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Abstract—Since heart rate variability (HRV) analysis is
widely used to evaluate the physiological status of the human
body, devices specifically designed for such applications are
needed. To this end, we developed a smart electrocardiog-
raphy (ECG) patch. The smart patch measures ECG using
three electrodes integrated into the patch, filters the measured
signals to minimize noise, performs analog-to-digital conver-
sion, and detects R-peaks. The measured raw ECG data and
the interval between the detected R-peaks can be recorded to
enable long-term HRV analysis. Experiments were per-
formed to evaluate the performance of the built-in R-wave
detection, robustness of the device under motion, and
applicability to the evaluation of mental stress. The R-peak
detection results obtained with the device exhibited a
sensitivity of 99.29%, a positive predictive value of
100.00%, and an error of 0.71%. The device also exhibited
less motional noise than conventional ECG recording, being
stable up to a walking speed of 5 km/h. When applied to
mental stress analysis, the device evaluated the variation in
HRV parameters in the same way as a normal ECG, with
very little difference. This device can help users better
understand their state of health and provide physicians with
more reliable data for objective diagnosis.

Keywords—Ubiquitous healthcare, Wearable sensor, Physi-

ological measurement, Peak detection algorithm, Heart rate

variability, Day-to-day activities, Stress assessment.

INTRODUCTION

This study set out to develop a small and light
electrocardiography (ECG) monitoring device with
enhanced portability and wearability, software that
contains a peak detection algorithm for analyzing

heart rate variability (HRV), and tasks to establish its
credibility.

Health has become a constant concern for people in
modern society, given their irregular lifestyles and high
levels of stress. This has manifested itself in the shift
from the technical trend of striving to diagnose and
treat diseases as early as possible to the more recent
trend of constantly keeping track of an individual’s
physiological information and helping to maintain
their health so that they do not develop diseases.17

Ubiquitous healthcare (U-healthcare) is a technique
that responds to the needs of modern people. By
integrating information technology and medical tech-
nology, U-healthcare provides healthcare and medical
services without the limitations of time or space and
helps improve and manage the health of people in
modern society. Through the application of this tech-
nology, humans can constantly monitor their health
and seek out appropriate medical care when needed.13

ECG monitoring is a typical form of U-healthcare.
It records the electrical changes on the surface of the
body by using the electric current that flows through
the cardiac tissue. Clinically, it is most commonly used
for diagnosing diseases related to cardiac activities and
coronary vessels. Especially, heart rate variation
analysis, which continuously measures the variation in
the heart rate, is used as a non-invasive physiological
indicator that can predict the risk of cardiovascular
diseases and quantitatively measure the balance
between the sympathetic and parasympathetic nervous
systems.10 The ‘‘standard limb leads’’ electrocardio-
graphic method is commonly used in clinics. Although
it can provide an accurate ECG that can be used for
diagnosis, it requires the assistance of a specialist be-
cause of the cost, size, and weight of the equipment,
and is thus inconvenient. Furthermore, cardiac disor-
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ders may not occur constantly but rather irregularly
and sporadically. Therefore, there is a need for a
convenient portable system that can continuously
monitor the ECG and enable the management of the
wearer’s health status as he/she goes about his/her day-
to-day life.12,30,32

Various studies are being conducted to develop a
technique that can satisfy these needs. The Holter
monitor is one of the most commonly used ambulatory
ECG devices in the clinical field. In its early years, the
device was large and heavy and usually caused dis-
comfort to the patient, given that it required many
electrodes be connected to their bodies, with wires.
However, the device has since improved and now uses
smaller recorders—although the size varies depending
on the manufacturer—and uses relatively few leads,
such that the patient remains comfortable during
recording.2,35 Other novel ECG monitoring devices
that have been developed to provide portability include
those which use only one or two leads20 or devices
based on capacitance-coupled sensing.9 The capacitive-
coupled sensing method assumes the patient’s skin and
an electrode to be two layers of a capacitor, such that
bio-potentials can be measured without any direct
contact with the surface of the patient’s body.14 Its
application has been extended to unobtrusive wearable
devices with measuring modules integrated or embed-
ded into clothes or accessories.32

