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Abstract—A wide range of length and time scales are relevant
to pharmacology, especially in drug development, drug
design and drug delivery. Therefore, multiscale computa-
tional modeling and simulation methods and paradigms that
advance the linkage of phenomena occurring at these
multiple scales have become increasingly important. Mul-
tiscale approaches present in silico opportunities to advance
laboratory research to bedside clinical applications in phar-
maceuticals research. This is achievable through the capa-
bility of modeling to reveal phenomena occurring across
multiple spatial and temporal scales, which are not otherwise
readily accessible to experimentation. The resultant models,
when validated, are capable of making testable predictions to
guide drug design and delivery. In this review we describe the
goals, methods, and opportunities of multiscale modeling in
drug design and development. We demonstrate the impact of
multiple scales of modeling in this field. We indicate the
common mathematical and computational techniques em-
ployed for multiscale modeling approaches used in pharma-
cometric and systems pharmacology models in drug
development and present several examples illustrating the
current state-of-the-art models for (1) excitable systems and
applications in cardiac disease; (2) stem cell driven complex
biosystems; (3) nanoparticle delivery, with applications to
angiogenesis and cancer therapy; (4) host-pathogen interac-
tions and their use in metabolic disorders, inflammation and
sepsis; and (5) computer-aided design of nanomedical sys-

tems. We conclude with a focus on barriers to successful
clinical translation of drug development, drug design and
drug delivery multiscale models.

Keywords—Pharmacology, Mathematical, Multiscale mod-

eling, Simulation, Drug delivery.

ABBREVIATIONS

ABM Agent-based model
AMD AMD3100
BMSC Bone marrow stromal cell
BSV Between-subject variability
BZM Bortezomib
CAD Computer-aided design
CG Coarse-grained
CXCR4 C-X-C chemokine receptor type 4
DPD Dissipative particle dynamics
ECM Extracellular matrix
EPR Enhanced permeability and retention
HPV Human papillomavirus
IFP Interstitial fluid pressure
MC Monte Carlo
MCMC Markov chain Monte Carlo
MD Molecular dynamics
MF Multiscale factorization
MIC Myeloma initiating cell
MM Multiple myeloma
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NC Nanocarrier
NP Nanoparticle
NS Navier–Stokes
PBPK Physiologically-based pharmacokinetic
PC Cancer progenitor cell
PDB Protein Data Bank
QM/MM Quantum mechanics/molecular mechanics
RUV Residual unknown variability
SCB Systems chemical biology
SDF1 Stromal cell-derived factor 1
TMM Terminal multiple myeloma cell
WHAM Weighted histogram analysis method

INTRODUCTION

One of the biggest challenges in the current era of
data abundance is revealing how the interactions
between discrete biological system components result
in integrated emergent effects on higher order systems.
This is especially relevant in the setting of pharma-
cology and toxicology, where there have been no rea-
sonable, efficient or cost-effective experimental or
clinical strategies to facilitate prediction and develop-
ment of therapeutic interventions. One of the reasons
that projecting the effects of drugs on biological sys-
tems has been so difficult is because physiological
processes occur over a wide range of length and time
scales (Fig. 1). New approaches in multiscale modeling
and simulation are now being developed to bridge
these scales and allow for the first in silico predictions
that can facilitate drug development and screening,
predict drug mechanisms and responses, optimize drug
delivery and therapeutic effect, and minimize toxicity.
Mechanism-based multiscale models that include pa-
tient specific parameters are occurring in multiple do-
mains ranging from excitable systems to cancer to
metabolic disorders, inflammation and sepsis, and
musculoskeletal systems. These modeling adjuncts to
traditional clinical practice are an important comple-
ment to purely inferential (statistical) approaches to
personalized medicine.

PHARMACOMETRIC AND SYSTEMS

PHARMACOLOGY MODELS IN DRUG

DEVELOPMENT

Multiscale modeling is beginning to be applied more
and more in the development of new drugs. The most
advanced application is in the field commonly termed
as ‘‘pharmacometrics’’, i.e., ‘‘the branch of science
concerned with mathematical models of biology,
pharmacology, disease, and physiology used to de-
scribe and quantify interactions between xenobiotics

and patients, including beneficial effects and side ef-
fects resultant from such interfaces’’.119 This emerging
discipline has been reviewed before121 and has influ-
enced drug development, especially in the clinic, sig-
nificantly.61,74 Together with the complementary
discipline of systems pharmacology, which is perhaps
best suited for the early discovery stages, pharmaco-
metrics is helping drug discovery and development
approach the aerospace industry in its reliance on
computer modeling and design.127

This discussion will focus on drug development, as
this is where multiscale models are most widely used,
although their role in early stages is increasing rapidly.
Models used in this context are multiscale models, but
at the level of their statistical complexity, as opposed
to structural behavior.

It has been recognized for some time that variability
in drug dose-exposure–response relationships is hier-
archical. While the time course of drug concentration
(pharmacokinetics) and the time course of drug effect
(pharmacodynamics) can most often be described, on
average, by nonlinear differential equations with rela-
tively few parameters, the parameters of these equa-
tions vary among individual patients (this is usually
called BSV, between-subject variability). Moreover,

FIGURE 1. Multiscale computational models can span an
enormous spatial range from populations downward and time
scales from sub-second to decades.
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real-world biological measurements are affected by
error, which can also change with time (this is RUV,
residual unknown variability). The statistical distribu-
tion of these parameters can become part of the
model.50 The scientific context of these models is that
of nonlinear mixed effects models, which are an exten-
sion of the linear mixed effects framework which has
been so successful in experimental design in the sta-
tistical sciences.11

Briefly, nonlinear mixed effects models enable the
estimation of means and variances of the statistical
distributions of model parameters.78,79 An example
would be the mean and variance in the population of
the clearance of the drug being studied. This is par-
ticularly useful in the context of clinical trials, where a
large number of subjects may have been studied, but
no individual subject has a dense enough sampling
schedule to reveal that patient’s individual parameters.

Latest developments in systems pharmacology,
which has been described as the interface between
Pharmacometrics and Systems Biology,119 aim at
increasing the biological realism of the models under-
lying pharmacokinetics and pharmacodynamics. This
usually requires more parameters and pathways to be
added to the models, increasing their complexity.
Systems pharmacology was the subject of a series of
workshops at the National Institutes of Health, whose
proceedings were summarized in a white paper.100

While systems pharmacology models are starting to be
applied in the context of clinical data analysis and
simulation, the application of pharmacometrics tech-
niques has been occurring for longer. However, the
therapeutic areas and applications where systems
pharmacology results have been published are multi-
ple: infectious diseases,115 cancer,66 cardiovascular
disease23,76,77 and neurosciences43 among others. Fu-
ture challenges122 include continuing to augment the
biological realism of multiscale models used in drug
development, as well as continue to improve integra-
tion between bioanalytical and laboratory sciences and
model development experts. These salient issues are
further demonstrated through specific illustrations of
modeling technologies applied to various disease states
in the sections that follow.

