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Abstract—In human locomotion, sensorimotor synchroniza-
tion of gait consists of the coordination of stepping with
rhythmic auditory cues (auditory cueing, AC). AC changes
the long-range correlations among consecutive strides (frac-
tal dynamics) into anti-correlations. Visual cueing (VC) is the
alignment of step lengths with marks on the floor. The effects
of VC on the fluctuation structure of walking have not been
investigated. Therefore, the objective was to compare the
effects of AC and VC on the fluctuation pattern of basic
spatiotemporal gait parameters. Thirty-six healthy individu-
als walked 3 9 500 strides on an instrumented treadmill with
augmented reality capabilities. The conditions were no
cueing (NC), AC, and VC. AC included an isochronous
metronome. For VC, projected stepping stones were syn-
chronized with the treadmill speed. Detrended fluctuation
analysis assessed the correlation structure. The coefficient of
variation (CV) was also assessed. The results showed that AC
and VC similarly induced a strong anti-correlated pattern in
the gait parameters. The CVs were similar between the NC
and AC conditions but substantially higher in the VC
condition. AC and VC probably mobilize similar motor
control pathways and can be used alternatively in gait
rehabilitation. However, the increased gait variability in-
duced by VC should be considered.

Keywords—Human locomotion, Motor control, Sensorimo-

tor synchronization, Gait variability, Auditory cueing, Visual

cueing, Long-range correlations.

ABBREVIATIONS

AC Auditory cueing
NC No cueing
VC Visual cueing

DFA Detrended fluctuation analysis
CV Coefficient of variation

INTRODUCTION

In the 1970s, Benoit Mandelbrot laid the founda-
tions of a new method for understanding the geometry
of nature. He coined the term ‘‘fractal’’ to describe
geometric objects that look identical regardless of the
scale at which they are observed (self-similarity).20 He
also developed an analogous concept about particular
time series that present self-similarities.21 In this case, a
constant statistical distribution exists across time
scales. In other words, the statistical features of the
parts of the series are comparable, even if the time
interval during which the observations are made
changes. The corollary is that these fractal time series
exhibit serial correlations (or autocorrelations)
between consecutive samples that slowly decrease un-
der a power law (long-range correlations).

Biological systems are inherently complex. They are
constituted of multiple sub-parts—ranging from the
molecular to the population level—that interact non-
linearly on large spatial and temporal scales. Conse-
quently, signals measured from living organisms are
most often fractal. Although the classical approach
considers the fluctuations in a physiological signal as
random noise around the true average, the fractal
analysis postulates that the structure of fluctuations
enlightens us about the underlying processes that have
produced the signal.10 Fractal analysis has been used
on a wide variety of signals, such as heartbeat time
series29 or electroencephalograms.1

In human walking, the muscles of the lower limbs
cyclically propel the body forward over a certain dis-
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tance (step length) during a certain time (step time), thus
maintaining ambulatory speed (length/time). Gait con-
trol expends low energy by delivering an optimal com-
bination of step length and step time.48 Furthermore, an
active control of lateral foot placement is needed to
provide a base of support that minimizes fall risks.3 In
short, the control of human walking is a highly complex
process implying intricate interactions of feed-forward
and feed-back mechanisms,11,35 which is a condition that
is conducive for the emergence of fractal patterns in gait
fluctuations. Actually, in 1995, by analyzing the walk of
healthy individuals, Hausdorff and colleagues observed
that the time series of stride time (i.e., the time between
two consecutive heel strikes of the same limb) exhibited
fractal fluctuations:14 deviations above and below the
average tend to persist over several decades of later
strides (long memory process). In order to highlight the
fractal patterns, Hausdorff et al. used detrended fluctu-
ation analysis (DFA), which had been designed to assess
the scaling properties of time series with nonstationari-
ties.28 In subsequent studies using DFA, they observed
that, in patients with neurological gait disorders, the
fractal pattern is replaced by a random pattern (i.e., no
correlations among successive strides).13,15 Thus, DFA
has often been adopted to study locomotor function in
patients with neurological disorders.12