There are also some unobtrusive sensing methods
and wearable devices based on other principles such as
ballistocardiogram (BCG), seismocardiogram (SCG),
and photoplethysmogram (PPG). BCG measures the
reaction forces of the body resulting from ventricular
blood ejection, whereas SCG involves the measure-
ment of the local fluctuations of the chest that are
caused by a heartbeat. Wearable BCG and SCG units
rely on attachable accelerometers integrated into the
support device.5,7 PPG sensing devices use light-emit-
ting diodes to illuminate the skin and photo-detectors
to measure changes in the light absorption. To achieve
unobtrusive measurement, PPG measuring modules
can be integrated into clothing, such as gloves or hats,
or accessories, in the form of rings or ear-worn sen-
sors.20,21,32

This study set out to design a new ECG monitoring
system that integrates many of the advantages of the
devices described above, based on recent studies, as
well as the characteristics of various portable moni-
toring devices. We devised a small, lightweight ECG
monitoring device that can be attached to the patient’s
torso. This device implements a modified lead
arrangement, minimizing the distance between the
electrodes required to measure the biologic signals.
This allows all the electrodes to be on a single patch,
which is easy to attach and detach to and from the

measuring device by using a snap button. Also, we
developed software including an algorithm that detects
important ECG peaks and which is essential for HRV
analysis. We verified the performance and reliability of
both the hardware and the software. For verification,
we obtained ECG signals for 41 subjects over an ex-
tended period to evaluate the efficacy of the algorithm
in the detection of peaks. We also compared the results
obtained with our device with those obtained with a
commercial device for common day-to-day activities
such as laying down, sitting, and walking. Lastly, we
analyzed the HRV under stressful situations and
evaluated its practicality.

MATERIALS AND METHODS

ECG Monitoring Device Using a Patch Electrode

We developed a portable ECG monitoring device
that can easily measure the ECG by connecting the
measuring module to a patch with a minimized elec-
trode array using a snap button. The measuring
module, which is illustrated in Fig. 1(a), is small
(38 mm wide, 38 mm long, and 7 mm thick), such that
it can be held in the palm of one’s hand. The weight of
the module, including the battery, is 10 g.

Considering the minimum required potential dif-
ference, the electrodes were arrayed over a patch
(patch electrode), which is illustrated in Fig. 1(b), with
a width of 150 mm and a length of 60 mm, weighing
4 g. The material used for the patch is non-woven
fabric with hydrogel and adhesive. We verified the
biocompatibility of the two components (hydrogel,
adhesive) that are in contact with the skin and they
were found to have passed all the test requirements
including cytotoxicity and skin irritation as proposed
by the FDA and ISO 10993-1 for materials to be in
contact with uncompromised skin. An Ag-/AgCl-

FIGURE 1. Smart ECG monitoring patch device.

Smart ECG Monitoring Patch 2293



based electrode array is printed into the patch and
protected by an insulation coating. As a result of the
effect of the insulation coating, the patch electrode
exhibits a uniform impedance and stable performance
even when subjected to sweat and moisture.

Attaching and detaching the patch to and from the
measuring module by using a snap button (as illus-
trated in Fig. 1(c)) not only reduces the burden of
attaching multiple lead electrodes to the body, but also
reduces the noise emanating from the cables, allowing
the measurement of more stable signals. When using
the device, the user connects the measuring module to
the patch electrode, attaches it to his or her torso (near
the celiac plexus), and then presses the power button
for about two seconds. A blue LED blinks to indicate
whether the ECG signals are being detected normally.
Because it is highly portable, convenient, and easy to
use, ECG monitoring is possible at any time of the day
or night, even while the subject is asleep.

The measuring module is composed of amplifying
and filtering circuits which can detect ECG signals
from the leads attached to the wearer’s body, an
accelerometer for detecting movement and the body’s
posture, and a processor that performs functions such
as signal processing and data transmission. An
instrumentation amplifier (AD8235, Analog Devices
Inc., USA), which has a high common-mode rejection
ratio (CMRR = 100 dB) was used to amplify only the
differential of the obtained signal. In addition, in an
attempt to reduce the effect of noise and improve the R
peaks of the ECG, we designed band-pass (5.9- to 48-
Hz) and notch (60-Hz) filtering circuits by using quad
op amps (LT6005, Linear Technology, USA) with a
CMRR of 100 dB. The acceleration transducer was
configured using a digital output motion sensor with a
3-axis acceleration indicator (LIS3DH, ST Microelec-
tronics, Switzerland).

