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Abstract—Arterial tissue is commonly assumed to be incom-
pressible. While this assumption is convenient for both
experimentalists and theorists, the compressibility of arterial
tissue has not been rigorously investigated. In the current
study we present an experimental-computational methodol-
ogy to determine the compressibility of aortic tissue and we
demonstrate that specimens excised from an ovine descend-
ing aorta are significantly compressible. Specimens are
stretched in the radial direction in order to fully characterise
the mechanical behaviour of the tissue ground matrix.
Additionally biaxial testing is performed to fully characterise
the anisotropic contribution of reinforcing fibres. Due to the
complexity of the experimental tests, which entail non-
uniform finite deformation of a non-linear anisotropic
material, it is necessary to implement an inverse finite
element analysis scheme to characterise the mechanical
behaviour of the arterial tissue. Results reveal that ovine
aortic tissue is highly compressible; an effective Poisson’s
ratio of 0.44 is determined for the ground matrix component
of the tissue. It is also demonstrated that correct character-
isation of material compressibility has important implica-
tions for the calibration of anisotropic fibre properties using
biaxial tests. Finally it is demonstrated that correct treatment
of material compressibility has significant implications for
the accurate prediction of the stress state in an artery under
in vivo type loading.

Keywords—Compressibility, Anisotropy, Hyperelasticity,

Arterial tissue, Mechanical properties.

INTRODUCTION

Biological soft tissues are commonly assumed to be
incompressible, such that material volume is conserved
under all loading configurations and only isochoric

deformation occurs.17 This assumption has important
consequences for the interpretation of experimental
data and for the formulation of constitutive laws.
Conservation of volume imposes the kinematic con-
straint that the determinant of the deformation gradi-
ent F must always equal unity. This lemma simplifies
analysis of mechanical tests on tissues. For instance in
interpreting biaxial stretching in the 1- and 2-directions
the out-of-plane component of the deformation gra-
dient of an incompressible material is trivially given as
F33 ¼ 1=ðF11F22Þ. The deformation gradient can then
be used to calculate the Cauchy stress from the
experimentally measured nominal/first Piola–Kirch-
hoff stress.

The incompressibility assumption also simplifies
theoretical analysis of soft tissue, allowing for the
formulation of constitutive laws based only on iso-
choric invariants and reducing the required number of
material parameters.21,32 Several soft tissues exhibit
anisotropy due to the preferential alignment of colla-
gen or elastin fibres (e.g. arteries,10 cartilage,20 annulus
fibrosis,11 tendons43). A common approach to the
modelling of fibre reinforced anisotropic soft tissue is
to assume incompressibility, and hence formulate the
contributions of the isotropic matrix and fibres in
terms of isochoric invariants.18,19,21,32 Enforcement of
material incompressibility (e.g. via a penalty method or
a Lagrange multiplier used in conjunction with mixed/
hybrid finite element formulations) is required in finite
element (FE) implementations of such laws.

Despite the widespread assumption of material
incompressibility, supporting experimental evidence
has not yet been established for many types of soft
tissue. In fact, several experimental studies suggest that
cartilage is compressible.29,36 Based on such experi-
mental observations several authors have treated soft
tissue as compressible, but incorrectly used isochoric
based hyperelastic models. A recent study by Nolan
et al.28 highlights the significant errors and unphysical
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results that emerge when perfect material incompress-
ibility is not enforced in an anisotropic hyperelastic
formulation that is constructed using isochoric
invariants.

Arterial tissue is one of the most widely studied soft
tissues, both experimentally and computationally.
Computational models of arteries generally assume
incompressibility, with the experimental study of
Carew et al.4 frequently cited as support for this
assumption. However, Carew et al. in fact report vol-
ume changes of arterial tissue due to lumen inflation
and conclude that the material is slightly compressible,
but may be regarded as incompressible at small strains.
Other studies (performed three to six decades
ago) suggest that arterial tissue may be considered to
be slightly compressible.6,24,41 Recent reviews of the
literature8,46 have critiqued techniques previously used
to measure arterial compressibility and concluded that
a contemporary study of the topic is warranted.

The current study presents a methodology to assess
the compressibility of arterial tissue and parse the
isotropic ground matrix and anisotropic fibre contri-
butions. Cylindrical discs of ovine arterial tissue are
stretched in tension in the radial material axis. The
volume of the specimen is measured before and after
stretch using an imaging technique. Additionally,
confined compression experiments are performed in
order to demonstrate material compressibility under a
compressive loading mode. Next, a calibration of
material constants for a compressible anisotropic
hyperelastic constitutive law is performed using biaxial
experimental test data. Finally, the influence of com-
pressibilty on predictions of arterial compliance and
wall stress is examined through the FE simulation of
artery inflation under an increasing lumen pressure.

MATERIALS AND METHODS

Compressible Anisotropic Constitutive Model

The incompressible anisotropic hyperelastic consti-
tutive model for collagen fibre reinforced soft tissues
by Holzapfel et al.19 (HGO model) is commonly used
to simulate arterial tissue. In a recent paper Nolan
et al.28 demonstrate that significant errors and
unphysical behaviour are computed if the incom-
pressibility requirement is not correctly enforced for
this formulation. To overcome this limitation Nolan
et al.28 present a modified anisotropic (MA) model, a
modification of the HGO model for simulation of
compressible soft tissue. Based on the HGO model, the
strain energy potential is additively decomposed into
isotropic and anisotropic parts reflecting the anatom-
ical structure of soft tissues (W ¼ Wiso þWaniso). The

isotropic term is a neo–Hookean material representa-
tive of the ground matrix of the tissue, while the ani-
sotropic term represents the reinforcing collagen fibres
embedded in the ground matrix. Importantly, in the
MA model total anisotropic invariants (Ii), rather than

isochoric anisotropic invariants (�Ii), are used to de-
scribe fibre stretching so that both isochoric and vol-
umetric deformations contribute to the anisotropic
stress tensor. The anisotropic strain energy is given as

