
Parametric Modeling of the Mouse Left Ventricular Myocardial Fiber

Structure

SAMER S. MERCHANT ,1 ARNOLD DAVID GOMEZ,1,2 JAMES L. MORGAN,1 and EDWARD W. HSU
1

1Department of Bioengineering, University of Utah, 36 S Wasatch Dr Rm 3100, Salt Lake City, UT 84112, USA; and 2Division
of Cardiothoracic Surgery, University of Utah, Salt Lake City, UT, USA

(Received 1 October 2015; accepted 17 February 2016; published online 4 March 2016)

Associate Editor Joel D. Stitzel oversaw the review of this article.

Abstract—Magnetic resonance diffusion tensor imaging
(DTI) has greatly facilitated detailed quantifications of
myocardial structures. However, structural patterns, such
as the distinctive transmural rotation of the fibers, remain
incompletely described. To investigate the validity and
practicality of pattern-based analysis, 3D DTI was per-
formed on 13 fixed mouse hearts and fiber angles in the left
ventricle were transformed and fitted to parametric expres-
sions constructed from elementary functions of the prolate
spheroidal spatial variables. It was found that, on average,
the myocardial fiber helix angle could be represented to 6.5�
accuracy by the equivalence of a product of 10th-order
polynomials of the radial and longitudinal variables, and
17th-order Fourier series of the circumferential variable.
Similarly, the fiber imbrication angle could be described by
10th-order polynomials and 24th-order Fourier series, to 5.6�
accuracy. The representations, while relatively concise, did
not adversely affect the information commonly derived from
DTI datasets including the whole-ventricle mean fiber helix
angle transmural span and atlases constructed for the group.
The unique ability of parametric models for predicting the
3D myocardial fiber structure from finite number of 2D slices
was also demonstrated. These findings strongly support the
principle of parametric modeling for characterizing myocar-
dial structures in the mouse and beyond.
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fiber architecture prediction, Cardiac DTI atlas.

INTRODUCTION

Functions of the heart depend heavily on the
underlying myocardial structure and its spatial orga-
nization. For example, electrical propagation is three
times faster along than across the myocardial fiber

direction.23 Ventricular torsion during contraction
arises from the helical arrangement of the myocardial
fiber orientation.4,8 Moreover, alterations in the car-
diac environment such as elevated afterload due to
hypertension 7,13 and diseases like hypertrophic car-
diomyopathy33 are known to cause myocardial
remodeling at both microscopic and macroscopic le-
vels. For these reasons, quantitative characterization
of the myocardial structure is useful to better under-
stand the normal cardiac physiology, and as means for
detecting, diagnosing and monitoring cardiac diseases.

Magnetic resonance diffusion tensor imaging (DTI)5

has emerged as the tool-of-choice to non-invasively
quantify the 3D myocardial structure of the heart. The
primary DTI eigenvector (i.e., the direction in which
diffusion is the fastest) has been directly correlated to the
fiber orientation of the freshly excised,21 perfused,36 and
fixed19 myocardium. Additionally, the secondary DTI
eigenvector has been associated with the myocardial
laminar or sheet structure.34 DTI has been used to study
hearts in various species including human,32,34 large44

and small10,22 animals. Because of its sensitivity to tissue
microstructural remodeling, DTI changes have been
reported cardiac pathologies such as infarct,25,41

hypertrophy,15,35 and heart failure.18

Analyzes of myocardial DTI data have included
comparison of DTI-derived scalar quantities such as
the mean diffusivity and fractional anisotropy,1 and
directional parameters.42 Computation of the direc-
tional quantities is more challenging, since they are
referenced to the local cardiac morphology. For
example, the commonly reported fiber helix angle is the
inclination from the circumferential axis of the primary
DTI eigenvector projected onto the epicardial tan-
gential plane. Advances in computational anatomy
have allowed DTI datasets of same organs from dif-
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ferent subjects to be registered,29,43 transformed,2 and
described in a standardized coordinate system on a
voxel-by-voxel basis, which in turn made construction
of numerical models representing structural averages,
or atlases, of organs including the heart27,30 possible.
Besides challenges associated with handling relatively
large datasets, voxel-based analyzes commonly assume
that the measured quantities in the voxels behave
independently, which neglects any structural pattern
that may be present in the organ.