We used a microcontroller (STM32F103, STMi-
croelectronics) with a Cortex-M3 core, to build the
main processor. The main control unit, operating at a
72-MHz clock speed, not only includes a variety of
peripheral devices such as 512 KB of flash memory,
64 KB of SRAM, and a 12-bit analog to digital con-
verter (ADC), but also supports communication

interfaces such as a serial peripheral interface, univer-
sal serial bus (USB), and universal asynchronous re-
ceiver & transmitter. To enable the connection of the
measuring equipment to the computer, the data
transfer part conforms to the communication device
class of the USB interface; a diagram of the device is
shown in Fig. 2.

Our device supports the collection of an ECG signal
with a 12-bit resolution and a 256-Hz sampling fre-
quency, as well as an acceleration signal with a 16-bit
resolution and 1-Hz sampling frequency. The collected
data is saved to a 32-MB serial flash memory block,
from which the ECG and acceleration signal for the
last 24 h can be reviewed (the reviewable duration can
be extended by increasing the capacity of the memory
up to 128-MB). Since the ECG signals of each indi-
vidual have different amplitudes, the equipment auto-
matically examines the waveform of the ECG saved in
the memory and controls the gain of the amplifier to
amplify the ECG signal to attain a consistent ampli-
tude. The equipment uses a 3.7-V lithium polymer
battery as its power source, which enables it to operate
for around 90 h when fully charged. To enable longer
monitoring, the equipment maximizes its use of the
limited energy in the battery by entering energy-saving
mode (disabling the peripherals) when the system is not
operating.

RS-Based Peak Detection

A QRS complex in an ECG signal indicates the
depolarization state of a ventricle. The first positive
signal is defined as the R-wave and the following
negative signal is defined as the S-wave. We designed
an algorithm to detect the QRS complex by detecting
the R and S waves, using the information on their
amplitude and the temporal interval between waves; a
diagram of this process is shown in Fig. 3.

(1) Up-peak detection: In an ECG signal, up-peaks
are detected by determining the point at which the
slope changes from positive to negative, as well as the
point of a local maximum. In our peak-detection
algorithm, the R-peak and S-wave are determined
from the following criteria.

FIGURE 2. Architecture of developed device. FIGURE 3. Flowchart of RS-based peak detection algorithm.
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(2) R-peak amplitude (Rth): The ECG measurement
device we developed in this study includes an auto gain
control (AGC) function. The AGC function periodi-
cally analyzes the morphologic shape of the ECG sig-
nals and automatically adjusts the rate of amplification
so that the amplitude of the R-peak exceeds a constant
value. Letting Vlim (Vlim = 22048 to 2048) be the
maximum range of the ADC value that can be ex-
pressed using the hardware, the amplitude of the R-
peak must always satisfy Eq. (1).

Rth>
Vlim

2
� 0:51 ¼ Ath ð1Þ

(3) Temporal interval between R-peaks considering
refractory period: Considering the refractory period of
the heart, at least 200 ms is required for the successive
generation of R-peaks. Therefore, the algorithm cal-
culates the temporal interval between up-peaks with an
amplitude in excess of Ath, detected as explained in (2).
If the interval is less than 49 samples (=191 ms), the
peak is considered to be an abnormal peak due to
noise, and is discarded.

(4) Down-wave detection: Beyond the peak that
satisfies the criteria of (2) and (3), a window of 49
samples is applied. Among the data within the window,
a down wave is determined by determining that point
at which the slope transitions from negative to positive
and has a local minimum value.

(5) Final decision: The temporal interval (TRS) and
the amplitude (ARS) between the up-peak and the
down-wave determined using the methods described in
(2)–(4) are measured. Using the developed device, we
collected and analyzed ECG signals from over 30
subjects. As a result, we could set up an empirical
threshold that normal ECG signals satisfy. Equa-
tion (2), below, shows the empirical threshold of TRS

and ARS.

TRS � 78:125 ms;ARS � Vlim

2
� 0:87 ð2Þ

Through an analysis of the up-peak and down-wave
information selected using this equation, R-peak was
ultimately determined.

Auto Gain Control (AGC)

Some criteria included in the RS-based peak detec-
tion algorithm described in previous section are
derived from the maximum range of the ADC value of
the hardware (Vlim). We designed the algorithm to
periodically analyze the morphologic form of the ECG
to maintain a constant amplitude of the QRS complex
so that the algorithm can function continuously.
Through the application of the AGC, the amplification
rate of ECG signals was periodically adjusted so that

the R-peak is positioned at approximately 1000
(Vlim = 22048 to 2048).