During the decade after these seminal works, further
studies using DFA extended the knowledge about
fractal fluctuations in human locomotion. In 2003,
West and Scaffetta46 proposed a nonlinear stochastic
dynamical model of walking that accounted for the
presence of long-range correlations in stride time ser-
ies. In 2005, Terrier et al.42 observed that the time
series of stride time, as well as the time series of stride
length and stride speed, was fractal. The presence of
fractal patterns in several spatiotemporal gait param-
eters was later confirmed by Jordan et al. in a tread-
mill experiment.18 In the meantime, theoretical
considerations highlighted some issues with the DFA
method,22 questioning the presence of true long-range
correlations in gait time series. However, in 2009,
Delignières and Torre5 tested the effective presence of
long-range correlations in human walking with an
alternative methodology:43 by comparing different
synthetic signals with actual stride time series, they
concluded that artificial time series that incorporated
long-range correlation by design (ARFIMA models)
best fit human time series.

An interesting discovery has been that sensorimotor
synchronization substantially alters the fractal struc-
ture of human walking. Sensorimotor synchronization
is the coordination of movements with external
rhythms or cues. This ability is responsible for unique
human behaviors, such as dancing or performing
music.32 In locomotion, sensorimotor synchronization

implies guided stepping with external cues. The sim-
plest expression of this synchronization behavior con-
sists of the voluntary adjustment of heel strikes to the
beat of an isochronous metronome, hereafter simply
referred to as auditory cueing (AC). AC is important in
gait rehabilitation. For example, in stroke patients, a
recent meta-analysis of seven randomized controlled
trials has concluded that the gait training with AC
improves walking speed, stride length, and cadence.25

AC is also a key tool for improving gait among
patients with Parkinson’s disease.45 AC has a strong
effect on the fractal fluctuations of stride time but no
effect on stride length and stride speed.36,42 The long-
range correlated pattern is then replaced by anti-cor-
relations. A value above the mean is more likely to be
followed by a value below the mean (anti-persistence):
the voluntary control of step duration induces a con-
tinual shift around the target (over-correction).9,40

Another type of externally-driven synchronization
of human movements is treadmill walking. Indeed, a
motorized treadmill imposes a constant speed upon the
walker. Whereas treadmill walking has only a marginal
effect on the fractal fluctuation of stride time compared
to overground walking,4,39 treadmill walking changes
the serial correlations of stride speed into anti-corre-
lations, as AC does for stride time.9,34,40 Moreover,
when AC is combined with treadmill walking, all the
gait parameters (stride time, stride length, and stride
speed) exhibit anti-correlated patterns.34,40 The con-
stant speed of the treadmill (speed cueing) requires
coordinated adjustments between the stride time and
the stride length to maintain an appropriate speed and
thus avoid falling off the treadmill. As a result, when
cadence and speed are voluntarily adjusted to external
cues (dual cueing), stride length must be coordinated
accordingly (the ‘‘loss of redundancy’’ paradigm).9,34,40

In addition to the temporal adjustments of steps to
auditory cues, another possible type of sensorimotor
synchronization consists of adjusting step length to
visual cues (hereafter referred to as visual cueing, VC).
In this case, a walker anticipates the position of his or
her next step to coincide with a mark on the floor. Like
AC, VC has applications in gait rehabilitation. In
Parkinson’s disease, gait training with VC might have
a long-term beneficial effect on walking capabilities.37

Recent technical advances have led to the development
of treadmills equipped with projection devices that
draw visual targets on the treadmill belt (augmented
reality). The use of projected visual targets on a
treadmill resembles the more conventional marks on
the ground but greatly facilitates the application of VC
for research and rehabilitation. Promising results have
been obtained with such treadmills, in particular for
stroke rehabilitation.17 In patients in the chronic stage
of stroke, adaptability training using visually guided
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stepping improved obstacle-avoidance performance.44

Although the field is still in its infancy, by offering
complementary solutions to AC, the VC method has
substantial potential for growth.