The existence of myocardial structural patterns,
epitomized by the smoothly-varying double helical
arrangement of ventricular myocardial fibers, is long
known.37 Instead of helix angles in all voxels, their
transmural slope of change, or span, has been used as a
single metric for measuring the myocardial fiber struc-
ture in studying, for example, hearts among different
species17 and hypertrophied hearts.33 These basic
myocardial structural patterns have been incorporate
into rule-based predictions of fiber orientation for gen-
erating computational models of the heart.6 Moreover,
fitting the helix angle profile to a higher-order polyno-
mial function of the transmural distance was found to
improve the accuracy of the computational modeling.14

Despite the ability to quantify myocardial structures in
whole hearts viaDTI and clear benefits of pattern-based
descriptions, myocardial structural patterns in 3D re-
main to be investigated systematically.

The goals of the current study are therefore to
determine the feasibility of representing the myocardial
fiber structure as parameterized functions of the 3D
spatial variables, and explore its potential utility for
capturing the essential fiber structural information,
constructing group atlases, and performing subject-
specific predictions of the fiber structure. Being a first
study of its kind, the main focus is on evaluating the
general validity of the parametric approach for mod-
eling the 3D myocardial fiber architecture, and not on
optimization of the specific computational procedures
involved. Although based on DTI datasets obtained
from fixed mouse hearts, the methodologies developed
and conclusions reached in the current study are ex-
pected to be applicable to hearts from other species
prepared using alternative means or imaged in vivo.

METHODS

Specimen Preparation and Image Acquisition

Using protocols approved by the University of Utah
Institutional Animal Care and Use Committee, hearts
(n = 13) were excised from isoflurane-anesthetized
3 month-old male C57B/L6 mice, rapidly cannulated
via the aorta, and arrested by retrograde perfusion of

KCl, with a small amount of alginate (Accu-Cast,
Bend, Oregon) injected into the left ventricle (LV) to
maintain its end-diastolic morphology. Subsequently,
the hearts were immersion fixed in 10% formalin for a
minimum of 48 h. In preparation for imaging, each
specimen was placed in a 0.8 cm-diameter sealed tube
filled with Fomblin (Solvay Solexis, West Deptford,
NJ).

Diffusion tensor imaging was performed using a
1.0 cm-diameter loop-gap radiofrequency transmitter–
receiver and standard 3D spin-echo echo-planar scans
(100 lm isotropic resolution, 4-shot acquisition,
100 9 63 9 100 matrix size, TE/TR = 25/500 ms) on
a Bruker Biospec 70/30 instrument (Bruker Biospin,
Ettlingen, Germany). Each DTI dataset consisted of
192 images encoded pairwise (both positive and nega-
tive senses) with diffusion-weighting b-value of 1000 s/
mm2 in 96 directions plus 4 non-weighted (b-value of
zero, or b0) images. Intensities from image pairs were
geometrically averaged to correct for effects of gradi-
ent cross-terms.20 Using a combination of routines
written in MATLAB (release R2012b, MathWorks,
Natick, MA) and C, diffusion tensors were estimated
via nonlinear least squares multivariate curve fitting,24

and decomposed into their eigenvectors and eigenval-
ues on a voxel-by-voxel basis. The eigenvector of the
largest eigenvalue was taken to be the local myocardial
fiber orientation.

Determination of Fiber orientation Quantities in
Standardized Coordinates

To provide a common coordinate system for sub-
sequent modeling analyzes, using Amira 5.4.2 (VSG,
Konrad-Zuse-Zentrum Berlin) and codes written in C
and MATLAB running on a custom workstation
(AMD 2.4 GHz Phenom II quad-core CPU, 16 GB
RAM with Parallel Computing Toolbox for Matlab),
DTI images for each heart were re-oriented such that
the cardiac long axis and the plane bisecting the ven-
tricles were aligned with the z and x axes, respectively,
of the imaging volume. A binary mask of the left
ventricle (LV) distal to the equatorial plane was gen-
erated via intensity segmentation. Subsequently, using
procedures adapted from a previous study38 and de-
tailed in the Appendix, coordinates of the LV of each
specimen were represented on a normalized prolate
hemispheroidal volume in terms of the spherical radial
l, circumferential w and azimuthal m variables. The
local tangential basis vectors of the prolate hemi-
spheroidal volume were mapped onto the anatomical
space via rotational transformation2 to ensure
orthogonality of the reference axes, and used for
computing myocardial fiber orientation helix angle a
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and imbrication (or transverse) angle a¢ from the pri-
mary DTI eigenvector as previously described.22,37

