone
growth, but this information is vital for optimizing
sintering temperatures and duration that affect both
mechanical strength and pore morphologies. The
advantages of low temperature fabrication approaches
are nullified by the poor biomechanical properties of
these scaffolds, which makes their use in load-bearing
orthotopic models of bone repair challenging. New
binders or printing technologies that could improve the
mechanical properties of printed CaP scaffolds at
biologically-relevant temperatures are an area of
research that requires attention. The current 3D
printing platforms have limitations intrinsic to the
technology used, as described, and future research and
development should focus on overcoming these limi-
tations with the goals of enhancing biomechanical
properties, resolution, biocompatibility, and sustained
drug release that could approach first- or zero-order
kinetics. However, an argument can be made that the
3D printing technology has matured to the point where
further testing in large animals is required to demon-
strate level I preclinical evidence of efficacy.
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