MODELS FOR EXCITABLE SYSTEMS AND

APPLICATIONS IN CARDIAC DISEASE

Multiscale modeling for drug prediction in
excitable systems is critical because experimental
approaches at individual system scales cannot solve the
fundamental problem—that the effects of multifaceted
drug interactions are emergent. Computational based
methods under development to predict emergent ef-

fects of drugs on excitable rhythms may form an
interactive technology driven process that can be used
in industry for drug and disease screening, in academia
for research and development and in the clinic for
patient oriented medicine. There is potential for
far-reaching implications because millions of people
affected each year by arrhythmia would benefit
from improved risk stratification for drug-based
interventions. Effective pharmacological treatment of
arrhythmia syndromes would reduce shocks from
implantable defibrillators that reduce quality of life for
so many individuals.

New computational methods are being developed
for drug design and development that take advantage
of high-performance computing technologies to reveal
emergent mechanisms of disease and to facilitate pre-
diction and development of therapeutic interven-
tions.132 A primary goal in developing these
computational approaches is to generate frameworks
that can ultimately be scaled up and automated for
prediction of drug design, development and drug ef-
fects that can be applied to industry, academia and in
clinical settings.

In the context of the heart, there exists a long his-
tory of failure in predicting effective or harmful action
of drugs. Antiarrhythmic drugs, which primary target
cardiac ion channels,111,112 have been widely pre-
scribed for arrhythmia syndromes arising from multi-
ple underlying diseases that increase arrhythmia
proclivity including coronary artery disease, car-
diomyopathies, post-infarction injury and heart fail-
ure. For example, the CAST87 and SWORD123 clinical
trials, showed that compared to placebo, common
antiarrhythmic drugs increased mortality and risk of
sudden cardiac death. Almost 30 years after the
beginning of the first CAST trial, there is still no
available approach to differentiate potentially useful
and potentially harmful drugs for treating arrhythmia.

Much progress has been made in developing mul-
tiscale computational modeling and simulations
approaches for prediction of the effects of cardiac ion
channel blocking drugs (Fig. 2). Structural modeling
of ion channel interactions with drugs is a critical
approach for current and future drug discovery efforts.
Modeling of drug receptor sites within an ion channel
structure can be useful to identify key drug-channel
interaction sites. Drug interactions with cardiac ion
channels have been modeled at the atomic scale in
simulated docking and molecular dynamics (MD)
simulations, as well as at the level of the channel
function to simulate drug effects on channel behav-
ior.16,20,25,68,72,76,77,134–136 Modeling drug interactions
at the molecular scale requires high-resolution struc-
tures of potassium and sodium channels that are used
as templates for pairwise sequence alignments.69,97,124
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Structural modeling of drug-channel interactions at the
atomic scale may ultimately allow for design of novel
high-affinity and subtype selective drugs for specific
targeting of receptors for cardiac and neurological
disorders.

In order to accurately predict ion channel drug ef-
fects in higher dimensions, the intrinsic and explicit
dynamical complexity of the drug kinetics is increas-
ingly being considered in computational model repre-
sentations. Early studies of drug effects on cardiac ion
channels relied on pore-block models,12 which did not
include the complex features of drug-channel kinetics
that fundamentally emerge to alter cardiac rhythms in

higher dimensions. Examples of emergent drug prop-
erties include well-known effects like use-dependent
and frequency-dependent block, as well propensity to
alternans and changes to action potential duration
restitution and conduction velocity restitution in tis-
sue.42,88,126,128

Emergent drug effects have been predicted at the
cellular level by incorporating drug channel models
into computational models of cardiac myocytes. Sim-
ulations have been used to test drug effects on cellular
level parameters to search for antiarrhythmic or overt
proarrhythmic potential.13,20,32,76,77,89,92 Although cel-
lular level studies can plausibly suggest reduced or
increased arrhythmia vulnerability, reentrant arrhyth-
mias are fundamentally an emergent property of the
cardiac system that can only be observed and studied
in tissue. Thus, models have been developed to predict
drug effects in higher dimensions that include spatial
dimension and cellular coupling.

Computational studies have been carried out in
tissue representations in one and two dimensions and
even in high-resolution reconstructions of human vir-
tual ventricles.12,35,76,82,132 Arrhythmia vulnerability
parameters as described for one-dimensional tissue can
be tracked in two dimensions.76,81,130,137 Two-dimen-
sional simulations can be undertaken to predict if
proarrhythmic phenomena observed in lower dimen-
sions cause reentrant arrhythmias and/or spiral wave
breakup. The change in voltage in space and time are
tracked in the simulation.110 In two dimensions, reen-
try wavelength and period can also be tracked to
investigate head–tail interactions. More recently, drug
simulations in three-dimensional cardiac reconstruc-
tions from humans have been undertaken as compu-
tational resources are increasingly accessible.12,35,82,132

Because antiarrhythmic drugs exhibit complex ki-
netic interactions with ion channels that are modified
by action potential properties including morphology,
duration and frequency, strong bi-directional feedback
exists because drugs alter the action potential wave-
form, which in turn affects the potency of drugs. In
tissue, electronic coupling leads to unpre-
dictable emergent responses to drug application. An
example is the study by Moreno et al., which showed
mild depression of single cell cellular excitability by
flecainide, suggesting its therapeutic potential to sup-
press ectopic arrhythmia triggers.76 No overt proar-
rhythmic potential was ever observed in cells. In tissue
level simulations, the outcome was dramatically differ-
ent. Substantial use-dependent block with flecainide
resulted in insufficient Na channel availability for
successful conduction, a higher dimensional phe-
nomenon that emerged as a result of increased elec-
trotonic load in coupled tissue. Proarrhythmic
conduction block sometimes led to development of

FIGURE 2. A multiscale computational model for predicting
cardiac pharmacology. The model may allow simulation and
prediction from the small molecule scale of the drug, to pro-
tein structure, protein function, cell and tissue levels.
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tachycardia indicated by spiral wave reentry, verified
experimentally in rabbit heart and in MRI-based
human 3D ventricle models.76 These types of compu-
tational studies have begun to improve understanding
of antiarrhythmic drug actions across multiple spatial
scales of the cardiac system, from molecule, to channel,
to cell, to tissue, to heart.