HRV Analysis

The HRV analysis methods can be divided into time
and frequency domains. All of the HRV parameters
presented in this paper were obtained by following the
guidelines laid down by the Task Force of the ESC and
NASPE. The intervals between the R-peaks (RRI) were
derived from the detected R-peaks. The HRV parame-
ters for the period were calculated directly from these
original RR interval time series. They include the mean
HR (mean of the heart rate, in bpm), SDNN (standard
deviation of all NN intervals, in ms), and RMSSD (the
square root of the mean of the sum of the squares of the
differences between adjacent NN intervals, in ms).27

Subsequently, after resampling at 4 Hz via piecewise
cubicHermite interpolation, theHRVparameter for the
frequency was calculated. Irregularly time-sampled
signals should be produced as an even sample time series
prior to spectrum estimation to prevent the generation
of additional harmonic components in the spectrum.18

While a standard rule of the RR interval resampling
frequency is not defined, 4 Hz has generally been
adopted in most HRV reports.22,23 The resampling rate
needs to be chosen according to the Nyquist criterion;
thus, 4 Hz is acceptable for the case when the RR ta-
chogram remains below 120 bpm (i.e., 2 Hz).4 Accord-
ing to Singh et al., ‘‘this is an appropriate resampling
rate for the study of autonomic regulation, since it en-
ables the computation of reliable spectral estimates
between DC and 1 Hz, which represents the frequency
band within which the autonomic nervous system has a
significant response.’’22 The PSD results from the fast
Fourier transform were divided by the frequency range.
The LF and HF components were indicated as fre-
quency ranges of 0.04–0.15 Hz, and 0.15–0.4 Hz,
respectively. The sum of each component was normal-
ized and indicated as norm LF and norm HF. The ratio
of the normalized component was expressed as LF/
HF.25 The HF component mainly reflects the activity of
the vagus nerve. Some investigators claim that the LF
component indicates the quantitative activity of the
sympathetic nerve while others argue that it reflects the
activity of both the sympathetic and parasympathetic
nerves. Regardless, the LF/HF ratio is commonly used
as an index for the vagal balance, reflected according to
the activity of sympathetic nerve.3,25

Experiment 1: Evaluating the Performance of the R-
Peak Detection

To evaluate the efficacy of the algorithm at detecting
peaks, 829 h of ECG data obtained from 41 subjects

Smart ECG Monitoring Patch 2295



(about 20 h per subject) were obtained. The subjects
went about their day-to-day activities after attaching
the ECG monitoring device developed in this study to
their torso.

Researchers with at least four years of experience
labeled the peak information of the ECG signals. Two
or more researchers analyzed the data as a team to
maintain caution and objectivity in the labeling of the
peak annotation. We used an internally developed
MATLAB-based software tool that features manual
R-peak marking or correction functions for ECG
analysis.

Using the indicators of sensitivity (Se), the positive
predictive value (PPV), and error (Er), the efficiency of
the algorithm was statistically evaluated. These indi-
cators were calculated by the methods defined by
Eqs. (3)–(5).34

Se ¼ TP

TPþ FN
� 100 ð%Þ ð3Þ

PPV ¼ TP

TPþ FP
� 100 ð%Þ ð4Þ

Er ¼ FPþ FN

TPþ FN
� 100 ð%Þ ð5Þ

TP, FP, and FN indicate the following situations
(TP: detected peak is a valid R-peak, FP: detected peak
is not a valid R-peak, FN: failure to detect an existing
R-peak). Se, PPV, and Er are statistical indexes used
to evaluate the following performances (Se: detection
of R-peaks from a valid ECG, PPV: differentiation of
peaks that are R-peaks and those that are not R-peaks
from a valid ECG, Er: accuracy of the algorithm).15

Experiment 2: ECG Monitoring During Day-to-Day
Activities

We set out to compare and evaluate the ECG data
obtained using both a commercial device and the newly
developed device. For this comparison, we planned to
validate the accuracy of the new ECG device when
applied to day-to-day activities. Twelve adult males
and females [average age 26.8 (±3.1)] without any
history of cardiovascular disorders enrolled in this
study. Lying in bed, sitting on a chair, and walking
were selected as day-to-day activities. After attaching
an ECG monitoring patch to a subject’s torso, the
ECG was measured while he/she laid in bed for
10 min, sat on a chair for 10 min, and walked on a
treadmill at a speed of 1, 3, and 5 km/h, respectively,
for 5 min. The total ECG data duration was 35 min
per subject.

