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Abstract—During the minimally-invasive liver surgery, only
the partial surface view of the liver is usually provided to the
surgeon via the laparoscopic camera. Therefore, it is neces-
sary to estimate the actual position of the internal structures
such as tumors and vessels from the pre-operative images.
Nevertheless, such task can be highly challenging since
during the intervention, the abdominal organs undergo
important deformations due to the pneumoperitoneum,
respiratory and cardiac motion and the interaction with the
surgical tools. Therefore, a reliable automatic system for
intra-operative guidance requires fast and reliable registra-
tion of the pre- and intra-operative data. In this paper we
present a complete pipeline for the registration of pre-
operative patient-specific image data to the sparse and incom-
plete intra-operative data. While the intra-operative data is
represented by a point cloud extracted from the stereo-endo-
scopic images, the pre-operative data is used to reconstruct a
biomechanicalmodel which is necessary for accurate estimation
of the position of the internal structures, considering the actual
deformations.Thismodel takes intoaccount thepatient-specific
liver anatomy composed of parenchyma, vascularization and
capsule, and is enriched with anatomical boundary conditions
transferred from an atlas. The registration process employs the
iterative closest point technique together with a penalty-based
method. We perform a quantitative assessment based on the
evaluation of the target registration error on synthetic data as
well as a qualitative assessment on real patient data. We
demonstrate that the proposed registration method provides
good results in terms of both accuracy and robustness w.r.t. the
quality of the intra-operative data.

Keywords—Patient-specific modeling, Non-rigid registration,

Minimally-invasive surgery, Real-time simulation.

INTRODUCTION

In the last decades, advances in medicine have seen
the emergence of minimally-invasive surgery. In this
surgical approach, the surgeon manipulates the organs
with instruments inserted through trocars placed in
small abdominal incisions. The view of the operating
field is provided by a laparoscopic camera, inserted
also through a trocar, allowing the surgeon to perform
the surgery by watching a high-definition monitor
placed above the patient. Minimally-invasive surgery
provides real benefits to the patient, by reducing pain,
bleeding and risks of infection and therefore shorten-
ing recovery time. However, since the manipulation of
instruments is indirect and the visual feedback is lim-
ited, it remains quite challenging from a surgical
standpoint. Improved navigation, planning, and visu-
alization of internal structures are among the main
requirements. The use of a laparoscopic camera in the
clinical routine has naturally led the research commu-
nity to investigate registration techniques in order to
overlay the pre-operative anatomical models directly
onto the intra-operative view. In the context of hepatic
surgery, the objective is to locate tumors with greater
accuracy and preserve vessels which are needed for the
post-operative regeneration of the liver tissue. For this
reason, and also due to the important deformations
underwent by the liver during the procedure, mini-
mally-invasive hepatic surgery is a challenge for intra-
operative guidance methods.

Registration between intra-operative data and pre-
operative data is a cross-disciplinary research domain
combining disciplines such as computer vision, image
processing, computer graphics and computational
mechanics methods. Indeed, where surgical vision

Address correspondence to Rosalie Plantefève, Altran and Inria
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methods36 help process the endoscopic images in order
to recover organs shapes, perform instruments track-
ing, or estimate camera position, computer graphics
techniques aim at providing three-dimensional virtual
representations of real organs using advanced geo-
metrical modeling and rendering algorithms. These
three-dimensional representations are often considered
as purely geometric, since most existing surgical navi-
gation systems assume rigid organ motion.24 Never-
theless, in real clinical routines, this assumption no
longer holds, given the elastic characteristics of soft
tissues. In addition, in minimally-invasive surgery, the
abdomen is inflated with CO2, creating large defor-
mations of the organs to which respiratory and cardiac
motions are added, as well as interactions with surgical
instruments. As a consequence, more advanced mod-
eling methods need to be envisioned, such that elastic
deformations linking pre- and intra-operative data can
be simulated in real-time.

The benefits of surgery navigation are particularly clear
in laparoscopic hepatectomy where it can enable the
visualization of pre-operative data directly fused with
endoscopic images. Generally, a geometrical model con-
structed from pre-operative data is used during the navi-
gation,24,31,37 Although such approaches offer the
possibility to achieve real-time registration and give visu-
ally coherent augmentation, they are limited to surface
overlay, as neither the vessels nor the tumors are consid-
ered. They also rarely account for soft tissue deformation.

To provide in-depth structures overlay, elastic reg-
istration and volume computation has to be consid-
ered.14,16,38 Physically-based elastic models have
proven to be relevant for volume deformation tracking
since they permit to estimate the in-depth motion from
surface deformation. In,30 a 4D scan of the heart is
coupled with a biomechanical model. It is controlled
by surface constraints created by features extracted
from a stereo-vision camera stream and allows for a
quite accurate estimation of the position of internal
structures. This approach is, however, dedicated to
cyclic movements and cannot be translated to liver
surgery where large and unpredictable deformations
may occur. Based on a dynamic model, Schaerer
et al.32 proposed to use forces measured in the image to
drive the model towards the boundaries of the object.
The main limitation of this method is that it assumes
the organ to be homogeneous, and that the entire or-
gan is visible in the MRI data. A Neo-hookean elastic
model is employed in35 in order to perform intra-
operative registration between stereo-endoscopic
images and pre-operative model of the liver. The
accuracy of registration is assessed on a phantom and
shows the suitability of the model for an accurate
registration, nevertheless not suitable for a real time
simulation. In our previous work,14 we used a

deformable biomechanical model accounting for
heterogeneity and anisotropy for hepatic surgery
guidance. Convincing results are reported on both
in vivo and phantom data under well-defined condi-
tions. Nevertheless, the boundary conditions, which
are essential to yield good results, were defined in an
ad-hoc manner during the initialization phase. In,38

shape-matching is used for the registration of a phys-
ically-based model derived from pre-operative mesh
and intra-operative surface computed from camera.
The intra-operative organ shape is modeled as an
electrostatic-elastic problem. The elastic model is
electrically charged to slide into an oppositely charged
organ shape representation. Nonetheless, the method
uses a simplified homogeneous model of the liver and it
is assumed that at least 50% of the organ surface is
captured by the camera, which is generally not possi-
ble. A pose-independent matching of intra-operative
data acquired by a camera was proposed in.8 The
method is automatic and takes into account data noise
and tissue deformations. However, the approach
requires to have access to an advanced camera hard-
ware providing depth information, which facilitates the
reconstruction of the surface, but is not usable in
clinical (minimally-invasive) conditions.