Waniso ¼ k1
2k2

P
i¼4;6 exp ½k2ðIi � 1Þ2� � 1

n o
. The total

Cauchy stress for the MA model is,

r ¼ jðJ� 1ÞIþ l
J5=3

B� 1
3
I1I

� �

þ 2k1
J

P
i¼4;6ðIi � 1Þ exp k2ðIi � 1Þ2

h i
ðai � aiÞ;

ð1Þ

where the first term on the right hand side represents the
hydrostatic stress contribution due to volumetric
deformation of the compressible ground matrix, the
second term represents the deviatoric stress contribution
due to isochoric deformation of the ground matrix, the
third term represents the total (both hydrostatic and
deviatoric) anisotropic fibre stress contribution. J is the

determinant of the deformation gradient F, B ¼ FFT is

the left Cauchy–Green deformation tensor andC ¼ FTF

is the right Cauchy–Green deformation tensor. The first
invariant I1 is the trace of B, I is the identity tensor, Ii
(i ¼ 4; 6 when two fibre families are present) is the ani-
sotropic invariant defined as Ii ¼ a0i � ðCa0iÞwhere a0i is
a unit vector indicating the direction of fibre reinforce-
ment and ai is the same vector in the deformed config-
uration given by ai ¼ Fa0i, k1 and k2 are material
constants. The operator � is the dyadic product of
vectors and results in a second order tensor.

If we assume that there are two families (i ¼ 4; 6) of
symmetric reinforcing fibres that are confined to the h� z
plane19 then the unit vector a0i may be defined be a single
parameter, an angle b (see Fig. 2b) where a04 ¼ cosðbÞ½
sinðbÞ0�T and a06 ¼ cosðbÞ � sinðbÞ 0½ �T In this case
five material constants are required for the complete cali-
bration of Eq. (1): two isotropic constants l and j, and
three anisotropic constants k1, k2 and the fibre angle b.

Compressibility of Arterial Tissue

Tissue Preparation

The descending aorta is excised from six sheep
sourced from a local abattoir (Brady’s, Athenry,
Ireland). The vessels are stored at 280 �C until
required, at which point they are defrosted in phos-
phate buffer solution at 3 �C. Any excess connective
tissue is carefully removed from the surface of the
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tunica externa with a scissors and scalpel. The vessel
is cut along its axis as shown in Fig. 1a and opened
into a planar sheet. A circular punch with a diameter
of 10 mm is used to cut out cylindrical disc speci-

mens from this planar sheet for testing. The thick-
ness of each specimen is measured with a
micrometer. A total of 13 specimens are excised and
tested.

FIGURE 1. (a) Schematic outlining the specimen extraction. Tubular sections of arterial tissue from the descending aorta are cut
along their axis to form planar sheets. A circular punch is used to cut cylindrical specimens from the planar sheet. (b) Schematic
and images of the experiments performed to determine the compressibility of arterial tissue. Discs of arterial tissue are secured
between two platens and an initial image is take to determine Vi the initial volume of the disc. The artery is subsequently stretched
and a further image is taken to determine the stretched volume Vs along with the force measured by the load-cell at this stretch. (c)
Flowchart outlining the inverse FE method used to determine the isotropic (ground matrix) material properties of arterial tissue.
Assuming a neo–Hookean hyperelastic material, one may iteratively solve for the bulk modulus j and shear modulus l of the
ground matrix. An axi-symmetric FE simulation of the above experiment is performed and the resultant force and volume change
are computed and compared to the experimentally measured values. The values of j and l are iterated upon until a satisfactory
match between the computational and experimental data is achieved. (d) Schematic outlining a confined compression experiment
on cylindrical specimens of arterial tissue (identical to those in a)). A load is applied using a cylindrical indenter, specimens are not
permitted to deform in the lateral direction. Confined compression results are used to validate l and j (determined in Fig. 1c).
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Tensile Tests

Specimens are affixed between two platens using a
cyanoacrylate adhesive (Loctite, Dusseldorf, Germany)
(Fig. 1b). This assembly is then installed into a uniaxial
mechanical testing machine (Zwick Z2.5, Ulm, Ger-
many). The crosshead position of the machine is ad-
justed to ensure that the specimens are in a load free
configuration at the start of the test. The specimens are
then subjected to a tensile nominal stretch ratio
knom ¼ 1:28 (where knom ¼ ðb� aÞ=ðb0 � a0Þ, see
Fig. 1b) and then returned to their original state. This
procedure is performed for two cycles. Force is recorded
throughout the experiment and identical force–dis-
placement curves for the two cycles indicate that the
specimen has not been damaged, nor has it detached
from the platen during the test. A camera system (1.31
MPx, 25 fps; uEye, IDS, Obersulm, Germany; vi-
deoXtens software, Zwick, Ulm, Germany) is set up to
record the in-plane deformation of the cylindrical
specimen as it is stretched. Images of the specimen are
analysed in the initial state, and when fully stretched.
These images are then used to compute volume change
of the specimen during the test.

Volume Change Measurement

Images of the geometric profile of specimens are
outlined using ImageJ33 image processing software.
The profiles are exported as a set of coordinates for 40
points on the free surface of the specimen. The radius
of the specimen y(x) is calculated at each of these 40
points (see Fig. 1b). To compute the specimen’s vol-
ume the trapezoidal rule is used to evaluate the fol-
lowing integral:

V ¼ p
Z b

a

yðxÞ2 dx; ð2Þ

where a is the x-position of the fixed platen and b is
the x-position of the moving platen. Using this
method, the initial specimen volume Vi and deformed
specimen volume Vs are calculated. A second quasi-
3D methodology for estimation of the volume
change using two orthogonal camera projections of
the deformed samples is presented in Appendix C.
No statistically significant difference is calculated
between the two methodologies of computing the
sample volume change. The ratio of the volume
change is given by DV=Vi ¼ ðVs � ViÞ=Vi. If the tis-
sue were truly incompressible then no volume change
would be observed during the test. On the other
hand, an observed volume change means that the
material is compressible.