To compare the data obtained with the developed
device with that obtained with a conventional device,
another ECGwas obtained simultaneously using a data-
acquisition system (MP150, BIOPAC System, Inc.,
USA) with a sampling rate of 1000 Hz. Commercial
devices utilize Ag–AgCl electrodes to detect ECG sig-
nals in the Lead-II position. The electrodes are con-
nected to the measuring devices using wires. Wires are
attached to the body with tape to reduce the noise gen-
erated by movement. In a conventional Holter system,
the Holter device is fixed to the waist, with the wires
connected to the machine and the electrodes attached to
the body with tape.Wemimicked this wire/device array.

In addition to evaluating the quality of the signals
according to the amount of noise, the estimated signal-to-
noise ratios (SNRs) of the ECG signals obtained simulta-
neously from both the commercial and developed devices
were compared. The details of the SNR estimation were
conducted following procedures from literature.6,31 This
estimation methodology accounts for all sources of noise
and interference that affect the signal quality, including
electronic noise and motion artifacts.8 The R-peak detec-
tion and SNR calculation were done using software
(MATLAB R2014b, The Math Works, Inc., USA).

Experiment 3: Stress Assessment Using HRV
Parameters

To verify the performance and practicality of the
new device, we compared the HRV analysis results.
This experiment was undertaken with 17 subjects [av-
erage age 27.8 (±3.1)], obtaining the ECG from both a
commercial device and the newly developed device in a
mentally stressful situation. The test consisted of a
resting state (5 min)—Stroop test (5 min)—mental
arithmetic test (5 min) sequence. The Stroop test as-
sesses color–word interference. Test participants are
asked to respond with the name of a color that is dif-
ferent from the meaning of a colored word. In the
mental arithmetic task, subjects were asked to repeat-
edly subtract 13 from 1079. Subjects were not allowed
to use their fingers or pens, and were only allowed to
perform the calculations in their heads.

ECG signals from both a commercial device and the
newly developed device were measured simultaneously
(i.e., concurrent data acquisition) for all mental stress
states to prevent debate regarding confounding effects
like learning.After obtaining theECGfrombothdevices,
theHRVof the time and frequency domainwas analyzed
in a similar manner as described in the previous section
(HRV analysis). The reliability of the new device was
evaluated by comparing the results obtainedwith the two
devices.
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RESULTS

We evaluated the performance of the peak-detecting
algorithm using the ECG data obtained with the patch
ECG monitoring system developed as part of this
study (data are provided in Table 1). The algorithm
shows the statistical results for Se = 99.29%,
PPV = 100.00%, and Er = 0.71%, in comparison
with the annotated work done manually by investiga-
tors on 829 h of ECG data. Additionally, the results of
the other related algorithms cited in literature are
summarized in Table 2 and compared to our results.

We measured the ECG using a conventional device
and our device, in conditions representing day-to-day
activities (i.e., lying position, sitting position, and
walking at 1, 3, and 5 km/h). A total of 120 sets of
ECG data were obtained (60 from the conventional
device, 60 from our device). The quality of the signals
was assessed according to the amount of noise esti-
mated by the SNR methods. Figure 4(a) shows a
comparison of the mean SNR estimation of our device
to a conventional device for experiment 2. The values
of the SNR analysis for the two data sets show similar
results for small-movement conditions such as lying

TABLE 1. Performance evaluation of proposed RS-based peak-detection method.

Record Duration (hh:mm)