Construction of Parametric Models of Fiber Orientation
Quantities

Without loss of generality, the fiber orientation
quantities a and a¢ were modeled as products of finite-
order polynomials of l and m, and due to its periodic
nature, Fourier series of w according to,
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Instead of directly determining the coefficients in the
expressions, Eqs. (1) and (2) were first linearized by
expanding into the forms,
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The coefficients of the expanded expressions were
estimated from the measured fiber orientation quanti-
ties via linear least squares fitting by setting up Eqs. (3)
and (4) for each voxel of the LV in the forms of linear
systems of equations according to:

a½ � ¼ M½ � P
Q

� �
ð5Þ

a0½ � ¼ M0½ � P0

Q0

� �
: ð6Þ

Equations (5) and (6) were then solved using econ-
omized singular value decomposition (SVD).16 The
rationale was that the number of voxels in the LV was
an order of magnitude greater than the number of
coefficients to be computed (see Table 1), which
resulted the matrices M andM0 to have markedly more
rows than columns. Therefore, it would be sufficient to
solve Eqs. (5) and (6) using economized SVD of the
matrices, which was more practical computationally
than full SVD.

TABLE 1. Voxel count, optimal myocardial fiber helix and imbrication angle model orders according to F-tests in each prolate
spheroidal spatial dimensions, and corresponding number of terms in the expanded parametric expressions and fitting errors

determined for individual hearts.

Heart# Voxels

Helix angle Imbrication angle

Optimal order

Terms

RMSE
Optimal order

Terms

RMSE

l, m w (�) l, m w (�)

1 24752 9 29 5900 4.4 7 46 5952 4.7

2 37946 10 1 363 10.0 9 36 7300 4.6

3 33142 10 25 6171 4.6 11 14 4176 4.9

4 44668 12 2 845 10.0 10 19 4719 6.3

5 26846 8 5 891 7.8 8 10 1701 7.0

6 35228 10 27 6655 3.9 11 10 3024 5.0

7 30520 9 34 6900 5.5 11 10 3024 7.7

8 20588 8 34 5589 6.0 7 41 5312 6.2

9 27998 9 22 4500 3.8 7 86 11072 2.3

10 35190 10 14 3509 6.4 11 10 3024 6.2

11 24588 8 24 3969 4.5 8 9 1539 5.8

12 34254 12 2 845 9.6 10 25 6171 5.0

13 36318 13 5 2156 6.9 12 2 845 7.1

Mean

SEM

31695

1759

9.8

0.4

17.2

3.4

3715

652

6.5

0.6

9.4

0.5

24.5

6.1

4451

743

5.6

0.6

RMSE root-mean-square of error, SEM standard error of the mean; l and m, respectively radial and azimuthal variables, both fitted to

polynomials; w circumferential variable, fitted to Fourier series.
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Since the expanded expressions sufficiently repre-
sented the fiber angles, they were left as is without
converting back to the forms of Eqs. (1) and (2). The
goodness-of-fit was quantified by the root-mean-
squares of the error (RMSE) computed with respect to
the measured fiber angles. For reference, numerical
simulations were performed using the same DTI pro-
tocols on the same diffusion tensors and amount of
signal-to-noise ratio (SNR) seen in the b0 scans to
estimate the contribution of image noise to the fiber
orientation measurements.

Given that higher-order functions would necessarily
yield more accurate fits, but at the same time be more
sensitive to noise in the data, it was reasonable to ex-
pect there existed an optimal order that offered the best
tradeoff between the two considerations. Such optimal
order would correspond to the lowest order above
which the fitting error stops decreasing statistically
when F-tests are applied to progressively higher order
functions. To this end, supposing a lower-order
expression, say Model 1, had Q1 coefficients and cor-
responding fitting error of E1, and similarly the next