Calibration of Isotropic Ground Matrix

To further quantify the compressibility of arterial
tissue, the above experiments are simulated using FE
analysis. The MA model for compressible fibre rein-
forced soft tissue is presented in ‘‘Compressible Ani-
sotropic Constitutive Model’’ section. It is generally
assumed that fibres do not contribute to stress in
compression (i.e. if Ii<1 then Waniso ¼ 0). In the above
experiment, the specimen is stretched in the material’s
radial direction, causing a lateral contraction in the
h� z plane. Therefore a fibre contribution is not ex-
pected in this mode of applied loading. Rather, it is
expected that the material stress and deformation is
governed by the isotropic ground matrix, i.e. the first
two terms of the right hand side of Eq. (1), charac-
terised by the bulk modulus j and the shear modulus
l. Even though the isotropic ground matrix is de-
scribed by a hyperelastic material model, an effective
material Poisson’s ratio meff can be determined from the
calibrated values of j and l, given in Eq. (3) as

meff ¼
3j=l� 2

6j=lþ 2
: ð3Þ

Initial simulations are performed to established that
the anisotropic fibre terms do not contribute to the
material stress and deformation under the applied
loading mode. Next, an inverse FE scheme is employed
to calibrate j and l from the experimental data, as
outlined in Fig. 1c. Briefly, trial bulk and shear moduli
are set and an axisymmetric FE simulation of the
experiment is performed. From this the resultant
stretching force in the vertical direction (i.e. the force
the load cell experiences) and the percentage change in
volume are computed. The bulk and shear moduli are
iterated upon until the experimentally measured
stretching force and volume change are achieved.

All FE simulations are performed using Abaqus/
Standard (v6.13-2, DS Simulia, RI, USA). Equa-
tion (1) is implemented in Abaqus via a user-defined
Fortran subroutine (UMAT), for details of the con-
sistent tangent matrix refer to Nolan et al.28 The artery
geometry in the undeformed reference configuration is
constructed from experimental images taken before the
load application (mean specimens geometric parame-
ters for a range of tested samples, n = 10). A mesh
sensitivity study reveals that a mesh consisting of 3000
four noded axisymmetric elements provides a con-
verged solution. Mirroring the experimental set-up, the
bottom face of the cylinder is fully constrained in the r,
h and z directions while the top face of the cylinder is
displaced in the z direction to a nominal stretch of 1.28
whilst constrained in the r and h directions.
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Confined Compression Tests

To further assess the compressibility of arterial tis-
sue and validate the material parameters calculated for
the ground matrix, a series of confined compression
tests were performed on cylindrical specimens of arte-
rial tissue (n = 9). Figure 1d outlines a schematic of
the experiment. A specimen is placed into a rigid die,
thus preventing any lateral deformation. Specimens are
deformed by a cylindrical punch; axial nominal strains
of 10% are applied. The experimental confined com-
pression axial stress–strain relationship is then com-
pared to predicted theoretical response using the
compressible material properties determined from the
tension tests described in the ‘‘Calibration of Isotropic
Ground Matrix’’ section.

Biaxial Experiments

Biaxial stretch tests using cruciform specimens of
arterial tissue are performed. An inverse FE method is
used to interpret the biaxial tests and calibrate the
constitutive model in Eq. (1).

Specimen Preparation

Specimens are excised from five ovine descending
aortas using a custom made cruciform template. The
geometry of the cruciforms are outlined in Fig. 2b.
Cruciform arms are aligned with the axial and cir-
cumferential directions of the artery. Specimens have a
half width w0 ¼ 4 mm, a half length l0 ¼ 12 mm, and a

fillet radius R ¼ 3 mm. The thickness of each specimen
is measured using a micrometer. A total of six speci-
mens are tested.

Biaxial Test Protocol

Figure 2a shows a schematic of the biaxial experi-
mental set-up. The test apparatus consists of four fixed
linear actuators which may be independently con-
trolled. Each actuator houses a 100 N load cell which
in turn is connected to the jaws. The jaws themselves
have a roughened surface to prevent slippage during
testing. Specimens are loaded into jaws with the cir-
cumferential direction h aligned with the x-axis and the
axial direction z with the y-axis of the machine (see
Fig. 2b). Biaxial tests are performed on each of the
specimens (n = 6) at a clamp displacement rate of
0.025 mm/s. Specimens are tested using two different
clamp displacement ratios, ux=uy ¼ 1 and ux=uy ¼ 2.

The testing protocol is briefly outlined as follows. An
equi-biaxial stretch (ux=uy ¼ 1) to a maximum clamp

displacement of 3 mm is first performed. The clamps
are returned to their original position and a rest period
of 120 s is allowed before an non-equi-biaxial test
(ux=uy ¼ 2) is performed where umax

x ¼ 3 mm. For each

specimen, this procedure is repeated five times.