MODELS FOR STEM CELL DRIVEN COMPLEX

BIOSYSTEMS

While cardiovascular disease is the leading cause of
death in the United States, cancer currently ranks
second and is projected to become the top cause of
death in the next few years.95 Multiscale modeling is
crucial for simulating drug responses of stem cell dri-
ven biosystems and the corresponding applications in
cancer therapeutics, regenerative medicines, and be-
yond. In such systems, stem cells play two roles:
driving tissue growth through differentiation to func-
tional cells, and maintaining regeneration potential by
self-renewal. The micro-environment of stem cells
(known as ‘‘stem cell niche’’) provides physical,
chemical, and biological cues with spatial and tempo-
ral102 patterns to regulate these two roles of stem cells,
meanwhile the stem cell driven tissue growth will re-
model such micro-environment and affect stem cell
behaviors. Such complex biosystems demonstrate
strong multiscale characters in both space and time.
Spatially, at the molecular level, the biological or cel-
lular cues in stem cell niches trigger intracellular sig-

naling and modulate stem cell behaviors such as
renewal, differentiation, apoptosis, and migration; at
the cellular level, such stem cell behaviors, together
with environmental cues, determine the numbers of
stem cells, progenitor cells, and terminal cells as well as
their behaviors; at the tissue level, the populations as
well as the behaviors of these cells define the structural
and thus the functional behavior of the tissue gener-
ated de novo. Temporally, at the second-to-minute
scale, the external cues trigger signaling events; at the
hour-to-day level, cells respond to such cues with
various behaviors; at day-to-week scale, the down-
stream effects at tissue level as well as the remodeling
of the cell microenvironments begin to show up. Such
multiscale and highly dynamic biosystems require
sophisticated drug delivery to generate desired spatial
distribution and temporal patterns of drugs. Therefore,
multiscale modeling on the spatial3,85,101,103,133 and
temporal101,104 domains is the key strategy to predict
the pharmaceutical inference of stem cell driven
biosystems.

To illustrate the cutting-edge multiscale modeling
approaches in simulating stem cell driven systems, two
typical applications are presented in this section. The
first one is the drug synergism analysis for cancer stem
cell driven drug resistance.103 In this example, we
demonstrate how to use agent-based models (ABMs)
(Fig. 3) to analyze the complex spatial dynamics of
myeloma initiating (stem) cells (MIC), bone marrow
stromal cells (BMSC), progenitor cells (PC), and early
multiple myeloma (MM) and terminal multiple mye-
loma (TMM) cancer cells, as well as the remodeling of

FIGURE 3. A sketch of the ABM model for the impact of the stiffness of the BMSC-formed MIC niches to the myeloma lineage
expansion and drug responses. (ABM agent-based model, BMSC bone marrow stromal cell, MIC myeloma initiating cell, PC cancer
progenitor cell, MM multiple myeloma cell, TMM terminal multiple myeloma cell, BZM Bortezomib, AMD AMD3100, CXCR4 C-X-C
chemokine receptor type 4, SDF1 stromal cell-derived factor 1).
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the tissue stiffness in bone marrow during the devel-
opment and drug treatment of multiple myeloma
(Fig. 4). Each agent represented a tumor cell or a
section of the elongated, network-like BMSCs,
encapsulating intracellular signaling events within the
agent, and, as a whole, responding to its microenvi-
ronment as cell behaviors such as proliferation,
apoptosis, migration, contraction, and so on. Thus, an
agent seamlessly incorporated the intracellular molec-
ular scale events and the cellular scale behaviors, and
provided the essential element to describe cell-to-cell
interaction at the intercellular scale and finally the
tumor development at the tissue scale. Knowledge and
hypothesis were represented as ‘‘rules’’ of cell decision-
making and realized using stochastic approaches such
as Markov chain Monte Carlo (MCMC) methods. In
this specific study, for a cell agent, the microenviron-
mental cues such as the concentrations of cytokines
and drugs, the stiffness of the niche, and the types,
number, and distance of neighbor cells, together with
the current cell statuses (for example, during prolifer-
ation, during differentiation, etc.), were used as inputs
by the pre-defined ‘‘rules’’ (equations) to calculate the
probabilities of downstream cell behaviors. Such
probabilities were then converted to cell decisions by
random sampling. The MCMC approach thus readily
connects the deterministic and continuous mathemat-
ical models (‘‘rules’’) to the discrete, stochastic cell
decisions.

The second example104 is to use a multiple temporal
scale model to study the effects of sequential delivery
of growth factors on a dual stem cell bone regeneration
system (Fig. 5). The dynamic balance between the
mesenchymal stem cell driven osteoblastic bone for-
mation and the hematopoietic stem cell driven osteo-
clastic bone resorption were analyzed for the best
timing of BMP2, Wnt, and TGFb delivery (Fig. 6).
Ordinary differential equations and Hill functions were
used to describe the minutes-to-hours timescale intra-

cellular signaling events and intercellular signaling,
respectively; Hill functions were used to describe the
days-scale stem cell differentiation; and finally
stochastic differential equations were used to model
the days-to-weeks scale dynamics of cell population
and composition as well as the bone healing and
remodeling. Key variables such as the section of
cytokines and the population size of each cell type
linked the three time scales to a consistent model.

Taken together, systematic modeling of stem-cell-
driven complex biosystems by incorporating multiple
spatial and temporal scales casts new light onto basic
and translational biomedical research in multiple as-
pects: it provides insight into the underlying mecha-
nisms of diseases and cures, allows in silico predicting
drug responses for drug screening and optimizing
combination therapeutic designs, guides precise drug
delivery, and helps to bridge the gap from bench-side
knowledge to bed-side clinical practice.