FIGURE 1. Falsecolor-coded fiber angles of two representative hearts (corresponding to #2 and #6 in Table 1). Alternate rows
show helix and imbrication angle maps of the full data before and after registration to prolate spheroidal coordinates, and those
fitted to the indicated order of polynomials of the radial and azimuthal prolate spheroidal variables, and Fourier series of the
circumferential variable.
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higher-order Model 2 had Q2 coefficients (Q2>Q1)
and E2 fitting error, the F-value for the N measure-
ment points was calculated as,9

F ¼ ðE1� E2Þ
Q2�Q1

�
E2

N�Q2
: ð7Þ

The null hypothesis, that the fitting errors in Models
1 and 2 were not statistically different, was tested by
comparing the F-value to the F-distribution critical
value for ðQ2�Q1, N�Q2Þ degrees of freedom. To
circumvent testing all possible permutations of the
orders, F-tests were performed on the fits of a for each
specimen for simultaneously increasing nl and nm, while
holding nw constant at unity, until their optimal order

was found. Subsequently, while holding nl and nm
constant at their optimal value, F-tests were performed
for increasing nw. The optimal orders of functions for
the fiber imbrication angle, n0l, n

0
w and n0m, were simi-

larly determined.

Demonstration of Utility

Due to the large dataset size of DTI experiments,
computing the whole ventricle mean helix angle
transmural span11 has been commonly used to reduce
and analyze the fiber orientation information. To
demonstrate that the proposed polynomial represen-
tation maintained the fiber structural information they

FIGURE 2. Representative scatter plots of the left ventricular myocardial fiber helix angle as function of normalized transmural
distance (left direction pointing toward the epicardium). The rows show plots for different hearts obtained using original (left) and
parametrically modeled (right) helix angles. Superimposed are linear regressions (solid lines) quantifying the mean total trans-
mural span of the helix angle.
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intended to capture, a scatter plot was generated for
each heart for the fiber helix angle a from the original
DTI data with respect to the distance from the endo-
cardium along all possible transmural trajectories, and
the mean transmural span of the helix angle was cal-
culated via linear regression. Similarly, the mean

transmural span was determined for the helix angle
fitted to the parametric expression with optimal orders
of the constituent functions. The transmural helix an-
gle spans quantified using the two techniques among
all hearts were then compared via paired t test.

Advances in computational anatomy have allowed
the computation of digital atlases from images of the
body, including the heart using DTI data.27,30,31 To
further demonstrate their practical utility, similar group
atlases were constructed for the parametric models
simply by (a) computing the averages of the orders of
expressions deemed optimal for the individual hearts
and taking them as the optimal orders for the atlas, then
(b) determining the coefficients of the parametric
expressions of the atlases by averaging the correspond-
ing coefficients of the constituent hearts, since the
coordinates of the representations were already stan-
dardized. To assess the goodness of the group averaged
expressions, the RMS deviation of the average with re-
spect to original (i.e., unfitted) quantities in the prolate
spheroid space, as well as both voxel-based average and
standard deviation of the latter, were computed.

As a final demonstration of practical utility, the
parametric models were used to predict the 3D
myocardial fiber structure from sub-sampled DTI da-
tasets mimicking partial imaging of the heart to reduce

TABLE 2. Whole-LV average transmural fiber helix angle
span obtained from original data and parametric models for

individual hearts.

Heart#

Original Parametric

(�) (�)

1 241.2 241.2

2 255.7 255.4

3 273.7 273.4

4 248.4 247.8

5 244.7 245.0

6 256.6 256.6

7 255.0 254.7

8 236.3 236.0

9 264.3 264.0

10 254.7 254.3

11 255.4 255.0

12 267.0 266.3

13 274.9 274.6

Mean

SEM

255.9

3.1

255.7

3.1

Paired t test between the groups yielded p> 0.1.

FIGURE 3. Falsecolor-coded atlases of fiber helix and imbrication angles. Maps of the group mean and corresponding RMSE (i.e.,
standard deviation) for both the fiber helix (top row) and imbrication angle (bottom row) constructed using parametric models (left)
are highly similar to their counterparts obtained via voxel-based statistics (right).
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FIGURE 4. Input data and parametric model-predicted 3D fiber angles obtained for representative hearts. Alternate rows show
fiber helix and imbrication angles, and each column pair corresponds to when the indicated number of slices is used as input. The
left-most column contains original fiber angle data displayed in anatomical (i.e., unregistered) coordinates. The accuracy of the
predictions of the helix and imbrication angles are separately tabulated in Tables 3 and 4, respectively.