Inverse FE Analysis for Calibration of Anisotropic
Fibres

Data collected from biaxial tests together with the
shear and bulkmodulus of the matrix (determined using

FIGURE 2. (a) Schematic of the biaxial experiment. A cruciform shaped tissue specimen is held rigidly in clamps. Each clamp is
rigidly fixed to a load cell which in turn is rigidly fixed to a linear actuator controlling the displacement of the clamp. Force–
displacement data are acquired in the x and y axes. Two displacement ratios, ux=uy ¼ 1 and ux=uy ¼ 2 are examined in the current
study. (b) Schematic indicating the boundary conditions of the biaxial experiment outlined above in (a). In this setup, displace-
ments are imposed at each of the clamps (ux and uy ) and the resultant forces (Fx and Fy ) are measured. The two families of
reinforcing fibres are indicated at angles �b.
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the methodology described in the ‘‘Compressibility of
Arterial Tissue’’ section) are used to calibrate the model
parameters in the anisotropic terms of Eq. (1). The
biaxial tests yield four independent sets of force–dis-
placement data, one for each material axis for a given
clamp displacement ratio. For a complete calibration,

eachmaterial constant requires an independent data set .
In the case of the MA constitutive model three material
constantsmust be calibrated, k1; k2; b. The biaxial tests
provide sufficient data for calibration and an additional
data set for verification. The relationship between the
experimentallymeasured force and thematerial stress in a

FIGURE 3. Flowchart outlining the iterative inverse FE method used to determine material properties. An initial guess of the
material properties is made for the first iteration (n = 1). Using this set of parameters, the objective function is evaluated. This is a
two step process, firstly for each displacement ratio examined, an equivalent FE simulation is performed using the parameters
defined in KðnÞ. The net force–displacement (F–u) curves at each of the clamps are computed. Secondly, the FE computed force–
displacement curves at each clamp for each displacement ratio are compared to their experimental counterpart using a least-
squares regression method. The objective function is calculated by summing the r2 values for each of the performed regressions.
Here ntests is the number of displacement ratios examined and in this case is 2, naxes are the number of clamp force–dis-
placement data sets and in this case is also 2 (x and y clamps). The objective function is then checked for convergence by
comparing it to a tolerance set by the user. If the optimization has converged then the process is terminated. If it has not
converged, the value of f ðKðnÞÞ is returned to the optimization algorithm and a new set of material parameters Kðnþ1Þ is created. The
process is then repeated; the objective function is evaluated and checked for convergence with new material parameters being set
each time until convergence is achieved.
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biaxial test is complex. Recently Nolan and McGarry27

demonstrated that the stress distribution in a cruciform
specimen subjected to a biaxial stretch is highly non-
uniform and cannot be trivially related to the measured
force. Therefore an inverse FE scheme based on the
force–displacement experimental data must be employed
to accurately characterise the material behaviour.

Figure 3 shows a flowchart describing the inverse
FE method. This entails an optimization/minimization
problem where a trial set of parameters K are initially
created and evaluated by an objective function fðKÞ. If
fðKÞ meets the convergence criteria then the process is
terminated, if not then a new set of parameters are
created by the optimization algorithm and the process
is repeated. Specifically the set of parameters we wish
to determine are the anisotropic material constants for
the compressible MA constitutive model from Eq. (1);
i.e. K ¼ fk1; k2; bg. The objective function consists of
two parts. The first part is the FE simulation of the
biaxial tests, replicating the geometry and boundary
conditions of the experiments. Simulations are per-
formed for the displacement ratios ux=uy ¼ 1 and

ux=uy ¼ 2. For each simulation, net force–displace-

ment curves at the x and y clamps are computed. The
second part quantifies how closely the FE simulation
reproduces the experimental data. A least-squares
regression is calculated comparing the experimental
and FE force–displacement curves. The correlation

coefficient r2 is computed for the four sets of force–

displacement data. As the correlation improves r2 ! 1;

ð1� r2Þ quantifies the goodness of fit. The objective
function then is the sum of the goodness of fit mea-

sures, for the nth iteration,

fðKðnÞÞ ¼
Xnratio

1

Xnaxes

1

ð1� r2Þ; ð4Þ

where nratio are the number of unique displacement ra-
tios used in thebiaxial testing andnaxesare thenumberof
axes the material is tested in. In the current study
nratio ¼ 2 and naxes ¼ 2. Convergence is judged to have
occurredwhen the change in fðKÞ is less than a predefined
tolerance value. If convergence does not occur, a
derivative-free, Nelder–Mead simplex algorithm23,26 is

used to determine the next parameter set Kðnþ1Þ that
should be evaluated by the objective function.

RESULTS

Compressibility of Arterial Tissue and Isotropic Ground
Matrix Calibration

To assess whether any specimen damage, debond-
ing, or plasticity occurs during the test protocol

described in the ‘‘Tensile Tests’’ section, successive
loading cycles are analysed. In all cases the measured
force-deformation curves are identical for successive
cycles, indicating that only elastic deformation of the
specimens occurs, as expected, with the bond between
the specimen and the loading platens remaining fully
intact throughout (also confirmed by post-test exami-
nation). The measured force when the specimen is fully
stretched is (±SD) is 0:59� 0:21 N (n ¼ 13). Using the
method outlined in the ‘‘Volume Change Measure-
ment’’ section the specimen volume change following
load application is determined. Figure 4 shows a bar
chart of the percentage volume change in each of the
specimens tested (n = 13); the mean percentage vol-
ume change (±SD) is 9:31� 3:19%. Note that a vol-
ume change is determined in all cases, demonstrating
that the assumption of material incompressibility is not
appropriate for arterial tissue.

Finite element simulations confirm that fibres
shorten under the applied mode of loading, so that
experimental data can provide an independent cali-
bration of the isotropic matrix parameters j and l. An
inverse FE study is performed to determine the
parameter values that result in the experimentally
observed percentage volume change of 9.31% for an
applied force of 0.59 N. Results are shown in Table 1.

FIGURE 4. Barchart indicating the percentage volume
change measured in each of the specimens tested. The mean
value for the volume change (6SD) is 9:31 � 3:19%. All spec-
imens exhibit volume change and hence should be regarded
as compressible.