NANOPARTICLE DELIVERY MODELS, WITH

APPLICATIONS TO ANGIOGENESIS AND

CANCER THERAPY

Nanotechnology is another field advancing from
bench-side knowledge to bed-side clinical practice. The
use of targeted nanocarriers (NCs) for delivering
therapeutic compounds to sites of pathology presents

FIGURE 4. Simulation of myeloma development in three-di-
mensional bone marrow space. The tumor growth (a and c)
associated with the stiffness profiles (b and d) and the activ-
ities of MICs at early (100 h, a and b) and later (500 h, c and d)
stages. (e and f). Tumor and stiffness distributions after BZM
treatment between time point 200 and 300 h. The tumor infil-
trating frontiers were labeled by brown isosurfaces, con-
densed tumor region in yellow, and quiescent MICs in blue
while proliferating MICs appear in red. The stiffness distribu-
tions were labeled with isosurfaces, blue denoted lower
stiffness and red higher stiffness. (g) The distribution of
stiffness in myeloma-associated bone marrow stiffness 400 h
after initial myeloma seeding. (h) The distribution of myeloma
cells and the activation of MBMSCs after 4 days 3D levitated
culture. Blue: cell nuclei (stained with DAPI); red: F-actin fi-
bers (stained with Alexa Fluor 594 conjugated phalloidin);
white arrow: MBMSCs; green arrow: myeloma cells; yellow
arrow: activated BMSCs marked by the formation of stress
fiber.

b

FIGURE 5. Schematic illustration of intracellular and inter-
cellular signaling and cellular dynamics in bone healing and
bone remodeling. Bone regeneration or bone remodeling
involves bone resorption by osteoclasts (OC) and the fol-
lowing bone formation by osteoblasts (OB) within basic multi-
cellular units (BMU). Three cytokines were considered: TGFb,
Wnt and BMP2. Intracellular signaling pathway consists of
Smad2/3, Smad1/5, b-Catenin, and Runx2 and Osx. Runx2 can
promote the differentiation of mesenchymal stem cells
(MSCs) into pre-osteoblasts (OBp) and can inhibit the differ-
entiation of pre-osteoblasts into active osteoblasts (OBa). Osx
also play a promoting role in the later stage of osteoblastic
lineage which interacts with osteoclastic lineage through
intercellular signaling pathway RANK-RANKL-OPG.

Multiscale Modeling in the Clinic 2597



significant opportunities both in terms of personalizing
medical care and in accessing multiscale modeling to
refine the specifics of individual treatments. This is
particularly applicable in cancer care, wherein the
clinical successes of anticancer therapies are often
limited by the marginal efficacy of the therapeutics and

their various side effects. Prediction of the distribution,
metabolism, absorption, excretion and toxicity of
potential new drugs in early stages of development has
attracted much attention.21,46 The therapeutic effi-
ciency of nanomedicine is determined by the proper
concentration of drug at the lesion site. Drug carriers

FIGURE 6. Synergy prediction on dual combinations of Wnt, BMP2, and TGFb based on Bliss combination index. Wnt and BMP2
perform dose-dependent synergism. (a) BMP2 levels governed the synergism. When the BMP2 level was higher than 0, the two
drugs were synergic, otherwise antagonistic. We also found that Wnt at high levels showed opposite effects in terms of synergism
at different BMP2 levels. When BMP2 level was high, increasing Wnt level promoted the synergistic effects of the two drugs. In
contrast, when BMP2 level was low, the more the Wnt was introduced, the stronger the antagonistic effect was. (b) Wnt/TGFb and
(c) BMP2/TGFb combinations also showed dose-dependent synergism but much lower responses.

FIGURE 7. Schematics demonstration of drug transport (a) through the circulation system, (b) blood vasculature, (c) across the
vessel wall, (d) through interstitial space to the tumor site.
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need to be delivered directly to the desired tissues while
minimizing deposition/uptake by other tissues. Tar-
geted drug delivery using functionalized NCs coated
with specific targeting ligands has been clinically
identified as a promising approach in both therapeutic
and diagnostic applications in cancer treatments.30 A
typical process of targeted delivery to tumor site is
illustrated in Fig. 7.

The biochemical and physiological properties of a
tumor’s microenvironment, including the vasculature
and the interstitial extracellular matrix (ECM), are the
key regulators of anti-cancer drug distribution and
efficacy.54,56 Blood vessels provide the primary passage
for drugs to be delivered to the tumor and other tis-
sues. However, heterogeneous microvascular function
within tumors can compromise delivery and under-
mine the effects of therapeutic agents.54 Enhanced
permeability and retention (EPR) in leaky vessels has
facilitated the targeting of macromolecular thera-
pies.26,36,114 Yet, elevated interstitial fluid pressure
(IFP), induced by vessel abnormalities, fibrosis and
contraction of the interstitial matrix, also hinders the
drug delivery to the tumor.18,49 In fact, IFP is known
as the main barrier for drug delivery to tumor sites.
Moreover, targeting of NCs to endothelium remains
an important design challenge in pharmacological and
biomedical sciences since functionalized NCs offers a
wide range of tunable design parameters such as size,
shape, type, and functional coating.106

Mechanistic mathematical and computational
modeling at multiple scales, from gene to protein to
tissue and organ, and eventually the whole body is
becoming an effective if not a required tool for exam-
ining the impact of various biophysical features of the
tumor tissue and biochemical properties of drug
compounds on drug delivery efficacy.21,39,40,46,109,125

Numerical simulations are well-suited and cheaper,
compared to laboratory experiments, for testing com-
binations of multiple parameters that can be varied
simultaneously in a controlled manner and over a wide
range of values. These in silico screenings can be
helpful to optimize the drug design so that it is efficient
in interstitial transport, or make decisions regarding
the most effective drug combinations and scheduling
protocols.

The NC targeted delivery in vascular system
involves interplay of transport, hydrodynamic force,
and multivalent interactions with targeted biosurfaces.

Thus, drug delivery to tumor sites is a complex and
challenging process over various spatial scales,
including organ, tissue, cell, and intracellular levels.
After systemic administration, drugs have to go
through a few processes before arriving at the targeted
tumor sites: (1) transport in the circulation system, (2)
extravasation across the vessel wall, and (3) transport
through interstitial space to the tumor site. Therefore,
the modeling targeted drug delivery process spans
physics across continuum vascular flow, particle
Brownian adhesion dynamics, to molecular level li-
gand-receptor binding and cellular uptake.

We focus our discussion of multiscale drug targeting
on three interconnected processes happening in various
biological spatial scales: drug carrier transport in cir-
culation system, drug transport through interstitial
space, binding dynamics and cellular uptake. The tar-
geted drug techniques such as MD, Brownian motion,
and stochastic approaches such as Monte Carlo sim-
ulation can be used to simulate nano, micro, and
macroscale interactions between carrier and target site.

Using nanoparticles in biomedical applications
involves physical translocation processes of nanoparti-
cles and the cellular uptake of particles. Models at this
scale characterize the different interactions such as drug-
carrier, carrier-medium (biological) and drug-medium.
These molecular-scale models deal with length scales in
the order of nm ~ lm and time scales of ns ~ ls. For
instance, Yang and Ma et al.129 used computer simula-
tion to investigate nanoparticle penetration through cell
membranes where the translocation processes of nano-
spheres, nano-ellipsoids, nanorods, nanodiscs and
pushpin-like NCs across a lipid bilayer were studied by
dissipative particle dynamics (DPD). It was reported
that the shape anisotropy and initial orientation of the
particle are crucial to the interactions between the par-
ticle and lipid bilayer.