TABLE 3. Root-mean-squares errors compared to the original 3D measurements of the LV myocardial fiber helix angles predicted
by parametric models based on the indicated sub-sampling schemes, and by the group atlas.

Heart# 2 slices 4 slices 8 slices Atlas

1 25.8 18.6 13.9 26.3

2 23.9 15.6 11.9 15.6

3 27.4 15.9 13.5 22.6

4 24.9 17.3 13.3 18.4

5 27.2 18.3 14.4 22.3

6 28.1 13.6 10.7 15.3

7 27.7 18.9 15.2 23.6

8 38.8 27.3 17.5 22.9

9 24.2 17.3 12.5 17.4

10 32.2 19.6 15.9 27.8

11 23.3 20.6 13.2 20.5

12 30.0 16.4 13.6 18.2

13 25.2 14.7 11.8 18.0

Mean

SEM

27.6*

1.1

18.0

0.9

13.6*

0.5

20.7

1.1

All entries have units of degrees.

Asterisks indicate significant column means against the atlas column via Bonferroni-corrected post hoc tests of single-factor repeated

measures ANOVA with overall p< 0.01 significance level.
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the acquisition time. To this end, 2, 4 and 8 equally
spaced short-axis slices of the original DTI data, span-
ning and including the equatorial slice and 75% of the
way toward the apex, were extracted from each heart.
Assuming that an anatomical scan of the ventricular
morphology was available as part of the experiment, the
reduced datasets were transformed into the prolate
spheroidal system, and used to solve for the coefficients
of the expressions describing the fiber orientation angles.
Since the individual 3D DTI scans were not part of the
simulated experiments, determination of the optimal
orders of individual parametric models would not have
been possible. Therefore, functions of the group means
of optimal orders in l and w were used, but to avoid
creating an under-determined problem, the order for m,
which was the dimension of data under-sampling, was
kept at unity. Subsequently, the fitted polynomials were
used to determine the fiber orientation quantities span-
ning the entire 3Dprolate hemispheroid, whichwas then
mapped back to the original morphology of the LV.
Using the 3D DTI as gold standard, accuracy of the
predicted fiber orientation quantities was determined by
computing their RMSE. Finally, the RMSEs obtained
for the 2, 4 and 8-slice simulations, along with the
deviation obtainedwhen the group atlaswas used for the
prediction and as control, were compared via repeated
measures ANOVA.

RESULTS

The process of parametric modeling of the
myocardial fiber helix and imbrication angles is visu-
alized in Fig. 1, which shows the original fiber angles in

both anatomical and prolate spheroidal coordinates,
and those fitted using 1st, 5th, 10th and 15th order
functions in all dimensions, obtained in two represen-
tative specimens. Excluding segmentation, representing
the fiber orientation quantities in the standardized
prolate spheroidal coordinates took approximately
3 min computation time, and depending on the order
of the functions involved, calculation of the parametric
coefficients took 3 s to 30 min.

In Fig. 1, while most of the gross structural pattern
is already visible in even the 1st-order models, as ex-
pected, more details are captured in higher order rep-
resentations. Notably, little difference is
detectable between the 10th and 15th-order models,
suggesting that, if the F-tests described above were
performed correctly, the optimal orders for the para-
metric expressions should be similar. Results of the F-
tests for the individual hearts are summarized in Ta-
ble 1. On average, the optimal orders for the para-
metric expressions for the helix angle were found to be
10 for the polynomials and 17 for the Fourier series,
and 10 and 24 for the imbrication angle, both in
agreement with visual inspection of Fig. 1. Compared
to 31,695 measurement points needed in voxel-based
representation of the volume, the optimal-order para-
metric models of the helix and imbrication angles, in
expanded forms, consisted of 3715 and 4451 terms, and
achieved RMSE-estimated accuracies of 6.5� and 5.6�,
respectively. Simulations of the same DTI experiment
using the same diffusion tensor eigenvalues (1.20, 0.75
and 0.40 9 1023 mm2/s) and SNR (35) for the b0
intensity indicated that image noise accounted for 2.3�
error in the fiber orientation measurements.