TABLE 1. Table of the material properties j and l computed
from the inverse FE scheme outlined in Fig. 1c using the mean
value of force measured in the experiments and 6 one stan-

dard deviation as the upper and lower bounds.

DV=V0 (%) l (kPa) j (kPa) j=l meff

Upper 12.50 7.87 42.14 5.34 0.412

Mean 9.31 6.47 56.66 8.56 0.445

Lower 6.12 6.25 99.03 15.79 0.469
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For completeness, calibrations are also performed
using target experimental values one standard devia-
tion above and below the mean values, providing up-
per and lower limits for the material constants. As
reported in Table 1, using (3), the effective Poisson’s
ratio of the arterial tissue ranges from 0.412 to 0.469,
again indicating that the material is indeed compress-
ible.

Confined Compression Test Results

Figure 5 shows the experimental axial stress–strain
curve for the confined compression test (mean ± SD).
Also shown is the predicted stress–strain curve using
the compressible neo–Hookean material parameters
determined from the aforementioned tension tests
(mean, upper and lower bounds given in Table 1). The
experimental and predicted confined compression data
are in good agreement with one another. This result
provides a validation of the material parameters for
the compressible ground matrix determined in above.
It should be noted that the axial strain enomxx is equal to

the volumetric strain DV=V0 in this confined com-
pression experiment.

Anisotropic Material Constant Calibration

The anisotropic material properties k1, k2 and b for
the MA constitutive model given in Eq. (1) are deter-
mined from biaxial tension experiments using the

method outlined in the ‘‘Inverse FE Analysis for Cal-
ibration of Anisotropic Fibres’’ section. The mean
force–displacement curve (n = 6) is used as the target
experimental data and a mean specimen thickness of
2.9 mm is assigned to the FE model. Table 2 gives the
material properties determined from this analysis and
Fig. 6a plots normalized force–displacement curves in
the x and y directions for biaxial displacement ratios of
ux=uy ¼ 1 and ux=uy ¼ 2. A good correlation between

the measured experimental data and calibrated FE

simulations is achieved (r2>0:97 for all plots). As ex-
pected, highly anisotropic material behaviour is
observed, with the measured force being significantly
higher in the circumferential direction of the sample. It
should also be noted that force–displacement curves
are quite linear, with no significant strain stiffening
being observed over the range of applied deformation
(the maximum principal nominal strain at the centre of
the specimen emaxp

nom ¼ 25% at maximum extension).

Additionally in Appendix B we perform specimen-
specific calibrations of each biaxial test, where the
unique specimen thickness and force–displacement
curves are used.

FIGURE 5. Stress–strain curve for confined compression
tests (n = 9). Also shown is the predicted stress–strain be-
haviour, based on a neo–Hookean constitutive law and the
compressible material parameters determined from the tensile
tests (Table 1). Note that the axial strain enom

xx is equal to the
volumetric strain DV=V0 in confined compression.

TABLE 2. Results from the inverse FE scheme for the ani-
sotropic material parameters of the MA model defined in

Eq. (1).

k1 (kPa) k2 b (�) r2‡ f (K)

4.81 1.98 60.2 0.97 0.07

FIGURE 6. Calibration of the biaxial tests using the com-
pressible MA model. (a) Force–displacement curves for
clamps x and y and displacement ratios ux=uy ¼ 1 and
ux=uy ¼ 2. The solid lines are the experimentally measured
curves whilst the symbols represent the best fit FE solution.
The cost function for this calibration is f ðKÞ ¼ 0:072 while the
lowest value of the correlation coefficient r2 ¼ 0:97. Material
parameters are give in Table 2.
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Assessment of Error Generated by the Incompressibility
Assumption

Having established that aorta arterial tissue is
compressible, we next assess the errors introduced by
the commonly used assumption of material incom-
pressibility. Assuming that the material is incom-
pressible, a ground matrix shear modulus is
calibrated using the method outlined in the
‘‘Calibration of Isotropic Ground Matrix’’ section
while ignoring the experimentally measured volume
change reported in Table 1. A shear modulus of
l̂ ¼ 5:2 kPa is found to reproduce the experimentally
measured mean applied force of 0.59 N at knom ¼
1:28 nominal stretch ratio (see Fig. 1), but with
no volume change permitted. Next the anisotropic
material parameters for the incompressible HGO
model19 are calibrated from the biaxial test data
using the inverse FE procedure outlined in the ‘‘In-
verse FE Analysis for Calibration of Anisotropic
Fibres’’ section. Anisotropic material constants of

k̂1 ¼ 6:92 kPa, k̂2 ¼ 0:89 and b̂ ¼ 57:5� are deter-
mined (see Fig. 7).

In Fig. 7 it appears that a very accurate calibra-
tion of the material properties has been achieved

using the incompressible HGO model (r2>0:97).
However, noting that this calibration has been per-
formed while ignoring the previously determined
material compressibility, we next demonstrate that
significant errors may be encountered by the inac-
curate incompressibility assumption in a tri-axial
loading environment. Specifically we consider the
case of an artery expansion under increasing lumen

pressure using both the compressible MA model and
the incompressible HGO model. The artery is mod-
elled as a three-dimensional thick walled cylinder
with fixed ends (no net out-of-plane deformation is
permitted in the z-direction). Figure 8a illustrates the
geometry and boundary conditions in addition to the
applied lumen pressure LP. The artery is inflated up
to a maximum lumen pressure (LPmax) of 4.0 kPa. A
mesh sensitivity study determines that 1600 elements
result in a sufficiently converged solution. We ensure
that the maximum principal strain in the vessel wall
does not exceed the maximum strain used in cali-
brating the models.