Before reaching the targeted tumor region, drug
carriers have to transport through interstitial space.
Generally, conservation of mass is adopted as the
mathematical equation to govern the drug delivery in
tissue or tumor scale. In the most general description,
changes in the amount of drug present in the tissue
depend on three values: the amount of drug entering
the tissue (drug production), how the drug moves
within the tissue (drug transport), and the amount
leaving the tissue (drug elimination),57 as shown in
Eq. (1):

ð1Þ
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Drugs can be carried through the tissue with the
interstitial fluid flow (advective transport) or move
randomly due to the Brownian motion of drug mole-
cules (diffusive transport). Drug elimination from the
tissue can take place due to its natural half-life (decay),
binding to the ECM (degradation or deactivation), or
cellular uptake. Pozrikidis presented a theoretical
framework describing blood flow through an irregular
vasculature of a solid tumor where capillary leakage
due to the transmural pressure is considered.86 NC
binding to the vessel wall lumenal surface incorporat-
ing ligand receptor interactions were modeled in Ref.
64, 106.

NCs loaded with drugs have been widely used to
target tumor cells due to manufacturing and synthesis
capabilities to control size, shape, and surface chem-
istry.26,44 This necessitates a multiparameter opti-
mization for achieving efficient vascular targeting.9,17

Studying adhesion dynamics, Liu et al. estimated NP
binding affinity to endothelial cells.64 King et al.
studied multiparticle adhesion dynamics and applied it
to leukocyte rolling.58,59 Fogelson et al. coupled li-
gand-receptor binding with platelet aggregation.41

Most theoretical studies of NC deposition are limited
to simple spherical particles under ideal shear
flows,27–29 or combined Brownian motion with
hydrodynamics in cylindrical tube flow.117

At the macroscale, continuum convection-diffusion-
reaction and particulate98 models have been widely
used in modeling drug delivery process. A significant
aspect of modeling nanoparticle motion in vasculature
is the accurate evaluation of the associated momentum
forces from which different translational and rota-
tional motions arise. These macroscopic models deal
with length scales in the order of lm ~ mm. In the
continuum assumption, blood flow is characterized
through the Navier-Stokes (NS) equations, while the
drug is described as a variable denoted as concentra-
tion. The NS equations are coupled with convection
diffusion reaction equations so that the distribution of
NCs along the vascular network can be predicted.51

Particulate models also can be used to analyze drug
deposition in complex vascular geometries.98 Shipley
and Chapman94 and Modok et al.75 modeled delivery
of spherical NCs in tumor. Tan et al.108 used a coupled
continuum and particulate model to study NC trans-
port and binding dynamics. Mahmoudi et al.67 and Li
et al.62 performed computational fluid dynamics stud-
ies of magnetic NCs in vascular flow.

Blood is not a simple Newtonian fluid but is com-
prised of different cells, proteins, and nutrients. Ex-
plicit blood components have to be considered
particularly if we are interested in the physical inter-
action between cells and NCs in microcirculation. Cell
models have been considered in recent studies using

DPD,80 Lattice Boltzmann,53 and Immersed
Boundary107 methods. These studies showed that the
margination and adhesion probability depends on the
cell concentration, particle size, shape, and shear rates.
Haun and Hammer48 also have investigated the kinetic
rate constants of attachment and detachment of
nanocarriers as a function of receptor density, ligand
density on surface, and flow shear rate. They also
showed the time dependence of the detachment rate
due to multivalent binding.

It is difficult to fully comprehend and integrate the
complex, nonlinear, and often unintuitive processes
involved in the cellular and physiological disposition of
drug carriers, without the use of a multiscale, mecha-
nism-based mathematical model. For instance, Shah
et al.93 built a multiscale pharmacokinetic–pharmaco-
dynamic model of antibody drug conjugates for its
preclinical to clinical translation efficacy. They not
only characterized the biodisposition of antibody drug
conjugates and payload at the cellular and physiolog-
ical level, but also provided translation of preclinical
efficacy data to the clinic. Moreover, Liu et al.63 have
used the Metropolis Monte Carlo (MC) strategy in
conjunction with the weighted histogram analysis
method (WHAM) to compute the free energy land-
scape associated with the multivalent antigen–antibody
interactions.

Overall, multiscale modeling to optimize NC deliv-
ery for cancer therapy and to alter angiogenesis
requires that a wide range of length and time scales be
accessed to describe the physics of hydrodynamic and
microscopic molecular interactions mediating NC
motion in blood flow, binding, uptake and offloading
of the deliverable. As with other clinically relevant
simulations discussed herein, optimization for clinical
applications must include relevant anatomical, physi-
ological and pharmacological features into computa-
tional models bridging the relevant multiple scales.
Simulations can limit the need for large scale in vivo
and in vitro experimentation in designing effective NP-
or NC-based treatment.

MODELS FOR HOST-PATHOGEN

INTERACTIONS AND THEIR USE IN

METABOLIC DISORDERS, INFLAMMATION

AND SEPSIS

Simulation can also advance our knowledge and
clinical capabilities in treating infectious and metabolic
diseases. The ability of organisms to respond to and
recover from damage is a fundamental biological
function. The ubiquity of the inflammatory process,
and its role as a pathway to healing, across the entire
range of tissues and in response to a plethora of
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external and internal threats, is a testament to this fact.
The pervasive role of inflammation is also becoming
increasingly clear in virtually all the significant disease
processes that challenge us today; from the hyper-acute
disruptions seen in Ebola and sepsis, to the punctuated
equilibrium dynamics of cancer, to the chronic indo-
lent nature of obesity, auto-immune diseases, Alzhei-
mer’s and cardiovascular disease. The Janus-faced
visage of inflammation resides in every tissue, but with
different controls and set-points, and modulating
inflammation perhaps represents the prototypical di-
lemma of delivering the appropriate control at the
right time, to the right place, with a minimum of col-
lateral damage.

Evolution has dictated that a constant source of
danger for multi-cellular organisms comes from the
microbial world. However, while long being considered
the primary threat to human health (not unfounded or
incorrect), the recent understanding of the role of our
resident microbiomes as partners in maintaining
human health has added a new dimension to the
relationship between host and microbe (see Fig. 8). In
fact, the inevitable evolutionary response of the
microbial world to our attempts to eradicate them,
manifest as the growing challenge of antibiotic resis-
tance, suggests that it has become necessary for us to
develop more nuanced means of engaging in trans-
kingdom relations in the interest of human health,
strategies that owe more to ecological understanding
than eradicative strategies.