Based on the work of,2 Oktay et al.25 proposed to
combine the intra-operative data acquired from CT-
scans with a biomechanical simulation of gas insuf-
flation to accurately perform the registration. Al-
though this method provides accurate registration, it
relies on intra-operative scans, which are currently not
available during clinical routines. Clements et al.6

introduced an approach that exploits salient anatomi-
cal features, identifiable in both the pre-operative
images and intra-operative liver surface. Based on an
iterative closest point (ICP) the method performs well,
but is limited to rigid transformations. In28 an auto-
matic registration of the liver using only the endo-
scopic images is proposed. It relies on an approach
similar to6 but using a deformable model. Nonetheless,
the method performs the registration only with a static
point cloud, thus not handling liver motion due to
respiratory and cardiac motions.

While the above approaches are often based on a
biomechanical model to describe the behavior of the
deformable body, the modeling of the organ remains
relatively simple and usually not compatible with the
real-time simulation. For instance, in the case of the
liver, it has been demonstrated experimentally that this
organ has a complex anatomy with a significant level
of patient-specificity.20,43 In our context, using a more
accurate model will improve the accuracy of the
internal structure position estimation.16 Such an
improvement in the model can be obtained by
accounting for the three different constituents (par-
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enchyma, vessels, Glisson’s capsule) of the liver, each
having its characteristic mechanical properties.40 An-
other element influencing the behavior of the liver is
the pathology, which in certain cases can stiffen the
organ significantly. Among the important body of
work that exists regarding the biomechanical proper-
ties of the liver parenchyma, only few studies focused
on the role of vascularization inside the tissue. In,18 a
visco-elastic model of the liver is proposed as well as
material parameters experimentally measured ex vivo
on perfused liver. In,23 a patient specific model of
hepatic vasculature is proposed. The material proper-
ties of vessels are modelled by non-linear constitutive
law. Nevertheless, the model does not allow for real-
time performance as the vessel walls are modelled with
large number of finite elements.

This article is an extension of our previous works,16,28

where we improve upon16 by adding anatomically cor-
rect boundary conditions, and extend the work pre-
sented in28 by considering a non-static point cloud in the
registration process. In this paperwemainly focus on the
usability and assessment of the framework depicted in
Fig. 1. In particular we emphasize the patient-specific
model of the liver, which takes into account the vascular
network as the main source of heterogeneity and ani-
sotropy, yet allows for real-time augmentation and is
directly derived frommedical images routinely acquired

in the case of liver cancer. The details about the model
reconstruction are presented in ‘‘Patient-specific Com-
posite Model of Human Liver’’ section. The biome-
chanical model is constrained by anatomically correct
boundary conditions, which are transferred from a sta-
tistical atlas. These boundary conditions permit to ob-
tain a well-constrained system during the registration
process which is based on a two-step approach. First, an
iterative algorithm brings the pre-operative model in the
camera reference frame and deforms it according to the
point cloud shape. Then, a tracking algorithm guaran-
tees the real-time registration of the biomechanical
model with the liver view of the endoscopic video flow.
The method of both the initial and the real-time regis-
trations are described in ‘‘Image-Guided Non-rigid
Registration’’ section. Further, the ‘‘Results’’ section
provides an assessment of themethodusing the synthetic
and in vivo experimental data. The limitations of the
method as well as its applicability are finally discussed
in ‘‘Conclusion’’ section.

MATERIALS AND METHODS

Patient-Specific Composite Model of Human Liver

The biomechanical model used for the initial regis-
tration and intra-operative positional prediction of the

FIGURE 1. Overall concept of our approach illustrating the non-rigid registration process using a patient-specific biomechanical
model derived from pre-operative data. The registration with the endoscopic image permits the visualization of internal structures
during the operation in order to provide surgeons with decision support.
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internal structures (such as vessels and lesions) has two
aspects: the reconstruction of the geometry and the
physical formulation of the problem. It has been
demonstrated via rheological experiments presented
in40 that the biomechanical behaviour of the liver is
determined by three constituents: parenchyma, Glis-
son’s capsule and vascularization. Therefore, our
framework relies on the composite model presented
in26,27 which combines the mechanical response of the
three constituents while allows for real-time employ-
ment of the resulting virtual object.

In this section, the semi-automatic pipeline which
creates the geometrical representation from the input
images (such as pre-operative CT or MRI) is first de-
scribed. Further, the mechanical aspects of the com-
posite model are presented together with an efficient
solution method.

Reconstruction of the Model Geometry

The geometry of the model is obtained by a semi-
automatic pipeline presented in Fig. 2. Starting from
the pre-operative images, the pipeline has two bran-
ches: the geometrical reconstruction of the par-
enchyma and the capsule and the reconstruction of the
vascular model. While the former consists of segmen-
tation and meshing, the latter requires skeletonization
of the vascular tree and construction of the geometrical
representation suitable for the finite-element formula-
tion based on beam elements. Below we present details
for each phase of the geometrical reconstruction.