Figure 8b plots the internal and external radial
strain (Dr=r0) with increasing lumen pressure (LP) for
both the MA and HGO models. Both models predict
near identical arterial compliance. This simulation is
analogous to a 1:0 biaxial stretch in the h� z plane
with an additional small compressive stress in the
radial direction. The rhh and rzz stress components
are at least two orders of magnitude greater than the
rrr radial stress, highlighting that the dominant
deformation occurs primarily in the plane of the fi-
bres. Given that the MA and HGO models are cal-
ibrated to give an identical response in biaxial
tension (see Figs. 6 and 7 respectively), a similar
arterial compliance is computed by both models as
shown in Fig. 8b.

However the calibrated MA model, which cor-
rectly accounts for compressibility, predicts a very
different stress state in the artery wall to the HGO
model which does not account for compressibility.
Figure 8c, d demonstrate that the entire stress dis-
tribution is significantly affected. Figure 8c considers
the stress biaxiality in the artery wall i.e. the ratio of
the axial to circumferential stress (rzz=rhh). The
models compute a significantly different magnitude
and gradient of stress biaxiality through the artery
wall. Clearly the incompressibility assumption has
significant implications for the out-of-plane axial
stress (rzz) component, with important consequences
for prediction of artery buckling stress15 etc. Fig-
ure 8d considers the stress triaxiality in the artery
wall; the ratio of the pressure stress (p ¼ trðrÞ) to the

von Mises stress (q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þr0 : r0

p
where r0 is the

deviatoric stress). Stress triaxiality is an indication of
the volumetric to deviatoric (shear) stress at a
material point and is often used as a scalar measure
of a tri-axial stress state. Additionally stress trixiality
has been shown to be an important factor in crack
nucleation and material rupture.1 Significant differ-
ences in stress triaxiality magnitude and gradient are
computed even though both models have been

accurately calibrated to biaxial test data (r2>0:97)

FIGURE 7. Calibration of the biaxial tests using the incom-
pressible HGO model. (a) Mean force–displacement curves for
clamps x and y and displacement ratios ux=uy ¼ 1 and
ux=uy ¼ 2. The solid lines are the experimentally measured
curves whilst the symbols represent the best fit FE solution.
The cost function for this calibration is f ðKÞ ¼ 0:071 while the
lowest value of the correlation coefficient r2 ¼ 0:97.
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and exhibit similar material compliance. The values
of q , p , rzz, and rhh at the internal and external
radius for both the HGO and MA models are given
in Table 3.

Appendix D simulates lumen inflation where resid-
ual stresses in the vessel wall have been included. Re-
sults show that, once again, compressibility of the
tissue has an important influence on the stress-state in
the vessel wall.

DISCUSSION

The current study provides new insight into the
compressibility of arterial tissue. The key findings of
the study are as follows:

1. Aortic arterial tissue is compressible. Stretch-
ing of aortic tissue specimens in the radial
direction reveals significant volume changes
(mean DV=V0 ¼ 9:31%).

FIGURE 8. (a) Schematic of a quarter artery showing the geometry and boundary conditions used for the FE simulations. The
artery has an internal radius ri ¼ 9 mm and an external radius re ¼ 12 mm and is subjected to an internal lumen pressure
LPmax ¼ 4:0 kPa. (b) Plot showing the predicted internal and external radial strain (Dr=r0) with increasing lumen pressure (LP) for
the compressible MA model and the incompressible HGO model. (c) Contour plot of the axial Cauchy stress rzz over the cir-
cumferential Cauchy stress rhh (the plane in which the reinforcing fibres are located) computed by the HGO and MA models. The
contour shows a marked difference in the stress distribution in the artery wall. (d) Contour plot of the stress triaxiality ( p/q ) in the
artery wall computed by the HGO and MA model. Stress triaxiality is the pressure stress p over the von Mises stress q . Again we
see marked differences in the triaxiality of the stress. Note that all contour plots are plotted in the undeformed configuration for the
purposes of comparison.
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2. Biaxial stretch experiments alone are not suf-
ficient to characterise tissue behaviour. We
demonstrate that the incompressible HGO
model and its modified compressible form (MA
model) can both be accurately calibrated to
capture experimental biaxial test data (r2>0:97
for both), despite the fact the HGO model
neglects material compressibility.

3. Failure to accurately characterize tissue com-
pressibility will result in the inaccurate predic-
tion of artery wall material stress in vivo, even if
artery compliance is accurately calibrated.

Previously published material models assume that
arterial tissue is incompressible,5,14,19,39 as do many
experimental studies.16,21,30,32,40 The paper by Carew
et al.4 is generally cited as justification for the
assumption of incompressibility. Carew et al.4 ex-
panded segments of artery under physiological lumen
pressure and the change in volume of the artery tissue
was measured. No significant volume change was
observed but critically the study is limited to the small

strain regime. Moreover the study of DiPuccio et al.8

suggests that accuracy of the technique used by Carew
et al. should be improved upon. Previous studies have
attempted to measure volume change by directly
measuring artery geometry.2,9 During lumen expansion
the change in vessel thickness scales with the square
root of the volume change. Hence in a lumen expan-
sion experiment, the measurement of volume change
via the change in internal and external radii requires
very accurate measurement and presents a consider-
able experimental challenge.

In the current study a novel combined experimental
and computational approach is developed to overcome
this challenge. By stretching aortic arterial tissue in the
radial direction and monitoring resultant changes in
the tissue volume, it is shown that aortic ground matrix
material exhibits significant compressibility. This
methodology for the determination of tissue com-
pressibility is based on experimental evidence that fi-
bres are primarily confined to the h� z plane12 and
hence do not contribute to stretching in the radial
direction. A number of papers report dispersion of the
fibre orientation angles in arteries.3,13 This may lead to
a small contribution of fibres in the radial direction but
it is expected that this is a secondary effect as it is
generally accepted that arteries have two families of
fibres in the h� z plane.19,34 This novel technique al-
lows the determination of material compressibility,
while parsing isotropic contribution of the ground
matrix. To further validate this finding, we perform
additional experimental tests for a confined compres-
sion mode of deformation; confined compression re-
sults are in close agreement with our tension tests.