TABLE 4. Root-mean-squares errors compared to the original 3D measurements of the LV myocardial fiber imbrication angles
predicted by parametric models based on the indicated sub-sampling schemes, and by the group atlas.

Heart# 2 slices 4 slices 8 slices Atlas

1 24.7 20.9 15.0 23.8

2 26.0 18.8 12.8 14.3

3 27.1 19.2 15.9 20.8

4 24.2 17.6 13.5 19.2

5 33.1 18.6 13.9 18.9

6 26.8 16.3 12.8 16.3

7 33.5 22.0 16.5 21.4

8 54.0 39.9 17.9 26.3

9 25.4 18.3 13.0 18.4

10 37.4 23.0 18.9 24.3

11 24.7 23.4 16.3 21.5

12 29.1 20.1 15.3 16.7

13 31.6 18.4 14.3 17.4

Mean

SEM

30.6*

2.2

21.3

1.6

15.1*

0.5

20.0

0.9

All entries have units of degrees.

Asterisks indicate significant column means against the atlas column via Bonferroni-corrected post hoc tests of single-factor repeated

measures ANOVA with overall p< 0.01 significance level.
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Figure 2 shows the scatter plots of the fiber helix
angles as a function of normalized transmural dis-
tance for the same two hearts, revealing highly
similar distributions between the original and
parametrically modeled data. The transmural helix
angle spans, obtained by linear regression of the
scatter plots, for all hearts are listed in Table 2,
which shows that the commonly used description of
LV myocardial fiber structure determined from the
parametric models is essentially identical to that in
the original data.

The utility of the proposed parametric modeling
approach for group analysis is demonstrated in
Fig. 3, which includes the group atlases and RMSE
maps computed for the parametrically represented
fiber helix and imbrication angles, and those com-
puted via voxel-based analysis. Both the atlases and
the measures of variability appear highly similar.
Quantitatively, the atlases obtained using the two
approaches have a mean difference of 20.03� and
20.10� for the helix and imbrication angles, respec-
tively. Moreover, the whole-volume mean RMSEs of
the angles, 20.7� and 20.0� for the parametric model
atlas, are highly similar to 19.6� and 18.7� calculated
for the voxel-based atlases. These findings indicate
that parametric modeling of myocardial fiber struc-
ture does not introduce significant systematic bias to
the descriptive statistics of the group. Taking the
group RMSEs as the population standard deviations,
the cohort sizes necessary to make the uncertainties
(i.e., standard errors) of the atlases comparable to the
mean fitting errors of the individual hearts (e.g., 6.5�
for a) were determined to be 10 and 13 for the fiber
helix and imbrication angles, respectively.

Lastly, Fig. 4 visually describes subject-specific
parametric model-based predictions of the 3D fiber
structure from limited 2D data for the same two
hearts shown in Fig. 1. Compared to the predictions
based on 2 slices, improvements can be clearly seen
when 4 or more slices are used. The RMSEs of the
predictions, along with those of the parametric model
and group atlas as basis of comparison, for the helix
and imbrication angles for individual hearts are listed
in Tables 3 and 4, respectively. Not unexpectedly,
considering the ~6� mean error of the full 3D para-
metric models, predictions from both limited number
of slices and group atlas introduce additional dis-
crepancy in the fiber angles. Repeated measures
ANOVA indicates that using 2 slices achieved worse,
whereas using 4 slices yielded comparable accuracy as
atlas-based predictions. Remarkably, parametric
models constructed from 8 subject-specific slices pre-
dicted the 3D fiber structure significantly better than
the group atlases.

DISCUSSION

Overall, results of the present study are highly
promising for representing the myocardial structure, at
least in the LV, based on parametric functions of the
spatial variables. Using on average 10th-order poly-
nomials in the radial and longitudinal axes, and 17th
and 24th-order Fourier series for the circumferential
dimension, fiber helix and imbrication angles of the
individual hearts were described to 6.5� and 5.6�
accuracies, respectively. Because image noise con-
tributed to an estimated 2.3� error in the original DTI
measurements, the true accuracy of the parametric
representations is likely better. The parametric
expressions, in expanded forms, entail 1,000 s of terms,
which is about an order-of-magnitude reduction com-
pared to the 10,000 s measurement points needed to
describe the same fiber structure using voxel-based
representation in the same volume. Although it re-
mains to be determined whether the expanded repre-
sentations can be reduced to the forms of Eqs. (1) and
(2), and whether such feat can bring about additional
advantages, the benefits of parametric modeling of
myocardial structures are already clear.