Number of beats

Se (%) PPV (%) Er (%)TP FP FN

01 21:15 104434 0 1430 98.65 100.00 1.35

02 21:18 90943 29 559 99.39 99.97 0.64

03 20:18 91140 1 980 98.94 100.00 1.06

04 21:18 91681 7 1727 98.15 99.99 1.86

05 21:11 103308 6 913 99.12 99.99 0.88

06 21:15 96683 0 33 99.97 100.00 0.03

07 21:16 100495 2 587 99.42 100.00 0.58

08 11:09 35462 3 2048 94.54 99.99 5.47

09 21:04 83070 5 544 99.35 99.99 0.66

10 21:20 78796 0 77 99.90 100.00 0.10

11 21:15 90257 1 150 99.83 100.00 0.17

12 21:16 89732 0 26 99.97 100.00 0.03

13 21:17 98157 0 82 99.92 100.00 0.08

14 21:17 107640 2 447 99.59 100.00 0.42

15 19:00 81298 1 90 99.89 100.00 0.11

16 20:53 92921 0 184 99.80 100.00 0.20

17 21:19 90909 0 149 99.84 100.00 0.16

18 21:19 81901 2 17 99.98 100.00 0.02

19 20:49 91445 0 47 99.95 100.00 0.05

20 21:14 102752 0 230 99.78 100.00 0.22

21 21:19 89649 3 943 98.96 100.00 1.04

22 21:17 96444 0 18 99.98 100.00 0.02

23 21:19 93870 0 115 99.88 100.00 0.12

24 21:18 86049 3 16 99.98 100.00 0.02

25 21:19 75546 3 3485 95.59 100.00 4.41

26 20:54 89701 0 61 99.93 100.00 0.07

27 21:14 90903 1 100 99.89 100.00 0.11

28 21:17 82640 16 4503 94.83 99.98 5.19

29 21:18 102140 0 71 99.93 100.00 0.07

30 21:16 93663 2 145 99.85 100.00 0.16

31 21:18 89173 0 19 99.98 100.00 0.02

32 17:18 45682 0 3 99.99 100.00 0.01

33 21:17 94379 2 135 99.86 100.00 0.14

34 21:16 98500 2 342 99.65 100.00 0.35

35 21:19 87497 0 9 99.99 100.00 0.01

36 21:18 102595 1 284 99.72 100.00 0.28

37 16:55 65885 0 17 99.97 100.00 0.03

38 21:15 99498 2 1262 98.75 100.00 1.25

39 21:16 92162 0 199 99.78 100.00 0.22

40 20:45 69753 7 630 99.10 99.99 0.91

41 21:18 85688 21 3239 96.36 99.98 3.67

Total (TP, FP, FN) or

average (Se, PPV, Er)

3634451 122 25916 99.29 100.00 0.71
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and sitting. However, for a walking speed of 1 km/h or
more, a considerable amount of noise arose. Thus,
there is a significant difference between the SNRs of
the results obtained with the two devices. Our device,
which is superior in terms of signal quality, shows a
high SNR. Figure 4(b) and 4(c) are a box-plot com-
parison of the SNRs and a frequency distribution
table of the SNRs, respectively. Among these, the
5 km/h data for subjects 4, 6, 10, and 12 were com-
pared and shown in Fig. 5.

Figure 6 compares an HRV analysis of the ECG
signals as obtained with the conventional and newly
developed device for the subjects undertaking experi-
ment 3 (mental stress). When an individual is anxious
or excited, the sympathetic nervous system is activated,
increasing the LF value among the HRV indexes.
Moreover, when an individual is angry, concerned, or
afraid, the parasympathetic nerve system is deacti-
vated, leading to a decrease in the HF value.3,28

Therefore, our identification of the increased LF/HF
ratio in stressed subjects is consistent with the general

physiological principles of autonomous nervous sys-
tem imbalance. We found that, for subjects placed in
stressful situations such as taking the Stroop test or a
mental arithmetic test, the LF/HF ratio, which reflects
the balance state of the ANS, increased significantly.
Also, when differences in the HRV analysis results

TABLE 2. Performance summary of other related works

Total beats TP FP FN Se (%) PPV (%) Er (%) Reference

(a) Performance comparison of algorithms tested by open source database (MITDB)

109494 109401 91 93 99.92 99.92 0.17 33

109494 109398 103 96 99.91 99.91 0.18 24

108494 108323 97 171 99.84 99.91 0.25 34

109494 109241 393 253 99.77 99.64 0.59 1

116137 115860 507 277 99.76 99.56 0.68 19

(b) Performance comparison of algorithms tested by their own developed device

27012 27001 40 11 99.96 99.85 0.19 26

7426 7253 138 173 97.67 98.13 4.19 11

67143 65116 1455 2027 96.98 97.81 5.19 1

7576 7103 37 473 93.76 99.48 6.73 1

(c) Performance results of algorithm for our developed device

3660367 3634451 122 25916 99.29 100.00 0.71 –

FIGURE 4. Comparison of SNR between commercial and developed devices under conditions representing daily activities: (a)
mean data, (b) box-plot comparison, (c) frequency distribution table.