Geometrical Reconstruction of Parenchyma and Capsule
To perform the liver segmentation, we employ the field
level set algorithm presented in.44 The quality of the

segmented map is improved by several filtering meth-
ods, namely by Laplacian smoothing, hole-filling and
detection of the continuous components. Afterwards,
it is used to generate the finite element mesh for both
the parenchyma and the capsule. In our pipeline, we
employ the method presented in4 which generates the
3D tetrahedral mesh of the parenchyma directly from
the segmented map and reduces the number of
degenerated elements and slivers using mesh opti-
mizations such as Lloyd and ODT smoothers. The
surface triangulation of the mesh is extracted from the
tetrahedral mesh, resulting in the geometrical domain
of the capsule.

Geometrical Reconstruction of the Vascularization
Blood vessels are segmented from the same image
modality as the parenchyma by a semi-automatic
method.44 Then a skeletonization is computed using an
algorithm based on Voronoi diagram1 which as the
input takes the surface of the segmented map. This
surface is usually constructed using a marching cubes
algorithm, however the resulting skeleton often suffers
from incompleteness as the method is very sensitive to
the quality of the segmentation. Therefore, we adapted
the method based on iterative Dijkstra minimum cost
spanning tree presented in.41 The method works di-
rectly with the segmented map which is converted into
a weighted 3D graph where each voxel belonging to the
segmented volume is prepresented by a weighted node.

The method constructs the skeleton in two steps:
first, the spanning tree is constructed iteratively start-
ing from the root voxel. The edges between voxels are
constructed recursively using a sorted heap: in each
step, the head of the heap having the minimal weight is
marked and all its unmarked neighbors are inserted

FIGURE 2. Scheme showing the pipeline used for the model reconstruction: (a) input CT or MRI data, (b) segmented vascular-
ization, (c) segmented parenchyma, (d) skeletonization of vascular trees, (e) meshing of segmented volume and (f) composite
model composed of the parenchyma mesh and beam elements sampled from Bézier curves fitted to the vascular skeleton.
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into the heap. The node weight used to sort the heap is

defined as 1
rb
where rb is a distance from boundary which

is obtained from distance map pre-computed from the
binary image of the vascular tree. The weight thus
prioritizes the voxels with higher probability to lie on
the centerline, i.e., further from the vessel boundary.
Moreover, for each visited voxel, its distance from the
root (dr) is stored, being the geometrical distance along
the edges contructed so far from the root.

Second, the centerlines are extracted recursively
from the tree:

– Path P0 of order 0 is constructed as the shortest
path connecting the root and the voxel with the
highest value of dr in the graph.

– Path Pn of order n is constructed in two steps:
– voxel expansion: for each voxel v of the path

Pn�1 of order ðn� 1Þ, a set Vv of all voxels
accessible from v is constructed.

– path extraction: the shortest path ðv;wÞ is
constructed: v is the parent voxel (on path of
order ðn� 1Þ) and w is the voxel from Vv
having the highest value of dr.

We introduce several modifications w.r.t. the original
method:41 first of all, in order to increase the smooth-
ness of the resulting centerline, we evaluated the
extraction for different exponents e 2 f1; 2; 3; 4; 5; 6g
in the definition of the node weight 1

re
b

. We obtained the
best results in terms of centerline smoothness and
continuity using e ¼ 4. Further, we added two heuris-
tics in order to improve the quality of the skeleton. The
first heuristic attempts to shorten the new path Pnðv;wÞ
by finding a parent voxel u which is closer to the
terminal voxel w. Mathematically, we look for a voxel
u 2 Pn�1 such that: u is adjacent to a voxel from Pn

and for the lengths of the paths, it holds:
jðu;wÞj<jðv;wÞj. If such voxel exists, path ðv;wÞ is
replaced by path ðu;wÞ.

The second heuristic detects the false paths which lie
inside a tube in which a path already exists. Before
testing the new path Pnðv;wÞ, we find a voxel u 2 Pn�1
which lies in the parent path and minimizes the Eu-
clidean distance jðu;wÞj. This distance is not measured
along the path but it is simply the length of a straight
line connecting u and w. A new path Pnðv;wÞ is
removed if:

– the angle ðv; uÞ; ðv;wÞ does not lie inside the
interval ðp=2� �; p=2þ �Þ; experimentally, we
determined � ¼ 0:05 rad;

– the line u;w lies completely inside the segmented
volume.

The second condition detects the paths which lie inside
the same tube as the parent path, however, the

detection is applied only to paths which are not almost
perpendicular to the parent path.

The skeleton constructed by the graph-based
method presented above cannot be used directly as the
domain for the finite element method based on the
beam formulation, which requires smooth geometrical
representation where every node is equipped with both
positional and rotational degrees of freedom (DoF).

Therefore, the next step in the reconstruction pro-
cess is based on Bézier curve fitting: a set of cubic
Bézier curves is fit to each segment of the skeleton
using the recursive algorithm presented in.33 Then, the
6 DoF nodes are sampled along the Bézier curves
adaptively: the density of sampling increases along the
segmented with higher curvature in order to improve
the quality of the discretization.

Patient-Specific Composite Model

Similarly as in,38 we consider the registration as a
dynamic process. This avoids having to set Dirichlet
boundary conditions such that the stiffness matrix is
invertible. Such boundary conditions would not make
sense in an ICP-based approach. The dynamic system
of equations is given by

M€~uþ B _~uþ Kð~uÞ ¼ ~f; ð1Þ

where M is the mass matrix, B is the damping matrix,
K is the stiffness matrix, ~u is the vector of nodal dis-

placements and ~f is the vector of external forces
applied to the deformable object.

In this paper, the liver is modeled using a composite
approach which takes into account the mechanical
behavior of the three components of the liver: par-
enchyma, vessels and Glisson’s capsule. Since the mass
of both the vessel walls and the capsule is negligible
w.r.t. the entire body, the mass matrix M is based only
on the mass of the parenchyma. In our approach, the
damping matrix B is obtained by an approximation

B ¼ rMMþ rKK; ð2Þ

where rM and rK are Rayleigh mass and damping,
respectively. Finally, the mass matrix K is the part of
the equation which is composed from three different
contributions corresponding to the three components
of the liver as explained in the following section.