In summary, numerous studies have analyzed the
effects of AC and treadmills on the variability9,16,38,39

and the fractal pattern5,34,42 in human locomotion.
This has led to interesting hypotheses about the neu-
rological basis of gait control, such as the existence of a
specific neural structure that generates fractal noise
(the super central pattern generator hypothesis),5,46 or
the implication of the minimum intervention princi-
ple.9,40 However, whether or not VC walking supports
these hypotheses has yet to be investigated.

The first objective of the present study was to
determine, in healthy individuals walking on a tread-
mill, the effects of VC on stride-to-stride fluctuations
and to compare the results with the effects of AC. The
hypothesis was that VC and AC similarly alter the
fractal fluctuations normally present in the time series
of stride time and stride length (loss of redundancy)
and that the long-range correlations are replaced by
anti-correlations. The second objective was to measure
the fluctuation magnitude (the coefficient of variation,
CV) of the spatiotemporal gait parameters under dif-
ferent cueing conditions.

MATERIALS AND METHODS

Subjects

Thirty-six healthy volunteers (14 men, 22 women)
with no orthopedic or neurological problems partici-
pated in the study. The mean and standard deviation
(SD) of their characteristics were as follows: age
33 years (10), body height 1.72 m (0.08), and body
mass 66 kg (13). The subjects had had no previous
experience with walking following visual cues. All
subjects signed an informed consent form according to
the guidelines of the local ethic committee (Commis-
sion Cantonale Valaisanne d’Ethique Médicale,
[CCVEM]), that had approved the protocol.

Material and Experimental Procedure

The instrumented treadmill was a C-mill model
(ForceLink BV, Culemborg, The Netherlands),17

which is equipped with an embedded vertical force
platform of 70 9 300 cm. The platform recorded the
vertical force and the position of the center of pressure
at a sampling rate of 500 Hz. A projection system
displayed visual objects on the walking area from the
right side of the treadmill. Ad hoc control software
(CueFors�) was used to compute the preliminary val-

ues of basic gait parameters (stride length and dura-
tion) and to control the projection of the visual cue
drawings, the stepping stones.17

During all procedures, an elastic band was placed in
front of the participant (1.40 m behind the beginning of
the belt), hanging perpendicular to the handrails, at hip
level. The participant was instructed to stay 10 cm be-
hind the band, ensuring consistent placement on the
walking area (approximately in the middle). The reasons
were the increased safety and the standardization of the
number of incoming stepping stones seen by the partic-
ipant. Firstly, the preferred walking speed (PWS) of each
participant was assessed using a standardized procedure8

that consisted of (1) a progressive increase in the tread-
mill speed from a low speed (2 kmÆh21) until the partic-
ipant reported a comfortable pace and then (2), similarly,
a progressive decrease of the treadmill speed from a high
speed (6 kmÆh21) to a comfortable pace. The PWS was
defined as the average of four tests: two with increasing
speeds and two with decreasing speeds.

Then, the participant performed a 2 min walking test
at PWS. The last 30 steps were analyzed to measure the
average preferred stride length and stride time (i.e., the
duration of one gait cycle). Then, the participant walked
continuously for about 30 min at his or her PWS. Three
conditions were presented in a random order. Before
each condition, the experimenter described the task to
the subject while he or she continued to walk. The
conditions were as follows: (1) no cueing, i.e., normal
walking (NC); (2) AC, i.e., walking while synchronizing
the heel strike to the beep of an electronic metronome
set to the preferred, previously measured cadence; and
(3) VC, i.e., walking while adjusting steps to stepping
stones, which were 20 9 30 cm moving rectangles pro-
jected on the walking area that went back at the same
speed as the treadmill belt. The longitudinal distance
along the belt between the successive stepping stones
was set to correspond to half of the preferred stride
length. The instruction was to aim accurately for each
stepping stone with the foot. Given his or her position in
the middle of the treadmill, the participant could see in
advance two stepping stones. For a better understand-
ing of the VC method, see the short movie provided in
the supplemental material (S1). Thirty seconds of
familiarization with the cueing task was given to the
volunteer before the recording began. One thousand
steps (500 gait cycles) were then recorded, which cor-
respond to 10 min of walking at a step rate of 100
stepsÆmin21.