Taken together, the goals of dealing with the
microbial world and our host-side inflammatory
mechanisms reacting to damage and threat, have
potential implications across a wide range of patho-
physiological processes that occur at multiple levels of
biological organization. Therefore, system-level, mul-

tiscale perspectives are invaluable in our attempts to
engineer safe and effective controls for these systems,
and require the concurrent use of multiple comple-
mentary modeling methods. The comprehensive inte-
gration of a multiscale workflow is still far in the
future, but below we present some selected examples
that address some identified focus areas in the attempt
to move towards that greater goal.

Taking a modeling approach to integrate systems
biology and cheminformatics can provide new leverage
for understanding and manipulating host-microbe
interactions. The use of small-molecule therapeutics to
shift how a host-microbe ecosystem behaves is a long
established clinical approach to advantaging host im-
mune response (e.g., antibiotics that target core con-
served metabolic process for energy acquisition or
biomass production) or dampening overactive immune
response. In developing antibiotics such as isoniazid,
which targets fatty acid biosynthetic pathways in
Mycobacterium tuberculosis, the primary consideration
has been within a single chemical scale, namely devel-
opment of therapeutics that interfere with the chemical
structures of the small molecules or enzymes that
underpin critical microbial persistence or virulence
pathways. With the proliferation of omics technology
enabling a systems scale view of host-pathogen inter-
actions, and high-throughput chemotherapeutic mod-
ulation of those interactions, the need to consider and
incorporate the multiscale effects of small-molecules
on microbial persistence has led to the increasing
integration of the fields of cheminformatics and sys-
tems biology.14,37,38,84 Here we focus on modeling
platforms that consider the biochemical consequence
of introduction of the chemotherapeutic agent into the
organism, as opposed to models used to solely identify
potential drug targets. As an example, systems chem-
ical biology (SCB) and specifically computational SCB
integrates chemical biology and computational systems
biology to investigate the consequential outcome of
small molecule disruption of metabolic pathways of
pathogenic organisms (see Fig. 9).71,83,84 Given a tar-
get metabolic pathway, the computational SCB plat-
form provides a tool for multiscale targeted drug
design beginning with an automated cheminformatics
virtual screening pipeline consisting of WOMBAT and
SciFinder tools for generation of candidate small mo-
lecules, OMEGA and the Protein Data Bank (PDB) to
generate 3D ligand and protein structures, and GRID
and FRED to analyze structures and perform virtual
docking studies. Molecular scale protein–ligand inter-
action data is integrated into metabolic scale models to
capture the dynamic impact of small molecule inhibi-
tion on vital biochemical processes. Use of SCB
modeling methods has been applied to explore the
interplay of environmental and chemotherapeutic

FIGURE 8. Overview of the multiple scales and classes of
processes involved in host-microbial interactions. Modeling
efforts would necessarily integrate metabolic processes,
microbial community dynamics, host responses involving
inflammation as they manifest in different tissues. Figure re-
produced from19 under the Creative Commons Attribution
License.
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stress on M. tuberculosis growth and persistence,70 and
given the ability to use multiscale models to capture
dynamic adaptation of the pathogen system, further
extensions to studying the role of small molecule
therapeutics on pathogen persistence and resistance is
feasible. The continued integration of chemical infor-
matics and system scale modeling will serve as a critical
step in the development of personalized candidate
interventions. Multiscale modeling of host-pathogen
interactions in the presence of therapeutic agents can
play an important role in discovering desirable and
undesirable mechanisms of action for existing antibi-
otics and antivirals, in determining differences between
successful vs. unsuccessful treatments, and in under-
standing the dynamic interactions involved in the
emergence of multidrug resistant pathogenic strains.

Recognizing that microbial communities act as
endogenous bioreactors establishes a pathway for
applying new modeling paradigms. As noted above,
there seems to be no end to the systemic effects of our
endogenous microbiomes, particularly with respect to

the metabolic impact of our gut microbiota. The gut
microbiome can be thought of as the first-pass meta-
bolic organ affecting both our nutrient intake and our
resistance to toxicants, and is likely to be both a sig-
nifier and player in the health differences arising from
different diets.

A key issue for understanding the dynamics of the
gut microbiome is that many of the microbial players
are unknown and, even for well-characterized mi-
crobes, knowledge of their metabolic capacity is
incomplete. While the quickening pace of sequencing
technology has been extremely valuable, a major
challenge is that genomes are all annotated based on
similarity to known genes and function. We under-
stand the function of metabolism in a handful (of re-
lated) microbes well, but for many others we have
knowledge of only their central metabolism, and even
those processes are not characterized sufficiently.
Moreover, we have limited knowledge of regulation of
metabolism, let alone how a microbial community is
regulated as a whole.

FIGURE 9. The computational systems chemical biology (SCB) workflow integrates cheminformatics platforms for model-based
identification of small molecule therapeutics with dynamic simulation of the system scale outcome of targeted inhibition. The SCB
approach has been used to theoretically investigate the metabolic consequence of multiple chemotherapeutic agents on persistent
and non-persistent M. tuberculosis.
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In part due to this lack of knowledge and in part
due to lack of physical theories that operate on the
scale of biological processes, social theory (e.g., game
theory) has been used to try and understand the
dynamics of microbial communities. However, social
theory falls short in that the molecular mechanisms
that are responsible for emergent behavior of the
community are not directly modeled (or understood),
making this approach less useful for drug design.

Intermediate between social theory and complete
physical models of microbial metabolism is constraint-
based flux modeling,99 in which the external fluxes into
and out of a system are used as constraints and internal
fluxes are then optimized with respect to those con-
straints. If additional internal constraints are known,
through isotope labeling experiments for example, then
these fluxes can also be used as constraints. While these
approaches have been enormously valuable in under-
standing microbial metabolism, they provide no
information on metabolite concentrations and have
large solution spaces even when additional physical
constraints are added.

Physics based modeling has taken two opposing
approaches to modeling microbial dynamics. The na-
ive, but theoretically well-grounded, choice is to at-
tempt to use mass action dynamics of metabolism to
model enzymatic reactions. However, this approach is
not feasible beyond small reaction networks due to the
requirement for knowledge of the hundreds to tens of
thousands of rate constants that are involved. An
alternative choice is to model functional guilds, which
can be thought of as microbial species grouped to-
gether based on shared/common metabolic capabilities
and treated as a single modeling entity, an approach
that was developed before genome sequencing was
available and has continued to evolve.99 In modeling
functional guilds, only a few summary reactions are
used to represent the metabolic capability of each
organism. Clearly, there is a tremendous need for
development of more rigorous113 and complete models
of microbial metabolism.