FE Formulation of the Liver Parenchyma
While time-dependent phenomena related to viscosity
are not considered in this work, we employ co-rota-
tional finite elements to model the parenchyma relying
on the geometrical co-rotational method proposed
in.22 Although the technique relies on linear stress-
strain relationship, large displacements including
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rotations can be considered as correctly approximated.
Denoting p a generic P1 tetrahedral element of the
parenchyma, the 12 9 12 element stiffness matrix is
then computed as

Kp ¼ R>p

Z
Vp

B>pDpBpdV

( )
Rp ð3Þ

where Bp is the strain-displacement matrix, Dp is the
stress-strain matrix and Rp is a rotation matrix derived

in the co-rotational formulation. The details related
the matrices in Eq. (3) can be found in.22 While both
Bp and Dp are constant during the simulation, Rp must

be updated in each step of the simulation.
In the case when lesions (such as tumors) are present

inside the parenchyma, these can be taken into account
also from the mechanical point of view as they usually
introduce significant heterogeneity. This heterogeneity
can be straightforwardly included in the model since
the employed meshing technique4 allows for creating
heterogeneous meshes according to different labels in
the input segmented map. Then, various constitutive
parameters can be assigned to the elements that belong
to the area representing the lesion.

FE Formulation of the Vascular Structures
Similarly, the co-rotational approach is used to model
the vascular structures. The serially-linked beam ele-
ments based on Tymoshenko formulation are em-
ployed, taking into account the hollow structure of the
vessels via moments of inertia. As the beam formula-
tion considers both positional and rotational degrees
of freedom (allowing for modeling the twists and tor-
ques), each beam element v is modeled with a 12 9 12
elements stiffness matrix Kv. Although the size of the
local system is the same as in the case of parenchyma,
the matrix has a completely different structure, as it
describes an element given by two nodes each having
six degrees of freedom. Thus, it relates angular and
spatial positions of each end of a beam element to the
forces and torques applied to them. The exact defini-
tion of the matrix Kv can be found in.9

FE Formulation of the Glisson’s Capsule
Due to the thickness of the Glisson’s capsule
(<20 lm), it is not possible to model such a thin
structure with classical tetrahedral elements in real-
time as the model would require an extremely dense
mesh. Instead, modeling the capsule with two-dimen-
sional elements that abstract from the thickness in the
third dimension seems to be a natural choice. In the
elasticity theory, this functionality is usually provided
by membrane elements. To maintain simplicity of the
composite model we choose constant strain triangular
(CST) elements based on co-rotational formulation.

For each CST element c, the 9 9 9 stiffness matrix Kc

is given as

Kc ¼
Z
V

B>c DcBcdV ð4Þ

¼h
Z
A

B>c DcBcdA; ð5Þ

¼hAB>c DcBc; ð6Þ

where Bc; is the strain-displacement matrix, Dc the
material matrix, h is the thickness and A the area of the
element. In the previous Eq. (5) follows from the fact
that we assume constant thickness of the element and
Eq. (6) follows from the fact that the strain-displace-
ment matrix is constant in our case. The strain-dis-
placement matrix for the CST element can be
expressed as:

Bc ¼
1

2A

~y23
~0 ~y31

~0 ~y12
~0

~0 ~x32 ~0 ~x13 ~0 ~x21

~x32 ~y23 ~x13 ~y31 ~x21 ~y12

2
64

3
75

ð7Þ

The values xij ¼ xi � xj and yij ¼ yi � yj are computed
from the x or y coordinates of the nodes i, j of the
triangular element. The reader can refer to the
respective literature11 for more thorough description.

Complete Liver Model
The complete model of the liver takes into account all
three components described above by combining the
contributions of parenchyma, vessels and capsule. The
coupling between the vessel elements (beams) and
parenchyma elements (tetrahedra) is described in detail
in.26 Briefly, each vessel node (having 6 degrees of
freedom to account for torques in vessels) is coupled
with a tetrahedra in which it is located via barycentric
coordinates. This coupling remains constant during the
simulation and can be described via matrix Jv!p which

is the Jacobian matrix of the coupling.
The coupling between the parenchyma and capsule

is straightforward, since the triangles used as the do-
main for the CST formulations are the surface faces of
the volume mesh. Therefore, for a given triangle with
vertices v1, v2 and v3, the corresponding tetrahedron
(sharing the same three vertices) is found and a 9 9 12
permutation matrix Pc!p mapping the triangle vertices

to tetrahedra vertices is computed.
Without loss of generality, let us suppose a tetra-

hedral element e which receives a mechanical contri-
bution from both the capsule and vessels. The
composite element stiffness matrix Ke is then computed
as
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Ke ¼ Kp þ J>v!pKvJv!p þ P>c!pKcPc!p: ð8Þ

The beam and triangular elements together with the
areas of the parenchyma having different Young’s
modulus introduce heterogeneity and anisotropy into
the simulation of the organ. Therefore, either direct
solver or preconditioners must be used to solve the
system in each step of the simulation.

Numerical Solution
The dynamic system given by Eq. (1) is integrated
using implicit backward Euler scheme presented in.3

The scheme requires to compute the inversion of the
system matrix in each time step. Since the system
matrix consists of the contributions from the vessels
and capsule which introduce heterogeneity and aniso-
tropy, the convergence of iterative solvers such as the
conjugate gradient (CG) is jeopardized.34 In our case,
due to the heterogeneity and anisotropy introduced by
the vessels, the CG requires an important number of
iteration or might not converge. Therefore, the system
matrix is factorized using the LDL decomposition. In
the future, we will use the technique based on the
asynchronous preconditioning7 in order to improve the
computational time.