In addition to stretching in the radial direction,
biaxial tests are performed to determine fibre
mechanical properties. An inverse FE method is used
to provide an optimal calibration of the fibre proper-
ties from the experimental results. In the current study
we demonstrate that if material compressibility is not
independently established, a unique set of anisotropic
material properties cannot be determined through
biaxial tests alone. To highlight this point we demon-
strate that biaxial experimental test data can be accu-
rately predicted by both the compressible MA material

model (r2>0:97) and the incompressible HGO mate-

rial model (r2>0:97). This is despite the fact that the
aforementioned compressibility was rigorously estab-
lished in the ‘‘Compressibility of Arterial Tissue’’ sec-
tion. The parsing of the matrix contribution using the
method in the ‘‘Compressibility of Arterial Tissue’’
section and determination of fibre properties as shown
in the ‘‘Biaxial Experiments’’ section provides a new
and systematic approach to the mechanical character-
isation of soft tissue.

TABLE 3. Values of the von Mises stress ( q ), pressure
stress ( p ), axial stress (rzz ), and circumferential stress (rhh) at

internal radius, ri , and the external radius, re .

MA HGO

ri re ri re

q (kPa) 32.26 11.98 30.69 13.22

p (kPa) 10.95 5.55 9.93 6.52

rzz (kPa) 4.42 3.59 4.68 4.18

rhh (kPa) 31.96 13.24 29.81 14.97

FIGURE A.1. Mean radial strain with increasing lumen pres-
sure for (i) the MA model (Eq. (1)), (ii) the MA_LNH model
which uses a modified version of the neo–Hookean model to
represent the ground matrix; this version uses a logarithmic
penalty term lnðJÞ to prevent excessive volumetric deforma-
tions, and iii) the MA_HYF model which uses a hyperfoam
model to represent the ground matrix.
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In the current study aorta tissue exhibits slightly
non-linear stress–strain behaviour in the strain range
examined (emaxp

nom ¼ 25% at the specimen centre at

maximum extension). Such near-linear behaviour is
similar to the uniaxial experimental results of Sokolis
et al.37 In contrast highly non-linear exponential strain
stiffening has been observed for coronary and carotid
arteries for strain ranges up to 30%.22,35 Future studies
should investigate changes in material compressibility
at very high levels of applied strain (both compressive
and tensile).

The current study is the first to present rigorous
quantification of aorta compressibility. Follow-on
studies should be performed on other types of elastic
arteries e.g. carotid, iliac arteries, as well as muscular
arteries, e.g. femoral, cerebral arteries, in order to
characterise groundmatrix compressibility as a function
of anatomical location. Given the similarities in
anatomical composition of all elastic arteries,22 based
on the current study it is not unreasonable to suggest
that they will exhibit some degree of compressibility.
Future studies should also consider both healthy and
diseased human arterial tissue. It is possible that the
level of compressibility aneurysmal tissue or
atherosclerotic tissue may differ from that of healthy
tissue. The recent study by Yosibash et al.46 reports
volume changes in segments of porcine femoral and
saphenous arteries under lumen pressure however pre-
cise characterisation of material compressibility has yet
to be performed.

The significant errors that can result from an
inappropriate incompressibility assumption are high-
lighted in the case study of a 3D artery subjected to a
lumen pressure. In this case study the artery is sub-
jected to a triaxial stress state hence exposing the
significant errors that can be generated if material
compressibility is not properly characterised. Though
a change in volume of the artery wall is computed
using the compressible MA model, because the
change in artery wall thickness scales approximately
with the square root of the volume change, a small
change in artery wall volume (�2%) results in a very
small change in vessel radius.

The importance of compressibility on the biaxial
and triaxial stress reported in this study is not sur-
prising, based on theoretical analysis that demon-
strates that stresses in thick walled elastic cylinders are
dependent on compressibility.25 The importance of
compressibility has also been demonstrated in cases
where residual stress has been included. The theoretical
relationship between residual stress and compressibil-
ity was previously noted.44

These alterations have important consequences for
all manner of biomechanics and medical device simu-
lations. Correct modelling of vessel compliance and
stress are vital for the accurate simulation of many
biomechanics and medical device problems. For
example; the radial force required to deploy a stent,
stent recoil and fatigue,7 for peripheral vessel buckling
and deformation,15 and for prediction of abdominal
aortic aneurysm rupture.45

FIGURE C.1. Quasi-3D calculation to determine the volume
change in cylindrical specimens. Orthogonal experimental
images measure the orthogonal diameters, 2a and 2b, of the
specimen at each segmentation plane. The volume, V , is
calculated by integrating cross-sectional areas over the
height of the specimen.

TABLE B.1. Anisotropic material parameters for the MA
model defined in Eq. (1) uniquely calibrated for each individ-
ual specimen, as well as the individual specimen thickness.

#1 #2 #3 #4 #5 #6

t (mm) 3.5 3.3 2.8 2.4 2.9 2.7

k1 (kPa) 11.91 6.73 6.49 7.84 8.92 5.59

k2 0.5 0.5 0.5 0.5 0.5 0.5

b (�) 57.7 54.9 62.0 59.3 59.5 62.8

r2 0.98 0.97 0.97 0.95 0.98 0.93

f(K) 0.056 0.129 0.061 0.146 0.050 0.175
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CONCLUSION

In the current paper we have determined that aortic
arterial tissue is compressible. A rigorous methodology
for calibration of the isotropic ground matrix and

anisotropic fibre contribution is presented. Finally we
demonstrate that material compressibility must be
accounted for in order to accurately predict the stress
state of an artery wall.