FIGURE 5. Examples of ECG signals recorded using a
commercial device (blue dotted line) and the developed de-
vice (black line): 5 km/h data for (a) subject 4, (b) subject 6, (c)
subject 10, (d) subject 12.
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obtained with the conventional and newly developed
device were plotted as a box plot, equivalent results
were obtained, confirming the measuring accuracy of
the new device. Statistically, using linear regression to
compare the results from both devices, the regression
value was over 0.99 for every HRV parameter. This
signifies that the measured results are identical in the
two devices.

DISCUSSION

In this study, we suggested a new system for mea-
suring ECG, using a patch with minimized electrode
arrays as an alternative to a conventional
portable ECG measuring system in order to improve
portability, wear comfort, and accuracy of measure-
ment when the subject is moving.

In general, when evaluating the performance of an
algorithm, open source data such as the MIT-BIH
database are used to objectively evaluate its perfor-
mance and relatively.16,19 However, in this study, the
algorithm we developed was based on the AGC and
the indigenous threshold of the maximum amplitude
that can be expressed on the developed hardware.
Thus, this algorithm is optimized to process only data
obtained with the newly developed device.

The results of the ECG measurements and peak
detection tests performed as the subjects performed
their day-to-day lives showed an acceptable level of
performance, given a sufficient number of subjects.
However, there are some limitations. The algorithm
adopted for this study can analyze only the data
acquired from our hardware. Although we summarize
the performance comparison in Table 2, it was
impossible to make an objective comparison with other
algorithms that differ in their experimental circum-
stances.

The method in which we obtained an ECG using a
commercial device is similar to the common use of the
conventional Holter device. We connected the leads
and the device with wires and anchored the wires to the
body of the subject with tape. However, even with the
wires firmly fixed, the ECG signal quality was often
disturbed as the wires moved depending on the sub-
ject’s body movements as he or she walked or per-
formed other actions. According to one study, the ratio
of motion peaks to normal peaks was estimated as
being about 10% when the ECG was taken from a
freely moving patient using the Holter system. For this
reason, the ECGs obtained using Holters were limited,
and algorithms used to eliminate noise from the data
have been actively developed.29 As important as it is to
detect and exclude generated noise from the analysis, it
is even more important to reduce the occurrence of
noise itself.

We evaluated cardiac activities using the developed
device and a conventional device under conditions that
represent day-to-day activities and analyzed the SNRs
of both ECGs to evaluate the amount of noise gener-
ation in the two devices. In circumstances involving
little action, reasonable SNR estimation values were
observed for both devices. When we increased the
motion of the subjects, we found that the new device
was relatively less affected by motion noise. It is
obvious that the movement of the wire connecting the
leads and the device add to the presence of noise in the
conventional equipment. Generally, devices used to
acquire ECG data during day-to-day activities are
susceptible to diverse noise such as power noise, res-
piratory noise, and muscle noise.

From the results, we expect our device to be capable
of obtaining more stable and simpler ECG measure-
ments for day-to-day activities, including those with
moderate amounts of movement, e.g., walking at
5 km/h. This improvement results from efforts to
minimize noise artifacts from both the software pre-
processing the signals and the hardware, which was
achieved by incorporating the wires connecting the
leads to the device into the integral patch. Therefore,
we anticipate that the new device will be useful for
ECG monitoring during real-life activities while still
being able to measure stable and credible waves.

Moreover, we analyzed the activities of ANS while
the subject was subjected to a stressful situation in
order to examine the performance and practicality of
the device designed in this study. The HRV parameters
were significantly different between normal and
stressful conditions. This was clearly distinguishable
using the new device.

There is currently an increased demand for HRV
analysis in a wide range of user environments. There-
fore, technology using a patch electrode and a mea-

FIGURE 6. Comparison of HRV parameters under stressful
conditions.
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suring module to measure ECG is very well suited to
application as a health monitoring system. Specifically,
the target market for the developed device will likely be
those related to sleep, chronic disease, or any appli-
cations that have a need for long-term ECG monitor-
ing. Also, tests related to the adoption of Bluetooth
low energy wireless communication are being
undertaken to keep pace with the convergence of the
Internet of Things and mobile health. The developed
device has already been granted Korea Food & Drug
Administration certification and will be granted CE
and FDA 510(k) in the future.
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