Image-Guided Non-rigid Registration

To register the pre-operative liver model onto the
intra-operative laparoscopic video stream, we rely on
(1) a reconstruction of a three-dimensional point cloud
from the stereo-endoscopic camera view, and (2) a
multi-step registration process. The main requirements
and constraints of this problem can be summarized as
follows. First, the stereo-endoscope is capable of cap-
turing only a part of the liver (about 30 to 40% of the
whole surface), and we must rely on this partial
information to drive the registration process. Second,
the liver sustains significant deformations due to the
inflation of the abdomen with CO2, and the reference
frames from the pre-operative CT scan is completely
different from the reference frame of the stereoscopic

image, leading to a very poorly initialized registration
problem. Third, the liver is continuously moving,
under the influence of both breathing and cardiac
motions. The following sections describe the approach
we propose to address these different points.

Atlas-based Transfer of Anatomical Features

In order to improve the accuracy and robustness of
the registration process, we augment the pre-operative
liver model with anatomical features. The first step
consists of labeling corresponding areas on both the
pre-operative mesh and the point cloud to ensure that
this point cloud, corresponding to the visible part of
the liver, is accurately matched on the pre-operative
surface mesh. Three anatomical features are used as
landmarks: the umbilical notch where the right margin
of falciform ligament is attached to the liver, the
anterior margin of the liver (see Fig. 3), and the vena
cava which is tightly connected to the posterior part of
the liver. The second step consists in assigning different
roles to these landmarks. Some of them are used to
drive the initial registration, others are used as
boundary conditions during the real-time registration
process. The anterior margin and umbilical notch are
used in the registration process, and the vena cava as a
boundary condition of the biomechanical liver model.

Since the anterior margin of the liver can be easily
identified in most human liver, it is automatically
detected as follows: the edges separating two triangles
with sufficiently different directions of normals are
selected as seeds. Then, the ridge line is extended from
the seed edges; if no extension is found, the seeds are
removed. The definition of the two thresholds, one for
the seeds and one for the extensions, is based on
statistics on the normals for the whole mesh. Itera-
tively, the ridge line is reconstructed.

Depending on the image modality, the two other
anatomical features are either difficult or simply
impossible to segment from the pre-operative data. To
solve this issue, these features are transferred onto the
three dimensional mesh via a statistical atlas hand-built

FIGURE 3. Anatomical landmarks. On the laparoscopic image: the liver surface (in green), the anterior margin (in orange) and the
umbilical notch (in yellow).
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by experts. Details regarding the construction of the
atlas are described in.29 For each liver used to create
the atlas the segmentation and the landmarks labelling
require anatomical expertise and can take several
hours. A set of pre-operative medical images of the
organ of interest is segmented manually by an expert to
obtain segmented map of the organ and anatomical
landmarks. From each segmented maps, surface me-
shes, one for the whole surface and one for each
structure of interest, are generated using the method
described in ‘‘Reconstruction of the Model Geome-
try’’ section. First, a number of points is sampled onto
the surface of each mesh. The same number of points
and numbering is used for each point cloud corre-
sponding to the same structure. Then, all the point
clouds are aligned in a common reference frame using
a generalized Procrustes analysis (GPA).13 The GPA
determines for each point cloud the similarity trans-
formation SIMi providing an optimal alignments of all
the models in the database:

SIMi :Si ! C SIMi ¼ siRiTi; ð9Þ

Pi 7!P0i; ð10Þ

whereSi is the space of the ith segmented model, C the

common reference frame, Pi the initial point cloud, P0i
the aligned point cloud, Ti the translation which align
the center of mass of the ith point cloud and the origin,
Ri a rotation, and si a scale factor. Both Ri and si are

computed iteratively using the matrix Pi
�P
>
, where �P is

the mean shape recomputed at each iteration. We have:

SVDðPi
�P
>Þ ¼ UiRiV

>
i ; ð11Þ

Ri ¼ UiV
>
i ; ð12Þ

si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðPi

�P
>Þ

njjPijjFjj�P
>jjF

vuut ; ð13Þ

where SVD(.) denotes the singular value decomposi-
tion, tr(.) the trace of a matrix, and jj:jjF the Frobenius

norm of a matrix. Then, the principal component
analysis (PCA) is performed on each structure of
interest to compute the principal modes of deforma-
tion across the database. We keep only the most sig-
nificant modes, i.e. the modes responsible for more
than 90% of deformations. Assuming the Gaussian
distribution of the modes, we can determine the mean
position and the standard deviation associated with
each structure. The atlas is finally registered on a three-
dimensional patient-specific liver model using the
physically-based registration method described in
‘‘Elastic Registration’’ section.

Intra-operative 3D Reconstruction

The estimation of the three-dimensional shape of
the liver from intra-operative images can be performed
in different ways depending on the image modality.19

In this work, we make no assumption about specific
acquisition technologies available in the operating
room (such as intra-operative MR or CT scanner, or
depth camera), but we rely only on images provided by
the stereoscopic camera for the estimation of the three-
dimensional shape of the liver. Although this tech-
nology is not currently widespread in operating the-
aters its usage is rapidly growing. The only
requirement is that the camera be calibrated at the
beginning of the intervention which takes only few
seconds.

Let us assume the stereoscopic pair of images Il

and Ir. We extract from this stereo pair points of
interest (i.e., features) that are sufficiently reliable for
the 3D reconstruction. Several detectors have been
reported in the literature (e.g.,12), we employ the
Speeded-up Robust Features (SURF); our choice is
motivated by its particular suitability for robotic-gui-
ded endoscopy applications.10

When using this detector on the image pair ðIl;IrÞ
with an appropriate threshold, we obtain two sets of
features El ¼ ðx1l ; . . . ; xnlÞ and Er ¼ ðx1r ; . . . ; xmr

Þ
where it is necessary to estimate for each feature
xi ¼ ðui; viÞ the 3D point Xi ¼ ðUi;Vi;WiÞ. This is done
by establishing a correspondence between image points
xl !xr, using a descriptor-based matching method.21

Once a correspondence is found, a sparse set of m 3D
points, denoted T ¼ ðX1; . . . ;XmÞ, is reconstructed
using triangulation algorithm17 and a surface mesh S is
interpolated using Moving Least-Square surface
approximation.14,16

The point cloud has to be labelled with the
anatomical landmarks described in ‘‘Atlas-Based
Transfer of Anatomical Features’’ section. An opera-
tor selects (e.g., by clicking) on one of the stereoscopic
images some points on the border of the three regions
of interest, the umbilical notch, the anterior margin,
and the liver surface, to form closed areas. This
selection takes only few seconds. Once the targeted
regions are selected, we build for each of them a three-
dimensional point cloud using the method described
above. These point clouds are labelled according to
their corresponding regions as illustrated in Fig. 3a.