There are existing models of the systemic inflam-
matory response on which to build. Even with micro-
bial détente the host must deal with persistent
incursions from resident microbiota, to say nothing
about the constant wear and tear on its own con-
stituent tissues. The inflammatory response, at base-
line, retains a persistent counterpoise between effective
responsiveness (pro-inflammation) and sufficient
attenuation (anti-inflammation), with recovery (heal-
ing) intimately tied to the anti-inflammatory response.
Inflammation is therefore a classic robust adaptive
control structure that has been evolutionarily opti-
mized.24,33,34 Paradoxically, enhancements of human
health have shifted that fitness landscape such that pre-

technological adaptations for evolutionary fitness have
been superseded so that inflammation enhances, if not
directly contributes to, a newer class of diseases.
Dysregulation of inflammation plays a role in a host of
indolent diseases that most likely result from an
inappropriate resetting of homeostatic set points.
However, at an even more fundamental level, there is a
challenge of parsing the dynamic range of a particular
individual’s response, and determining where and how
within their pathway control structure different tra-
jectories are determined. To this end, we turn to per-
haps the most dramatic case of inflammatory
dysregulation, sepsis, and the role of multiscale mod-
eling for dynamic knowledge representation and con-
ceptual model verification.

Despite being the focus of extensive basic research
and the target of over 20 clinical trials of anti-mediator
therapies, there currently exists no approved pharma-
cological treatment specific for sepsis. The failure of
the initial set of anti-mediator clinical trials in the
1990s may be one of the first explicit examples of the
Translational Dilemma, i.e., the inability to effectively
and efficiently translate basic mechanistic knowledge,
developed based on in vitro data, into clinically suc-
cessful therapeutics,6,7 and spurred the initial steps in
the computational multiscale modeling of acute sys-
temic inflammation.4,5,22,60 One of the primary insights
gained from that experience is the need for multiscale
computational modeling as a means of testing whether
the mechanistic hypotheses concatenated from pre-
clinical experimental results actually behave in the
manner expected. This approach was demonstrated in
an early example of cell-level agent-based modeling
used to generate an in silico trial population.5 An ABM
of systemic inflammation was developed based on the
prevailing conceptual model of how systemic inflam-
mation worked, and, importantly, represented the
conceptual basis for the design of anti-mediator ther-
apies for sepsis that ultimately failed. The purpose of
the ABM was to determine whether, if these inter-
ventions behaved exactly as they were supposed to
have behaved, would they have impacted survival in a
simulated clinical population? In addition to the
existing clinical trials, potential multi-modal/combi-
nation therapies were simulated in an attempt to ad-
dress the concern that pathway redundancies limited
the efficacy of an intervention. The result that none of
the simulated interventions demonstrated a survival
benefit is both not surprising (since it was known that
the trials had failed) and enlightening (since none of
the combination therapies worked either). The con-
clusion drawn was that there was a fundamental con-
ceptual flaw in the design of those interventions, a flaw
that would have been evident had such a means of
dynamic knowledge representation been utilized as
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part of the standard drug development pipeline. This
approach has been expanded to other disease pro-
cesses8,52,73,118,138 and shows promise as an additional
means of assessing the impact of pathway complex-
ity/cell population heterogeneity on putative control
strategies/therapies.

Multi-tissue signaling must also be incorporated
into clinically relevant modeling. Our persistent theme
in this section has been the concept that both microbial
and inflammatory systems produce both beneficial and
detrimental effects. To add to the complexity of these
interactions is the fact that the different tissues and
body compartments are in constant communication.
Engineering effective therapeutics requires us to
acknowledge this reality and develop rational strate-
gies for predicting and capitalizing on that communi-
cation. One such strategy involves understanding the
systemic transport of locally produced signals. Sys-
temic effects arise when local signals are transported to
other parts of the body, primarily via the systemic
circulation.

Understanding, and being able to model and hence
predict, this systemic communication is key to under-
standing systemic multiscale and ‘‘systems biology’’
effects. The movement of chemicals through the body
is generally represented using Physiologically-Based
Pharmacokinetic (PBPK) modeling techniques, which
were developed primarily to model the movement of
drugs through the body.91 The same techniques can be
applied to modeling the movement of locally generated
signals that give rise to systemic responses (hence
coupling local behaviors to other bodily sites) and in
modeling the time evolution of clinical markers used
to guide clinical interventions.90 There is a critical need
to develop robust ‘‘hardened’’ models that, in addition
to xenobiotics, can model the transfer of systemic
signals. The conversion of ‘‘pharmacokinetic’’ to
‘‘metabolokinetic’’ modeling is needed to understand
systemic signaling and clinical markers, to capture the
systemic communication between host and micro-
biome, and ultimately to predict local concentrations
of agents (both exogenous and endogenous) at the site
of inflammation.

COMPUTER-AIDED DESIGN OF

NANOMEDICAL SYSTEMS

Concepts from multiscale modeling for NP and NC
targeted delivery as well as host-pathogen interactions
described above can also be intertwined in developing
nanomedical systems, including nanoparticle vaccines,
nanoreactors, and nanocapsules for the targeted
delivery of small therapeutic molecules, genes, or
imaging agents. To achieve the clinical objective of

these nanosystems, a computer-aided design (CAD)
approach is needed to meet the many, often conflicting,
requirements; for example, nanomedical systems must
(1) avoid complexing with nontarget proteins and cells,
(2) strongly interact with target objects, and (3) have
longtime thermal-chemical stability. Since purely lab-
oratory or clinically based approaches are time and
resource demanding, a CAD approach is of great
interest.

A CAD approach generally involves a computa-
tional model and ways to translate the computer sim-
ulation results into clinical or laboratory relevant
information (Fig. 10).45 In this section, the special
multiscale challenge and simulation for nanomedical
system are illustrated with the nanoparticle-based
vaccines CAD, although the discussion readily gener-
alizes to other nanomedical systems.