Data Analysis

One hundred and eight files (36 subjects 9 3 con-
ditions), each containing the position of the center of
pressure recorded at 500 Hz, were exported for the
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subsequent analyses that were performed using MA-
TLAB (MathWorks, Natick, MA, USA). The stride
time and length of each gait cycle (500 per file) were
computed using a custom algorithm that implemented
a validated method.33 The reasoning behind the
method is to detect heel strikes in the longitudinal
signal and then to compute the distance and time
between subsequent heel strikes of the same foot taking
into account the treadmill speed. The average speed of
each gait cycle was defined as speed = stride length/
stride time. As a result, three time series (NC, AC, VC)
of 500 gait cycles were obtained for stride time, stride
length, and stride speed (total 3 9 3 9 36 = 324). A
typical result for one participant is shown in Fig. 1.

To characterize the dispersion of the values around
the mean in the time series (fluctuation magnitude), the
CVs were computed, which were defined as the SD
normalized by mean, and were expressed in percentages.

A fractal time series with long-range correlations
exhibits an autocorrelation function C(s) that declines
following a power law C sð Þ / s�c; 0<c<1. The DFA
is a method designed to assess the scaling exponent a
(a = 1 2 c/2) in a time series with nonstationarities.29

Although DFA may not always be appropriate to
evidence the existence of long-range correlations in
time series,5,22,43 here, I took advantage of its proved
efficacy to distinguish between statistical persistence
(short- or long-range correlations) and anti-persistence
(anti-correlations).6,9,40 First, the time series of length

N was integrated. Then, it was divided into non-over-
lapping boxes of equal length n. In each box, a linear
fit, using the least squares method, was performed. The
average fluctuation F(n) for that box length was:

F nð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

k¼1

y kð Þ � yn kð Þ½ �2
v

u

u

t

where yn(k) was the y-coordinate of the kth point of
the straight line resulting from the linear fit, and where
y(k) was the corresponding point in the original time
series. The procedure was repeated for increasing box
sizes. Box sizes (n) ranging from 12 to 125 (i.e., N/4)
were used, with exponential spacing to avoid a bias
toward larger box sizes.23 A statistical self-affinity at
different scales implies that F nð Þ / na. Therefore, be-
cause log F nð Þð Þ ¼ a � log nð Þ, a linear fit is realized in a
log–log plot between n and F(n) to compute the scaling
exponent a. If a lies between 0.5 and 1, a long-range
correlation is likely. A random process (white noise)
induces an a value of 0.5. In the case of anti-correla-
tion, a small a is expected (a< 0.5).41

Statistics

Six dependent variables were included in the statis-
tical analysis, namely the CV and the scaling exponent
a for each gait parameter: stride time, stride length and
stride speed. The independent variable was the cueing

FIGURE 1. Typical results. One participant walked approximately 3 3 10 min on an instrumented treadmill under three condi-
tions: no cueing (NC), auditory cueing (AC) and visual cueing (VC). In each condition, 500 strides were recorded (x-axes, #stride).
Basic spatiotemporal gait parameters (y-axes), i.e., stride time (ST), stride length (SL), and stride speed (SS), were assessed.
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condition (NC, AC, and VC). Boxplots were used to
describe the distribution of the individual results
(Figs. 2 and 3). Means and SDs are shown in Tables 1
and 2. As inferential statistics, one-way, repeated-
measures analyses of variance (ANOVA) were used.
The explained variance was assessed with partial g2.
Post hoc analyses with Tukey’s honestly significant
difference (HSD) tests were used to highlight specific
differences between the cueing conditions; only the p

values of the significant differences have been included
in Tables 1 and 2, with associated relative differences.