Elastic Registration

At the beginning of the registration process, the
biomechanical model (source) is in its pre-operative
configuration and needs to be deformed to match the
intra-operative point cloud (target). This match is only
partial since the target represents only about 30% to
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40% of the total surface of the liver. The biomechanical
model described in ‘‘Patient-Specific Composite Model’’
section is used to simulate the behaviour of the tissue
while the registration constraints imposed to the de-
formable object are modelled with penalty forces fext.
Theses penalty forces can be seen as ameanof imposing a
displacementwith a tolerance. Therefore, the result of the
registration does not depend on the absolute values of the
stress parameters but rather on their relative ratio, as
already shown in,42 and on the relative intensity of
external forces vs. internal forces. The goal of the regis-
tration process is to minimize the energy function asso-
ciate to theses forces. At each time step, fext is recomputed
as follows.

First, we define a set of corresponding pairs fpi; qig
where pi is a point of the point cloud and qi is a point
of the biomechanical model surface. To compute these
pairs, we project each point of the point cloud with
label j onto its closest neighbour on the part of the
surface mesh with the same label using the method
described in.28 Then, for each pair we define an
external force:

fexti ¼ kð1� arctanðsjjpiqi�!jjÞÞ piqi
�!
jjpiqi�!jj ð14Þ

where k is a scalar stiffness coefficient [in (N/m)] and

the term 1� arctanðsjjpiqi�!jjÞ is an asymptotic penalty
function of the distance [in (m)] which includes also the
scale factor s. The stiffness coefficient k is defined in
three different ways depending on the type of the
corresponding feature: thus, k is one of kun, kam and
ksurf where the identifiers stand for the umbilical notch,
anterior margin and surface, respectively. At the
beginning of the registration, the reliability of match-
ing associated to each type of feature is reflected in the
corresponding values of the stiffness coefficients:
kun>kam>ksurf. As the registration proceeds, kun
remains constant, whereas both kam and ksurf evolve in
order to prevent the energy minimization process from
falling into a local minimum. Therefore, during the
registration, it is detected when the mechanical system
has reached a plateau, and the stiffness coefficients kj
for j 2 fam; surfg are updated as

kjmin
þ
2ðkjmax

� kjmin
ÞðnrjÞ

2

ðnrjÞ
2þ 1

for n<rj and kjmax
for n� rj

ð15Þ

where n � 0 is the plateau index (which is incremented
each time a new plateau is detected) and rj>0 an

integer which controls the increase rate of kj. The

registration is stopped as soon as n ¼ maxðrjÞ þ 1.

After attaining convergence, the temporal registra-
tion step is performed. The temporal registration

permits to register the biomechanical model at each
frame acquired from the endoscopic camera, following
the motion of the liver (which moves due to the heart
beating and/or respiratory motion). As a good initial-
ization of the three dimensional model configuration is
available, the point cloud is down-sampled and the
labels (umbilical notch and anterior margin) are no
longer used. The motion of the liver is captured using
an optical flow algorithm5 that tracks image-points
from the liver surface based on a brightness consis-
tency constraint 4. The combination of optical flow
and SURF features has proven to be robust to track
heart motion in laparoscopic images, where real-time is
needed10 and was successfully translated to liver mo-
tion estimation.15 Indeed, at this stage, a real-time
simulation is mandatory since video frames are
acquired at least at 30 Hz and the registration w.r.t.
the n-th frame must to be performed before the frame
nþ 1 is available. Furthermore, if the boundary con-
ditions were not used during the initial registration
because of the rigid transformation between the pre
and intra-operative liver model, we activate them
during the temporal registration. However, some of the
liver boundary conditions are mobile, such as the
ligaments that attach the liver to the diaphragm. For
this reason, we only use the vena cava and the entrance
points of the liver vascular tree as boundary conditions
to allow the model to move with the diaphragm.

RESULTS

Throughout the various stages of the pipeline, dif-
ferent sources of errors may degrade the quality of the
final result. First, the segmentation of the liver and its
vascular network is operator-dependant and sensitive
to the quality of the medical images. The error arising
from the segmentation is not easy to evaluate but a
lower bound is given by the voxel size which in our
case is 0.85 mm 9 0.85 mm 9 0.70 mm. Second, the
quality of the three-dimensional mesh generated from
the segmented maps depends notably on the number of
its vertices. We generated a high-quality mesh and
computed the Hausdorff distance between this mesh
and the mesh that we use for computation. We found a
mean Hausdorff distance of 0.2 mm and a maximal
error of 4.9 mm. Third, the point cloud quality is
subject to errors arising from the calibration of the
camera, the image quality (sharpness, texture...) and
from the triangulation method (features detection,
matching...). As we do not have any ground truth for
the laparoscopic data, it is really difficult to estimate
the error in millimetres between the point cloud and
the real position of the organ. Fourth, the use of an
atlas to transfer some landmarks onto the three
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dimensional model may lead to some error in their
location. We tried to evaluate this error and its influ-
ence in ‘‘Transfer of Boundary Condition’’ sec-
tion. Finally, we evaluate the quality of the registration
using our complete biomechanical model of the liver in
‘‘Patient-Specific Modeling and Registration’’ section.