Nanoparticles free of genetic information have been
in clinical use to provide protection against human
papillomavirus (HPV),15,31,65 and others are in devel-
opment or clinical trials. The general objective behind
nanoparticle-based vaccine research is to design a
nanoparticle that elicits a neutralizing antibody
response from the immune system. However, this ef-
fort suffers from two challenges. First, a nanomedical
system with surrounding microenvironment contains
millions of atoms and thus using conventional com-
puter simulation methods is a burden on computa-
tional resources, especially in light of the many
longtime simulations in the course of a CAD study.
The second challenge is to use the simulation results to
provide a preclinical assay that predicts vaccine effi-
cacy. In the following, these challenges will be ad-
dressed via multiscale MD simulations and an
integrated physics-based bioinformatics methodology,
respectively.1,45

Multiscale MD approaches are employed for per-
forming nanoparticle (NP) simulation.1 Successful
vaccines of the NP type are based on a NP which,

FIGURE 10. Schematic computer-aided vaccine design
workflow. Candidate nanoparticles are simulated and the
most promising ones are synthesized experimentally and
immunologically tested.
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along with its microenvironment, constitutes a
supramillion atom system (Fig. 11). Conventional
atom-resolved molecular dynamics provides a possi-
bility of a calibration-free approach, i.e., only a well-
tested interatomic force field should be required and
there is a wealth of experience in the development of
interatomic force fields.10,105,120 However, the large
number of atoms involved, the longtime simulation,
and the many simulations needed in a typical CAD
study make conventional MD an impractical basis of
vaccine CAD.

Multiscale methods1,2 are making all-atom MD
increasingly efficient, reducing one or more orders of
magnitude in simulation time without (1) significant
loss of accuracy, (2) the need for calibration with each
new system considered, and (3) uncertainties in
hypothesized coarse-grained (CG) governing equation.
Also, the availability of atom-resolved imaging tech-
nologies now enables rigorous testing of multiscale
algorithms. Notions such as quasiequivalence131 are
making rigorous comparison of multiscale software
feasible (notably since even two conventional MD
simulations may defer due to the orbital instability of
classical trajectories). Thus an accurate, atom-resolved
model free of CG phenomenology and the need for
experiment laboratory testing is essential for arriving
at a practical nanomedical system CAD.1

A promising solution to the nanomedical system
computational challenges is the multiscale factoriza-
tion (MF) algorithm.2 MF is based on the notion that
CG variables guide the ensemble of microstates, while

the latter provide the Newtonian mechanics and
interatomic force fields that make the simulation well-
grounded in physical principles. This scheme also
involves the use of special CG variables which depend
on the microstate (i.e., the positions and momenta of
all atoms). These CG variables are designed to evolve
with minimal microstate-generated stochastics fluctu-
ations.96 Minimization of the noise effects enables the
CG state to be advanced with large timesteps. Lie-
Trotter factorization47,116 is used to rigorously coe-
volve CG and microscopic states in MF.1,2

Multiscale bioinformatics methods have utility
for assessing immunogenicity.45,55 To achieve vaccine
CAD, an approach is needed that enables predication
of the clinically relevant neutralizing antibody
response from microscale information on a NP. This
connection is via a complex network that is not yet
completely qualitatively understood, nor are com-
pletely quantitatively model available that connect cell
membrane-localized receptor cite processes to the
neutralizing antibody response. To address this gap, an
essential step in vaccine CAD, a bioinformatics meth-
od is being developed as follows.45 Epitopes are pep-
tide sequences read, e.g., by B-cells, which elicits
neutralizing antibody responses. The idea of the
immunoinformatics approach is to establish a corre-
lation between epitope molecular-scale properties and
the immune response. Such a correlation has been
proposed, the epitope fluctuation-immunogenicity
correlation (Fig. 12).45 The fluctuations intensity can
only be reliably used when a molecular metric is
computed for a nanoparticle that has been well-equi-
librated. This suggests the role of multiscale MD to
achieve the atom-resolved, longtime, and equilibration
simulations.1

FIGURE 11. Snapshots of the initial and final configurations
of (a) human papillomavirus (HPV) T 5 1 virus like particle
(VLP) undergoing thermal fluctuations. After 29 ns, the sys-
tem has slightly changed signifying the VLP is stable and has
reached equilibrium, and (b) P22 T 5 1 VLP significantly
evolving from its initial symmetrical icosahedral form, which
implies the VLP is unstable.

FIGURE 12. Experimentally determined immunogenicity is
inversely correlated with calculated mean-square fluctua-
tions, a measure of flexibility. The experimental immuno-
genicity is coarse-grained from 0–1 to provide a
semiquantitative link between experimental and computa-
tional measurements.
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SUMMARY

A variety of multiscale modeling and simulation
techniques from the atomic scale to the protein, cell,
tissue, organ and even the whole body are now being
developed to allow for in silico drug design and
development. A variety of modeling approaches are
being employed, including molecular dynamics,
bioinformatics, stochastic approaches, ordinary and
partial differential equation approaches and dynamical
systems and statistical analyses, among others. The
goals of these efforts is to develop computational
multiscale models and processes that will ultimately
allow for improved efficiency, specificity, sensitivity,
accuracy and cost-effectiveness in drug development,
screening and delivery. The multiscale modeling and
simulation approaches that are currently in develop-
ment may ultimately be applied to various contexts of
use for multiple physiological and pathophysiological
systems.

There are still multiple barriers that must be over-
come prior to successful clinical translation of drug
development, drug design and drug delivery multiscale
models. These include intrinsic limitations of the dif-
ferent in silico techniques on which the models are
based. For example, MD simulations of ion channel
interactions for drug development and evaluation can
be constrained by the limitations of current force-
fields. The quantum mechanics/molecular mechanics
(QM/MM) approach further enables study of chemical
processes involving proteins and solutions and can be
employed to address these limitations. Likewise, the
inherent loss of atomistic information that occurs in
CG simulations could potentially be addressed by
conversion of CG to atomistic simulations (for which
tools exist), followed by performing minimization to
enhance system accuracy. Other limitations for mod-
eling in general include the enormous computing
power and memory required to perform certain com-
putational tasks, and the problems associated with
‘‘big data’’ in how to glean insight from massive data
sets generated from these techniques. There is also a
pressing need for community engagement to specifi-
cally define the context of use and application for
computational multiscale models. Models need to be
extensively tested and thoroughly validated within the
defined context of use. Some of the modeling
approaches that are being developed are extendable to
include specific patient data to personalize the models
to improve predictive value. Indeed, mechanism-based
multiscale models that include patient specific param-
eters are an important complement to purely inferen-
tial (statistical) approaches to personalized medicine.
Collection of patient data might include genotype,
hormone/metabolic/endocrine status, co-morbidities

and associated disease states and this collection may
constitute an additional barrier to multiscale model
implementation. Once these, and other identified bar-
riers, are overcome, the computational processes are
expected to have broad impact in the regulatory pro-
cess prior to drug approval, in academia for research,
in industry for drug and disease screening, and for
patient oriented medicine in the clinic.
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