Results in Figs. 2 and 3, and Table 2, demonstrate
the practical utility of the proposed approach for
capturing the overall transmural helix angle span and
group statistics of the fiber orientation among hearts.
They indicate that the conciseness of the parametric
representation is achieved without introducing signifi-
cant error to the descriptive information convention-
ally derived and used for analyzing the 3D fiber
orientation measurements. Importantly, for the group
analysis, the RMSEs of the parametric models provide
a convenient metric of goodness for the atlases, which
has been difficult to determine since the atlases exist
only computationally. For the current study, a cohort
size of 10–13 is what it takes to obtain an atlas of
myocardial fiber orientation that has the same uncer-
tainty as the average error in individual parametric
models. While atlases have been constructed for car-
diac DTI studies,27,30,31 to the authors’ knowledge, this
is the first time a measure of accuracy with practical
relevance is related to the cohort size and attached to
an atlas.

A major advantage of the proposed parametric
approach is the ability to perform subject-specific
extrapolation or prediction of the 3D myocardial fiber
structure from limited measurements (e.g., few 2D
slices), as demonstrated in Fig. 4 and Tables 3 and 4.
Given that enough slices are used (8 in the current
study), fiber angles in the whole LV that are more
accurate than the group atlas can be can predicted,
without having to scan all hearts and construct the
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group atlas. Convolution-based procedures for inter-
polating and extrapolating the local fiber orientation
have been recently described.38 However, without 3D
DTI scans as references for comparison, the accuracy
of the approach and whether it can be used for the
whole 3D LV volume remain to be determined. Prac-
tical applications of DTI have been hampered by long
scan times, and methodologies to accelerate the data
acquisition, via for example compressed sensing11,28,40

and simultaneous multi-slice acquisition,12,26 are being
actively investigated. The unique ability of parametric
modeling to perform subject-specific prediction from
limited acquired data makes it an excellent alternative
or adjunct means to extend the 3D coverage of these
acquisition-based accelerations.

As a first investigation of its kind, the current study
focuses on the feasibility and demonstration of prac-
tical utility of parametric modeling of the LV
myocardial fiber structure, with little or no specific
effort spent on optimizing the technical procedures
involved. While they do not detract from the general
validity of the proposed parametric modeling
approach, possible areas that can be improved include,
and are not limited to (a) using orthogonal polyno-
mials such as Chebyshev polynomials, instead of sim-
ple polynomials, in the parametric representation,
which may offer more accurate modeling with fewer
required terms, (b) finding better strategies for deter-
mining the optimal orders of the parametric expres-
sions to ensure that the results represent truly optimal
values, (c) using a more directly modeling the mea-
surements as single vectors rather than paired scalar
projection angles, since myocardial fiber orientation is
a single entity, (d) better yet, directly modeling all
underlying microstructure information as tensor
quantities, and (e) extending the modeling beyond the
LV fiber structure, to the myocardial sheet structure,
and to both ventricles of the heart. Each of these areas
represents a worthy topic for future investigations.

CONCLUSIONS

Prompted by the existence of conspicuous structural
organization in the ventricular myocardium, the cur-
rent study explored modeling the 3D LV fiber orien-
tation in mouse hearts fixed at end-diastole using
expressions constructed from finite orders of prolate
spheroidal spatial variables. Representations of the fi-
ber angles that were both concise and highly accurate
were found, without compromising the metrics com-
monly obtained to assess the overall myocardial
structure. While several technical aspects of the study
can be enhanced, the findings underscore the general
validity of the parametric approach, and are expected

to have significant practical implications for charac-
terization and modeling of the myocardial structure in
the mouse and beyond.

APPENDIX

Representations of the Standardized Prolate Spheroidal
LV Geometry

Based on the general equation of an upright prolate
spheroidal surface with longitudinal radius a and
transverse radius b in Cartesian coordinates,

x2 þ y2

b2
þ z2

a2
¼ 1; ð8Þ

as depicted in Fig. 5, the geometry of the LV was
approximated by a constant-thickness volume con-
sisting of concentric prolate spheroidal shells specified
by,

x2 þ y2

b1 � swð Þ2
þ z2

a1 � swð Þ2
¼ 1; ð9Þ

where s 2 [0, 1] was the transmural distance variable,
a1 and b1 were the outer longitudinal and transverse
radii, a2 and b2 were the inner radii, and
w ¼ a1 � a2 ¼ b1 � b2 was the wall thickness of the
volume.