Transfer of Boundary Condition

In this section we assess the quality of the boundary
condition transfer and its influence on the biome-
chanical model behaviour. The atlas was created using
ten liver models and their respective anatomical fea-
tures obtained from segmented abdominal CT scans.
To ensure the quality of the atlas, we evaluated the
standard deviation of the umbilical notch and vena
cava positions over the samples; we obtained

run ¼11.12 mm and rvc ¼16.56 mm respectively. The
average variability represents less than 9.7% of the size
of the organ showing a strong consistency among the
feature positions. We registered the atlas onto several
livers: ten from the atlas following the left-one-out
principle and two livers not included in the atlas
(sample #11 and #12). The registration errors are
presented in Fig. 5.

The results show that the surface registration is very
accurate and all the boundary condition location er-
rors are under 10 mm except for one sample. This
value is less than the standard deviations in the atlas.

To evaluate the influence of errors in boundary
condition location, we altered the position of the
boundary conditions compared to the reference: the
falciform ligament attached to the umbilical notch and
the vena cava. We used a liver segmented in the supine

FIGURE 4. A SURF feature being tracked over time (600 frames) using LK optical flow. (top) tracking performed in both a forward
and a backward time direction. Graph shows X and Y coordinates as a function of video frames. (middle) The selected feature
located in the endoscopic images at selected frames. (bottom) 50 � 50 pixel window centred around the feature location at every
100 frames.
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position to set up a simulation where gravity is re-
oriented in order to simulate a deformation of the
organ in the flank position. This simulation was per-
formed using both the reference boundary conditions
location and the altered ones. Then, we compared the
final shape of the liver simulated with altered boundary
condition to the final shape of the reference liver. The
results are presented in Fig. 6a. They show that small
displacement (below 3 mm) lead to an error below
1 mm, however, the relation between the displacement
and the error seems to be quadratic. Nevertheless, a
deeper analysis is needed to confirm this tendency. The
same kind of experiments was conducted to evaluate
the influence of errors in the boundary condition
stiffness, the results are shown in Fig. 6b. The values of
the reference stiffness were set according to the liga-
ment and vena cava Young’s modulus found in the
literature39 (20 MPa for both) and their geometry. The
results show that the influence of the stiffness is very
small when compared to the influence of the location
of the boundary conditions. This can be justified since
the ratio between the liver internal forces and the

external forces imposed by the boundary condition is
very low. Therefore using twice or half the reference
stiffness does not change this ratio significantly.

Patient-Specific Modeling and Registration

The aim of the method is to estimate the location of
internal structures of the organ which undergoes
important intra-operative deformations when com-
pared to its initial pre-operative configuration. Vali-
dating the registration in this context is very
challenging, since the optimal ground truth would be a
3D reconstruction of the organ at the intra-operative
stage, which requires the intra-operative CT or MR
scan of the patient. Access to these techniques is very
limited and almost impossible to use on human sub-
jects. Consequently, we decompose the validation
process in two parts: first, we present quantitative re-
sults on in silico data (we decided not to use a phantom
for an intermediate validation because of the low
complexity of such model and non-realistic conditions
for surface patch reconstruction). Second, we report
qualitative results using real endoscopic data.

Patient-Specific Modeling

A heterogeneous anisotropic biomechanical model
was generated from the patient image data using the
method described in ‘‘Patient-specific Composite
Model of Human Liver’’ section. In order to obtain the
ground truth for the registration and to measure the
influence of the biomechanical model used for the
deformation, we applied a pressure on the model sur-
face to simulate the effect of the pneumoperitoneum.
We used two parameter sets; one representing a heal-
thy liver (parameter values are set as reported in40):

Eparenchyma ¼ 3.5 kPa, mparenchyma ¼ 0.45,

Evessels ¼ 620 kPa, mvessels ¼ 0.4,

Ecapsule ¼ 8000 kPa, mcapsule ¼ 0.45,

(a) (b)

FIGURE 6. Sensitivity study. Mean Hausdorff distance between the final configurations of a reference model and a biomechanical
model with altered boundary conditions position (a) and stiffness (b).

FIGURE 5. Mean Hausdorff distances between the seg-
mented liver surface and the registered mean shape (in red)
between the manually segmented umbilical notch and the
umbilical notch transferred from the atlas (in green) and
between the manually segmented vena cava and the vena
cava transferred from the atlas (in blue).
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and the other a cirrhotic liver: Eparenchyma= 30 kPa. All
the other parameters are identical for both cases. We
also deformed two homogeneous models of the par-
enchyma using the Young’s modulus and the Poisson’s
ratio of the healthy and cirrhotic liver. Then, we
measured the distance between the final states obtained
after deformation. We compared the healthy liver to
the cirrhotic one and the homogeneous models to their
heterogeneous counterparts.

Results presented in Fig. 7 show that the vessels and
the capsule influence the deformations, particularly in
the case of the healthy liver where the mean Target
Registration Error (TRE) between the final configu-
ration of the heterogeneous and homogeneous model is
10.1 mm. This error represent 43% of the homoge-
neous healthy liver deformation. The same analysis
performed for the cirrhotic liver quantifies the influ-
ence of the vessels being 18% w.r.t. the entire defor-
mation.

Registration
As only a part of the liver surface is visible to the
endoscopic camera during a surgical intervention, we
extracted a portion of the deformed surface from the
deformed configuration, obtained with the healthy and
cirrhotic heterogeneous liver model. We kept two de-
formed configurations having an area ranging from
50% to 10% of the whole surface and evaluated the
registration robustness w.r.t. the amount of visible
surface.