RESULTS

Fluctuation Magnitude (Gait Variability)

The distribution of the variability results (CV) is
presented in Fig. 2. The presence of some outliers can

FIGURE 2. Boxplots of the fluctuation magnitude results. Thirty-six subjects walked on a treadmill under three conditions: NC: no
cueing (normal walking); AC: auditory cueing (metronome walking); VC: visual cueing (visually guided stepping). In each condition
for each subject, 500 gait cycles were recorded, from which the relative fluctuation magnitude (variability) of the spatiotemporal
gait parameters was assessed (i.e. CV 5 SD/mean Æ 100). Boxplots show the quartiles, the medians and the ranges of the individual
results. Outliers are indicated with + signs.

FIGURE 3. Boxplots of the fractal fluctuation results. Thirty-six subjects walked on a treadmill under three conditions: NC: no
cueing (normal walking); AC: auditory cueing (metronome walking); VC: visual cueing (visually guided stepping). In each condition
for each subject, 500 gait cycles were recorded, from which the serial correlations of the spatiotemporal gait parameters were
assessed (scaling exponent a, DFA). Boxplots show the quartiles, the medians and the ranges of the individual results. Outliers are
indicated with + signs.
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be observed. A substantially higher CV of stride time,
length, and speed is observed for the VC condition.

Inferential statistics (Table 1) confirm that cueing
had a significant effect on the CV of the gait parameters.
The ANOVA results show that cueing conditions ex-
plain a substantial part of the variance (partial g2: 0.56–
0.72). Post hoc analyses reveal a systematic difference
between VC and NC and between VC and AC. In other
words, VC induced a substantial increase in the gait
parameters’ CV compared to NC, whereas for AC such
an increase in fluctuation magnitude was not observed.

Fractal Analysis

The boxplots of the fractal analysis results (DFA)
show that stride time and stride length exhibited long-
range correlations under NC conditions (a> 0.5),
while stride speed was constantly anti-correlated
(a< 0.5). An obvious anti-correlated pattern is
observed for all gait parameters in the AC and VC
conditions.

The ANOVA results show significant differences
among the cueing conditions for all gait parameters,
with the exception of stride speed. Concerning stride

length and stride time, a very large part of the variance
is explained by the model (partial g2 >0.79), due to the
change in the scaling exponent from correlation to
anti-correlation. Post hoc analyses confirm large
changes in the correlation structure for stride length
and stride time when AC and VC are compared to NC.
For these parameters, no difference exists between the
AC and VC conditions (similar anti-correlations).

DISCUSSION

Based on the analysis of a large number of gait
cycles (54,000), the objective of the present study was
to characterize the effects of external cues on the stride-
to-stride fluctuations in gait parameters, in structural
(fractal pattern) and magnitude (CV) terms. As
hypothesized, concerning fractal fluctuations, spa-
tiotemporal parameters responded similarly to AC and
VC, namely, the emergence of strong anti-correlations
was observed. However, AC and VC did not affect the
fluctuation magnitude in the same way: VC induced a
substantial increase in the gait parameters’ CVs com-
pared to the control condition, whereas no differences
were observed for AC.

TABLE 1. Fluctuation magnitude of the gait parameters.

Descriptive statistics: Mean (SD) ANOVA Post hoc comparisons

N = 36 NC AC VC F p g2
CI

VC vs. NC VC vs. AC

p D% p D%

Stride time CV (%) 1.6 (0.6) 1.4 (0.5) 2.3 (0.9) 45.1 <0.001 0.56 0.45 0.70 <0.001 51 <0.001 66

Stride length CV (%) 2.8 (0.8) 2.6 (0.7) 4.8 (1.7) 88.5 <0.001 0.72 0.62 0.83 <0.001 73 <0.001 82

Stride speed CV (%) 1.8 (0.5) 1.8 (0.5) 2.8 (0.9) 83.6 <0.001 0.70 0.60 0.83 <0.001 63 <0.001 62

Thirty-six subjects walked on a treadmill under three conditions: NC: no cueing (normal walking); AC: auditory cueing (metronome walking);

and VC: visual cueing (visually guided stepping). In each condition for each subject, 500 gait cycles were recorded, from which the relative

fluctuation magnitude (variability) of the spatiotemporal gait parameters was assessed (i.e. CV = SD/mean Æ 100). Descriptive and inferential

statistics and significant post hoc comparisons are shown. D% is the relative difference: (VC 2 NC)/NC Æ 100. Significant results are shown in

bold.