The Cartesian coordinates of a prolate spheroid
could be alternatively represented using the spherical
radial l, circumferential w and azimuthal m coordinate
variables and focal distance q according to :3

x ¼ q sinh lð Þ sin mð Þ cos wð Þ ð10Þ

FIGURE 5. Approximation of the LV by an approximate pro-
late hemispheroidal volume in Cartesian coordinates.
Dimensions in the anatomical space (left), including the areas
of the LV in the equatorial short-axis plane and its distance to
the apex, were used to compute the transverse and longitu-
dinal axis lengths of the prolate hemispheroid (right) as
specified by Eq. (9). The area A1 included the ventricular
cavity.
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y ¼ q sinh lð Þ sin mð Þ sin wð Þ ð11Þ

z ¼ q cosh lð Þ cos mð Þ ð12Þ

Using trigonometric manipulation, the above 3
equations were combined and reduced to

x2 þ y2

ðq sinh lð ÞÞ2
þ z2

ðq cosh lð ÞÞ2
¼ cos2 mð Þ þ sin2 mð Þ ¼ 1:

ð13Þ

By comparing Eq. (13) to Eq. (9), the spherical
coordinates of all points in the above prolate spher-
oidal LV volume were found by first determining l and
q according to

l ¼ tanh�1 b1 � sw
a1 � sw

	 

; and ð14Þ

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 � swð Þ2� b1 � swð Þ2

q
¼ a1 � sw

coshðlÞ ð15Þ

followed by w and m through

w ¼ tan�1 y

x
; and ð16Þ

m ¼ cos�1 z

q coshðlÞ

	 

: ð17Þ

In the spherical coordinate system, the local tan-

gential basis vectors, ĉ, l̂ and n̂ in the circumferential,
longitudinal and normal (or radial) directions,
respectively, were then computed according to

ĉ ¼
� sinðwÞ
cosðwÞ

0

2

4

3

5; ð18Þ

l̂ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 lð Þ þ sin2 mð Þ

q
sinh lð Þ cosðmÞ cosðwÞ
sinh lð Þ cosðmÞ sinðwÞ
� cosh lð Þ sinðmÞ

2

4

3

5;

ð19Þ

n̂ ¼ l̂� ĉ: ð20Þ

Mapping of the Standardized Geometry to Specimen-
Specific Anatomy

The standardized prolate spheroidal volume was
mapped to the specimen-specific anatomy by first
determining the size-related parameters in Eq. (9). As
also shown in Fig. 5, since the entire transverse axis
radii lay in the equatorial plane, b1 and b2 were
respectively estimated from the areas A1 of the LV

(with filled cavity) and A2 of its cavity in the mid-
ventricular cardiac short-axis slice, according to,

b1 ¼
ffiffiffiffiffiffiffiffiffi
A1=p

q
; and; ð21Þ

b2 ¼
ffiffiffiffiffiffiffiffiffi
A2=p

q
: ð22Þ

The wall thickness w was computed from w ¼ b1 � b2.
The distance from the equatorial slice to the cardiac
apex was taken to be the outer longitudinal axis length
a1.

Since the prolate spheroidal shape was only an
approximation of the actual LV anatomy, a one-to-one
and invertible mapping between the two was obtained
by registering the former to the latter via diffeomorphic
demons.39 For computing the local myocardial fiber
orientation quantities (e.g., the helix angle) while
ensuring orthogonality of the reference axes, the
rotational component of the diffeomorphic transfor-
mation was used to map2 the tangential basis vectors,

ĉ, l̂ and n̂, for each point in the prolate spheroidal
volume onto the anatomical space.

Finally, to account for size variability among hearts
and facilitate numerical modeling as polynomials, the
radial coordinate variable (l, originally spanning

[tanh�1 b1=a1ð Þ,tanh�1 b2=a2ð Þ]) and azimuthal variable
(m, spanning [0, p]) were both normalized via linear
transformation to span the interval [21, 1].
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