The undeformed healthy and cirrhotic biomechani-
cal models were subsequently registered onto these
partial surfaces. Then, we compared the shape of the
models after registration with the deformed configu-
rations of the whole meshes. We used a tetrahedral

mesh composed of 2193 tetrahedra and 547 vertices.
The Rayleigh mass and the Rayleigh damping coeffi-
cients were set to 0.1. For all registrations we adjusted
the parameters according to the Young’s modulus
value. In this manner, we ensured that the ratio
between the external and the internal forces remains
the same independently of the actual value of the

Young’s modulus. We use a factor 10�3 for kun, kammax
,

and ksurfmax
, a factor 10�4 for kammin

and we set
ksurfmin

¼ 0, ram ¼ 2, and rsurf ¼ 10. The computational
time needed for the initial registration remains below
30 s which is acceptable for the given scenario.

We computed the TRE on the mesh surface and in
the mesh volume to measure the accuracy of the reg-
istration. The results are presented in Fig. 8. We
obtained a mean error below 3 mm in all cases except
when the visible surface represent less than 20% of the
liver surface, which would correspond to a very limited
surface reconstruction.

We also tested the influence of our heterogeneous
liver model vs. a simplified homogeneous liver
model on the registration. In the case of a cirrhotic
liver the registrations of the simplified model leads
to similar TRE showing that the vessels have a low
influence on the model. However, in the case of a
healthy liver the volume TRE increase when the
registration is performed with a simplified biome-
chanical model.

Additionally, we studied the influence of the point
cloud size on the registration results. Provided that the
density of points remains above 0.7 points per square
centimetre, the mean TRE between the registration
result using the complete point cloud (3.9 points per

FIGURE 7. Surface and volume TRE between deformed
configurations. (a) heterogeneous liver model: healthy vs.
cirrhotic, (b) healthy liver: homogeneous vs. heterogeneous
model, (c) cirrhotic liver: homogeneous vs. heterogeneous
model.

FIGURE 8. Surface error distributions w.r.t. the percentage
of visible surface. The boxes with solid lines represent the
results for the healthy liver and the dashed boxes correspond
to the cirrhotic liver (the bar-and-whisker graph shows the
mean, upper and lower quartiles, and the maximal and mini-
mal error). For the partial surface representing 10% of the liver
surface we also measured the errors on a sub-part corre-
sponding only to the volume under the visible surface from
the camera viewpoint (10p).

PLANTEFÈVE et al.150



square centimetre) and the down sampled one does not
exceed 1 mm.

Moreover, as the umbilical notch position is trans-
ferred to the patient liver via an atlas, we conducted a
preliminary study to evaluate the influence of the
umbilical notch position on the registration results. We
moved the umbilical notch around its real position on
the liver surface. The TRE between the registered
source mesh using the reference umbilical notch position
vs. the altered position highly depends on the displace-
ment direction. The worst scenarios occurs when the
umbilical notch is displaced along the anterior margin
towards the right lobe. In this case the mean TRE is
increased by 3.5 mm for a position shift of 17.5 mm
(mean hausdorf distance of 4.8 mm). However, for all
tested scenarios, the TRE remains below 2 mm as long as
the displacement of the ligament does not exceed 10 mm
(mean hausdorf distance of 1.0 mm). Nevertheless,
additional experiments would be necessary to conduct a
proper analysis of the impact of position error of the
umbilical notch on the registration result.

Finally, we tested our method on in-vivo human
data using two sets of patient images. As in-vivo a
direct quantitative evaluation is not possible, we per-
form only a visual qualitative assessment presented in
Fig. 9. Nonetheless, even in this case, it is challeng-
ing to provide comprehensible visualization of the

registration results. However, the point cloud was
accurately matched to its corresponding part onto the
three dimensional mesh and the mean Hausdorff dis-
tance between the surface mesh and the point cloud
was below 1.1 mm.

CONCLUSION

We presented a complete pipeline to register a pre-
operative patient-specific three-dimensional model of
the liver to sparse and incomplete intra-operative data
extracted from stereo-endoscopic images. This pipeline
includes a semi-automatic segmentation of the liver
and its vascular system, an automatic generation of the
biomechanical model from the segmented maps, a real-
time simulation of the complete liver model. It also
involves the automatic adaptation of boundary con-
ditions using a statistical atlas, and an ICP-based non-
rigid registration process.

We performed a quantitative assessment of the
registration accuracy using the synthetic data for
which the ground truth is known. The evaluation was
done for two different sets of parameters correspond-
ing to healthy and cirrhotic liver. In the case of the
healthy liver, the influence of the vascular network on
the overall deformable behavior was more significant

FIGURE 9. Non-rigid registration between intra-operative and pre-operative data using in-vivo human data. The overlay of the
liver surface and the vascular network permits to guide surgeon during the operation.
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than in the case of the cirrhotic liver which is much
stiffer. In both cases, the elastic registration was cap-
able of providing a good estimation of the actual
position of the internal structures from the surface
data: we showed that only 30% of the organ surface
captured by the camera is sufficient to reduce the mean
TRE measured both on the surface and in the volume
below 3 mm. This value is smaller than the current
laparoscopic procedure safety margins which are usu-
ally between 10 and 25 mm around the possible loca-
tion of a tumor. We have also performed a qualitative
assessment using real patient data. Both the evaluation
using the synthetic and the real data demonstrated that
using a biomechanical model results in good accuracy
and robustness of the method.

We are currently developing a prototype of our
system that can be deployed in the operating room.
This requires to further automate the pipeline de-
scribed in this work, and to reduce the number of
parameters involved in the process. We are also
working on a more thorough validation protocol based
on an intra-operative CT scan in which the position of
the camera could be determined as well as the location
of the tumor(s). This will allow for a direct comparison
of the estimated and actual target locations.

In the future, we plan to improve the definitions of
the boundary conditions for the temporal registration
phase which is an important and challenging problem.
We will also try to design an in vivo validation setup to
obtain quantitative errors on real data. In addition, we
plan to improve the visualization of the vascular net-
work superimposed on the laparoscopic view to ensure
better depth perception.

ELECTRONIC SUPPLEMENTARY MATERIAL

The online version of this article (doi:10.1007/s
10439-015-1419-z) contains supplementary material,
which is available to authorized users.
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