APPENDIX A: INVESTIGATION OF DIFFERENT

FORMS OF Wiso

In the ‘‘Compressible Anisotropic Constitutive
Model’’ section the strain energy potential for the MA
model is additively split into isotropic and anisotropic
parts W ¼ Wiso þWaniso. The MA model uses a

common neo–Hookean strain energy potential,

Wiso ¼ l
2 ð�I1 � 3Þ þ j

2 ðJ� 1Þ2. Here the use of two

additional hyperelastic strain energy potentials for use
as the isotropic term Wiso are investigated. Firstly a

modified version of the standard neo–Hookean model
which was developed for scenarios involving large
compressive stresses is examined. Its strain energy
potential is given as:

Wiso ¼ l
2
ð�I1 � 3Þ þ j

2

J2 � 1

2
� lnðJÞ

� �

: ðA:1Þ

In this model the volumetric term has been modified
to include the function lnðJÞ. This has the effect of
penalising very large volume changes and prevents
J ! 0.

Secondly a hyperfoam model38 developed for highly
compressible hyperelastic polymer foams is examined.
Its strain energy function is given as:

Wiso ¼
XN

i¼1

2li
a2i

kai1 þ kai2 þ kai3 � 3þ 1

bi
ðJ�aibi � 1Þ

� �

;

ðA:2Þ

where N is the order of the function, km (m ¼ 1; 2; 3)
are the principal stretches, ai determines the non-lin-
earity for each term in the function, bi determines the
compressiblity for each term in the strain energy
function and is related to the Poisson’s ratio mi through
the expression bi ¼ mi=ð1� 2miÞ, and the initial bulk

modulus j0 ¼
PN

i¼1 2li½ð1� 3biÞ=3�.
Equation (A.1) is added to the anisotropic potential

of the MA model to form the MA_LNH model and
Eq. (A.2) is added to the anisotropic potential of the
MA model to form the MA_HYF model. The simu-
lations from ‘‘Assessment of Error Generated by the
Incompressibility Assumption’’ are repeated using the
MA_LNH and MA_HYF models for the artery wall.
The MA_LNH model uses the mean bulk and shear
modulus from Table 1 and the MA_HYF model uses
N ¼ 1, ai ¼ 2, mi ¼ 0:44, and li ¼ 7:04 kPa.

FIGURE D.1. Residual (von Mises) stress in the vessel wall
under zero lumen pressure for (a) the incompressible HGO
model, and (b) the compressible MA model.

FIGURE D.2. Ratio of the axial stress to the circumferential
stress (rzz=rhh) in a pressurized vessel for (a) the incom-
pressible HGO model, and (b) the compressible MA model.
Results are similar to those presented in Fig. 8

Compressibility of Arterial Tissue and Consequences 1005



The mean radial strain – pressure curves for both of
these models, as well as that of the original MA model
are given in Fig. A.1. Use of the MA_LNH model
results in no difference in arterial compliance com-
pared to the MA model. The MA_HYF model com-
putes a small difference in compliance. For the
hyperfoam model it is recommended that the effective
Poisson’s ratio does not exceed 0.45.

APPENDIX B: CALIBRATION OF ANISOTROPIC

CONSTITUTIVE MODELS

Calibrations are performed for each of the six
individual specimens tested using their unique force–
displacement curve and the specimen thickness mea-
sured using the technique outlined in ‘‘Inverse FE
Analysis for Calibration of Anisotropic Fibres’’ sec-
tion. The results of these individual calibrations are
presented in Table B.1.

APPENDIX C: QUASI-3D METHOD FOR

VOLUME CHANGE MEASUREMENT

Volume change is calculated using an alternative
method by measuring two orthogonal axes/diameters
of the specimen at each segmentation plane. The vol-
ume is computed by integrating the resultant cross-
sectional areas over the height of the specimen using a
trapezoidal type method. A schematic outlining this
method is given in Fig. C.1 This alternative method-
ology results in a volume change of 10.11 ± 4.61%
(mean ± SD). A t test indicates that there is no sta-
tistically significant difference between the mean vol-
ume change calculated using the axi-symmetric or the
quasi-3D method.

APPENDIX D: INCLUSION OF RESIDUAL

STRESS

The influence of residual stresses on the stress-state
in the vessel wall is assessed in this appendix. It is well
established that residual stresses are present in the
unpressurised vessel wall. Simulations of lumen infla-
tion were performed, following the computational
method outlined by Raghavan et al.31 and using the
experimental data of Vaishnav and Vossoughi42 to
determine stress-free geometry. The vessel has a stress-
free internal radius Ri ¼ 21:92 mm, an external radius
Re ¼ 24:94 mm, and an opening angle of 80:22�. The
material parameters for both the HGO and MA
models are identical to those used in ‘‘Assessment of

Error Generated by the Incompressibility Assump-
tion’’ section.

Figure D.1 shows a contour plot of the residual von
Mises stress in the vessel wall in the unpressurised con-
figuration. The vesselmoves from a state of compression
on the inner face to tension on the external face. As the
anisotropic component of both the HGO and MA
models are inactive in compression, this explains the
higher stress on the external face of the vessel. Fig-
ure D.2 shows a contour plot of the ratio of the axial
stress to the circumferential stress (rzz=rhh) for theHGO
and MA models. This figure further illustrates the
dependence of the stress-state on the treatment of
compressibility. Differences between the HGO andMA
models are similar to those shown in Fig. 8 without
residual stress. This illustrates that the important influ-
ence of compressibility on triaxial artery stress is sig-
nificant regardless of the inclusion of residual stress.
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