TABLE 2. Long-range correlations (fractal fluctuations) of the gait parameters.

N = 36

Descriptive statistics: Mean (SD) ANOVA Post hoc comparisons

NC AC VC F p g2 g2 CI

AC vs. NC VC vs. NC

p D% p D%

Stride time a 0.90 (0.13) 0.32 (0.17) 0.34 (0.14) 209 <0.001 0.86 0.80 0.91 <0.001 264 <0.001 262

Stride length a 0.67 (0.12) 0.31 (0.12) 0.33 (0.15) 135 <0.001 0.79 0.73 0.86 <0.001 254 <0.001 251

Stride speed a 0.32 (0.11) 0.32 (0.11) 0.29 (0.15) 1.43 0.25 0.04 0.00 0.21 – – – –

Thirty-six subjects walked on a treadmill under three conditions: NC: no cueing (normal walking); AC: auditory cueing (metronome walking);

VC: visual cueing (visually guided stepping). In each condition for each subject, 500 gait cycles were recorded, from which the serial

correlations of the spatiotemporal gait parameters were assessed (scaling exponent a, detrended fluctuation analysis). Descriptive and

inferential statistics and significant post hoc comparisons are shown. D% is the relative difference: (VC 2 NC)/NC Æ 100. Significant results
are shown in bold.
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When individuals walk in a constant environment,
basic spatiotemporal parameters fluctuate from stride-
to-stride in a narrow window, very likely framed by
energetic, biomechanical,26,48 and stability27 con-
straints. In overground walking, typical CV values
between 2.5 and 3% have been reported in healthy
young subjects.39,42 Similar results have been observed
in treadmill walking,39,40 which are confirmed in the
present study (CV 1.8–2.8%, Table 1). The effect of
AC on the fluctuation magnitude has been assessed in
experimental and clinical studies. In elderly subjects, in
two studies, which analyzed overground walking with
or without AC given at a preferred cadence, a small
increase in gait variability16 or no effect47 has been
found. In a previous study that combined treadmill
and AC (N = 20 young adults, 5 min walking), when
the AC and NC conditions were compared, a small
decrease in the CVs for the stride time (219%), stride
length (217%), and stride speed (27%) has been
observed.40 Compared to that study, the present study
included more participants (N = 36) and longer trials
(10 min). The (not significant) changes induced by AC
were stride time,213%; stride length,27%; and stride
speed, 0% (Table 1). In summary, AC has little impact
on stride-to-stride fluctuation magnitude. As illus-
trated in Fig. 1, the erratic wandering of the parameter
around the mean, which is typical of fractal fluctuation
(first column), is replaced by high frequency noise
around the imposed frequency, which is typical of anti-
correlated patterns (second column). Thus, these con-
comitant changes in the fluctuation pattern triggered
by AC, which decreased low frequency wanderings and
increased high frequency oscillations, nearly compen-
sate for each other to give a comparable fluctuation
magnitude. On the other hand, VC had a profound
effect on the fluctuation magnitude. The stride time CV
increased by 51%, stride length CV by 73%, and stride
speed CV by 63% (Table 1). Although the participants
were able to target the stepping stones, their stride
length oscillated in an extended range (CV: 5%, 7 cm
for a 1.3 m stride length). Due to the interdependence
among gait parameters, the stride time and the stride
speed were also affected. This suggests that VC was a
challenging task. A cause of the difficulty was perhaps
that only two incoming steps were seen in advance by
the subject, which could be too short a warning to
anticipate precise foot placement. Peper et al.,30 using
the same treadmill as in the present study, have shown
that individuals spontaneously chose a lower walking
speed in VC condition: this corroborates the hypoth-
esis that a sufficient reaction time to the incoming
targets should be allowed to help the subject to be
comfortable with VC. However, further studies are
needed to analyze gait variability at different speeds
under VC conditions. As far as I know, this strong

effect on fluctuation magnitude when VC is combined
with treadmill walking has not been described in the
literature and has to be confirmed independently.
Interestingly, high variability has been observed in the
pathological gait of patients with Parkinson’s disease
(CV of stride length: 5.32%).19 Patients with Parkin-
son’s disease rely more on vision while walking.2 The
fact that healthy individuals, who guide their steps
based on vision, also exhibit high variability may have
important implications in fundamental research and
clinical application, which deserve further investiga-
tions.

Walking on a treadmill requires coordinated control
of stride time and stride length to match the treadmill
speed. As evidence of this coordinated regulation,
several studies have shown that stride time and stride
length are actually cross-correlated:6,34,40 In other
words, stride time and stride length vary over time in a
similar way (positive correlations).34 A model that
explains how motor control manages speed regulation
has been proposed by Dingwell and Cusumano.7,9 A
key feature of this model is that an infinite combina-
tion of stride time and stride length is possible to meet
the goal of maintaining a constant speed. In other
words, redundancy exists between spatial and temporal
control of walking speed: if a deviation occurs in the
stride length, the deviation can be compensated for by
a correction in the stride time and vice versa. As a
result, deviations can persist over consecutive strides,
which may explain long-range correlations and fractal
fluctuations (the minimum intervention principle).7 If
two goals are simultaneously imposed on a walking
individual, for instance, treadmill walking (speed goal)
and AC (stride time goal), the redundancy disappears,
and tight regulation of stride length is also performed
that leads to the loss of the fractal fluctuations, as
demonstrated in previous studies9,34,40 and in the pre-
sent study (Fig. 3). The main goal of the present study
was to provide further evidence to support this model.
As expected, imposing a spatial goal (stepping to visual
cues) modified the fluctuation pattern of stride length
as well as stride time (Fig. 3; Table 2). Actually, AC
and VC altered fractal fluctuations in a similar way
(Table 2). As observed previously, strong anti-corre-
lations appeared.40,42

As illustrated in Table 3, the results of the present
study provide new information to complement what is
already known about voluntary synchronization of
gait to external cues. The main gap that remains to be
filled is the fluctuation pattern of overground walking
under the VC condition. It can be assumed that stride
length would then be anti-correlated, while stride time
and stride speed would remain correlated. However,
conducting such an experiment is technically chal-
lenging.
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Taken together, these findings highlight a stereotyped
response of gait control to external cueing, the neuro-
biological basis of which remains to be elucidated. What
is already known is that sensorimotor synchronization
requires anticipation to align motor response with
external cues. The delivery of sensory signals and the
central processing delay the motor response. Thus, to
get in time, motor command must anticipate future
steps based on internal models and past sensory inputs
and not react to current stimuli.24 This anticipation
leads to a well-known phenomenon in rhythmic tapping
experiments: the taps precede the metronome (negative
mean asynchrony).31 Likewise, in gait experiments with
AC, the heel-strike slightly precedes (50 ms on average)
the next occurrence of the metronome sound.23 The
anticipation of movement based on visual cues, for
example, reaching a moving object, is also a basic task
of sensorimotor coordination that implies feedforward
mechanisms.24 In the present experiment, the subject
saw two stepping stones in advance to anticipate the
correct step lengths. In short, guided stepping requires
voluntary adaptation to external cues and anticipation
to produce a timed motor response. It can be assumed
that visual, auditory, and somatosensory afferents
converge to modulate a central pacemaker that triggers
the appropriate rhythmic gait behavior under voluntary
control. How exactly this sensory feedback feeds this
hypothetical pacemaker, and how an anti-correlated
pattern is produced remain to be further investigated.

In conclusion, because it can be assumed that AC
and VC mobilize the same motor pathways, they can
probably be used alternatively in gait rehabilitation. The
efficacy of VC to enhance walking abilities in patients
with neurological gait disorders needs further studies.
However, the high gait variability induced by VC might

have detrimental effects, for instance, a lower dynamic
balance. This should be taken into account in the
development of VC rehabilitation methods.

ELECTRONIC SUPPLEMENTARY MATERIAL

The online version of this article (doi:
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